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Polymer Physics, Department of Materials and Materials
Research Center, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland, and Computational Science,
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Physical properties of helical structures on the supramolecular
level, such as observed in many physical and biophysical
networks (collagen, dendronized polymers) and also the forma-
tion dynamics of such systems, are important areas of research.
Approaches to their understanding and manipulation usually
involve the self-assembly of chiral molecular building blocks,1

where the “internal’‘ asymmetry of the building blocks is
explicitly used. The more challenging question is on how to
obtain helix formation in systems that do not contain any chiral
centers. Evidence of such kind has been reported from both
experiment2 and theory.3,4 The mechanism of helical formation
had been attributed to local symmetry breaking. Here we
propose a universal model for investigating formation and
properties of helically interwound fibrous structures based on
achiral systems. It is based on the so-called Janus chain (JC)
model recently introduced by us and originally designed for
high generation dendronized polymers5 which consist of a
number of dendrons attached to a linear polymeric backbone.
The main idea behind the dynamical model is the observation
that polarities are different for the chemical groups on the
dendron termini and interior. This polarity difference allows to
consider them as amphiphiles, which are known to give rise to
a great variety of supramolecular assemblies.6 Unlike conven-
tional amphiphiles such as block copolymers, structurally more
complicated dendronized polymers potentially exhibit a dynami-
cal amphiphilic pattern on their solvent contacting interface.4,7,8

The anisotropy related to the local symmetry breaking of
amphiphilic pattern4,8 is effectively captured by the JC model.

Apart from dendronized polymers, many helical fibrous
structures are formed via amphiphilic self-assembly in solution
(mostly water). Examples include actin filaments, DNA double
strands, and collagen gels.9,10 In this communication we stress
the universality of the JC model and explore its range of
applicability, which is seen to go beyond the case of double-
helical dendronized polymer structures. Despite the fact that
the formation mechanisms of helical superstructures are differing
from case to case, and are sensitive to whether chiral or achiral
building blocks are involved, the final superstructures possess
structural and mechanical similarity. The JC model can be used
to study dynamical properties of helical networks, with or
without considering details of the formation process.

There are a number of simple mesoparticle models which
capture the characteristics of gel-forming systems, such as
irreversible gelation via sticky particle models11 or more recent
network formation models employing (i) two- and three-body
interactions between beads, giving rise to directional bonds (cf.
ref 12) and (ii) the simple elastic Lennard-Jones model exhibit-

ing filamentous structures and a sol-gel transition.13 None of
these models have yet addressed the existence of the polymeric
backbone present in real physical gels. It is worthwhile to
mention that a system with purely radial interaction is prone to
undergo a phase separation14 and is therefore not a good model
for a gel-forming system.15

Structurally simple polymers are usually modeled on the
coarse-grained level by anharmonic multibead chains, where
each linear chain consists of a number N of beads connected
by anharmonic, finitely extendable nonlinear elastic (FENE)
springs with bond vectors denoted as bi, bond length bi.
Semiflexibility is introduced by adding a bending Hamiltonian;
excluded volume and solvent quality are taken into account by
a radially symmetric Lennard-Jones potential between all
beads.16,17 The solvent is modeled either by explicit solvent
particles or by Brownian dynamics, with or without hydrody-
namic interactions.18

The JC model (see Figure 1) builds on a system of
semiflexible excluded volume multibead FENE chains. The
potential energy fully characterizing this system is a superposi-
tion of FENE, bending, and Lennard-Jones potential, more
formally U ≡ ∑iUFENE(bi) + Ui

bend + ∑jU�0
LJ(rij) with the classical

ingredients17 UFENE(b) ) -(k/2)b0
2 ln[1 - (b/bmax)2] where bmax

is the maximum extensibility of a bond, and bending potential
Ui

bend )-κb̂i · b̂i+1, where rij is the distance vector between beads
i and j and the hat denotes the corresponding unit vectors. The
U�0

LJ(r) ) 4f(r)(r-12 - r-6 + 1/4) contribution equals the classical
Lennard-Jones potential truncated at distance rc and modified
by a prefactor which depends on distance: f(r) ) 1 and f(r) )
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Figure 1. (a) Schematic representation of two semiflexible Janus chains
approaching each other. Shown are the Janus beads interacting via
radially symmetric LJ potentials, the bending coefficient κ, the distance
vector rij, two Janus vectors Ĵi and Ĵj, and the fraction c of hydrophobic
surface, interacting via the Janus-Janus potential (2a). (b-d) Char-
acteristic types of polymeric conformations observed inside the helical
network, where Janus vectors derive from nearest neighbor interactions
(R ) ∞) and are drawn in red: (b) backfolded single polymer (solvent
quality: �0 ) -8, ∆� ) 32, c ) 0.7); (c) ring formation of a single
polymer (-2, 32, 0.5); (d) cross-link point involving three chains (-4,
16, 0.7).
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�0 for r e 21/6 and r g 21/6, respectively. The attractive part of
the LJ potential is weighted by �0, the solvent quality param-
eter.17 Throughout this paper, units are reduced to LJ units,
denoted as JCu for the present purpose.19 For all results to be
presented in this communication we have used bmax ) 1.5 and
κ ) 25. If not otherwise mentioned, rc ) 1.275, k ) 30, and
the bead number density is 5%.

Next, we add degrees of freedom to the classical FENE chain
by introducing so-called JC unit vectors {Ĵi} to each of the
beads. A Janus vector characterizes the local anisotropy of an
otherwise spherically symmetric bead. For amphiphilic systems,
the Janus vector is considered as a dipole pointing from the
hydrophilic center to the hydrophobic center. Within the
generalized JC model to be introduced here, the Janus vector Ĵi

of bead i is induced by the surrounding of bead i, much in the
spirit of embedded atom theories, where the induced quantity
is usually a scalar (representing electron density) rather than a
vector. To be specific, the orientation Ĵi is given by a weighted
sum over normalized connectors r̂ij ≡ rij/rij between bead i and
the spatially nearest nonbonded neighbors of bead i

with a finite-range weight function w(r), which we choose as
w(r) ) r-R - rc

-R with exponent R and cutoff distance rc. The
limiting cases R ) 0 and R f ∞, at large rc, correspond to
mean-field and nearest-neighbor weighting, respectively. The
idea behind this simple treatment is that the hydrophobic and
hydrophilic components are redistributed due to binary interac-
tions and that the resulting pairs of mutually corresponding Janus
vectors effectively prevent the further assembly (into ag-
gregates). In the figures to be presented in this communication,
such as Figure 1, besides the polymeric contour and beads, the
massless Janus vectors will be drawn in red.

In an amphiphilic system, solvent shows different qualities
to different components. For the case of an aqueous system,
water acts as good (bad) solvent with respect to the hydrophilic
(hydrophobic) components. Our model parameter ∆� g 0,
explicitly defined in the Janus-Janus interaction potential (2a),
captures this difference on solvent qualities, while �0 acts as
the midpoint solvent quality between the two extremes or,
equally, the mean solvent quality of the two components. The
isotropic LJ potential containing �0 quantifies the effect of
solvent on nonlocal (global) interactions. The anisotropic part
containing ∆� together with the Janus vectors describes the
amphiphilic interaction UJ-J between Janus vectors Ji and Jj at
bead-bead distance rij:

where U0
LJ is the purely attractive part of the LJ potential, and

coverage c ∈ [0, 1] is the fraction of hydrophobic components;
it appears not only in the geometric factor gij, which derives
from considering two conusoidally labeled objects (cf. Figure
1a) in contact, but also in the interaction strength, which must
be symmetric with respect to the transformation cf 1 - c and
which vanishes when either c ) 0 or c ) 1, i.e., in the case of
a single component. The plus sign in (2a) applies when the
geometric factors gij and gji are both positive; otherwise, the
minus sign is in place. The asterisk in the subscript of U/J-J

indicates that only nonbonded pairs of beads are subjected to
this JC potential. Since our Janus vectors are instantaneously

defined by the surrounding configuration, we implicitly regard
the corresponding relaxation time for amphiphilicity redistribu-
tion to be much smaller than the configurational dynamics of
the JC; i.e., we implicitly make use of time-scale separation
underlying the multiscale approach. Still, according to their
definition, the dynamics of Janus vectors is dictated by the
configurational dynamics of surrounding chains.

The Janus vectors represent the induced chemical asymmetry
of a Janus bead, which is potentially pronounced for “thick”
macromolecules with bulky side groups. The asymmetry, once
realized, induces spontaneous curvature of the JC, in accord
with a bending hamiltonian of the form H ∝ (Ĵ + b̂i-1 + b̂i)2

as proposed in ref 4. In view of the part absorbed by the above
bending potential (involving κ) this effect is captured by the
following additional intramolecular interaction

where κJ expresses the strength of bending induced by Janus
vectors. For results explicitly shown in this paper κJ ) κ. At
this point one may ask how to choose or obtain the parameters
of the generalized JC model which serve to study a real system.
The parameters b0, bmax, and bending stiffness κ characterizing
the structureless polymer (∆� ) 0) result from the architecture
of the polymeric backbone, length of spacers between mono-
mers, and, for dendronized polymers, the generation-sensitive
persistence length and thickness of the polymer. The latter two

Ĵi ) ∑
j

w(rij) rij / ∑
j

w(rij) (1)

Uij*
J-J ) (c(1 - c)∆�|gijgji|U0

LJ(rij) (2a)

gij ≡ (Ji·r̂ij - cos cπ)/(1 - cos cπ) (2b)

Figure 2. (a) Sample snapshots showing the formation of helical
network, taken at times t ) 1, 20, 80, 200, and 500 (Brownian dynamics
simulation), for the case with solvent qualities �0 ) -8, ∆� ) 16,
coverage c ) 0.7, and nearest-neighbor interactions (R ) ∞). (b) Phase
diagrams of JCs with coverages c ) 0.3, 0.5 and 0.7 in the ∆�-�0

plane. Gray stands for individual chains (I); light purple stands for the
intermediate state (L) between individual chains (I) and helical network
(H); bright red for helical network (H); green for the intermediate state
(D) between helical network (H) and ball-like aggregate (O, blue).
(right) Three representative configurations for (O) globules (solvent
quality �0 ) +4, ∆� ) 8, coverage c ) 0.7), (H) helical network (-8,
16, 0.7), and (I) individual chains. (-32, 1, 0.7). (c) Semilog plots of
intra- and interchain pair correlation functions of JCs (here for coverage
c ) 0.7) are used to classify states into three representative phases (O,
H, and I).

Ui
J-J,bend ) -κJ Ĵi·(b̂i - b̂i-1) (3)
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quantities can be estimated using a simple Flory-type approach,
as done for dendrimers in ref 20, where the spherical volume
in the interaction term is replaced by a cylindrical one. While
�0 has been related to solvent quality, the coverage c is
determined by the given chemistry. More precisely, it should
be related to the functionality of junctions inside dendronized
polymer. While a bottlebrush with one or a few terminal
monomers per strand will be characterized by c , 1, a
copolymer brush or dendronized polymer may be well charac-
terized by large values for 0 , c < 1. For the DPs with three-
functional junctions of refs 4, 5, and 13, for example, approxi-
mately half of the monomers are hydrophilic. There is a route
to estimate these parameters using atomistic simulation.4 By
inspecting the energies, we see that ∆� quantifies the strength
of Janus-Janus interaction and R the range of interaction
between Janus beads, while κJ quantifies the tendency of the
molecule to bend as a result of redistribution of hydrophobic
and hydrophilic components. A large κJ . κ will therefore favor
formation of compact helices while a weak κJ , κ will allow
formation of gently bent multiple bundles. However, as this
approach cannot be successfully followed for complex molecules
like DP in view of today’s computational possibilities, and
because it would limit our presentation to a particular system,
we here present the reverse strategy, and investigate the effect
of model parameters �0, ∆�, and c on the phase behavior.

By now, the force Fi ) -∂E/∂ri on particle i is immediately
obtained from the model energy E ) U + UJ-J + UJ-J,bend. We
refrain from writing down the full expression, but mention the
useful identity ∂b̂k/∂ri ) bk

-1(δi,k+1 - δi,k)(1 - b̂kb̂k), where δ is
the Kronecker symbol, 1 the unity matrix, and b̂kb̂k a dyadic
product. We apply conventional Brownian dynamics as de-
scribed in textbooks17,18 to study the Langevin equation for the
JC model. The equations of motion for a number of these chains

(according to given concentration) confined in a cubic simulation
cell are solved subject to periodic boundary conditions.

Before we turn to structural properties of the many-chain
system and the phase diagrams, let us inspect typical single chain
conformations formed inside the system made of a large number
of JCs. Three of them are shown in Figure 1b-d. All chains
shown in this figure are found in a helical conformation, which
results from the Janus-Janus interaction. Figure 1b shows a
backfolding helical chain, which can be observed if the energy
penalty for the kink (due to the stiffness κ) is smaller than the
energy gain stemming from amphiphilic Janus-Janus interac-
tions in the backfolded part of the chain. Similarly, linear chains
can aggregate into rings when their length over stiffness ratio
and concentration are both small enough to give the hydrophobic
interaction the possibility to become active and to create a
metastable physical bond between chain ends or, more generally,
between parts of the same chain. Rings are formed in a two-
step process. After touching and formation of temporary
junctions, bending energy is lowered by lateral motion of
junction toward the chain ends. At the same time, the chain
tends to lower the Janus-Janus bending energy (3) which favors
formation of helical chains with constant pitch.

A 3D phase diagram obtained from 144 simulations upon
varying coverage c and solvent quality parameters �0 and ∆� is
presented in Figure 2b. Snapshots showing formation of helical
network are shown in Figure 2a. Isocoverage surfaces at c )
0.3, 0.5, and 0.7 leave a good impression about the whole phase
diagram of JC systems in the ∆�-�0 plane. By analyzing the
inter- and intramolecular pair correlation functions (example
given in Figure 2c) and also visual inspection, we have classified
all states into three main regimes: individual noncollapsed chains
(phase I), helical network (H), and individual ball-like globules
(O). Three representative and accordingly labeled configurations

Figure 3. Shown are examples for (a) double helix at coverage c ) 0.35 and R ) 12, (b) triple (c ) 0.4, R ) 2), (c) quadruple (c ) 0.8, R ) 2),
and (d) quintuple helix (c ) 0.9, R ) 2). Remaining simulation parameters are k ) 15, �0 ) 1, ∆� ) 32, and rc ) 2. Interaction-mediating, induced
spontaneous Janus vectors are drawn in red. The network formation dynamics of a system exhibiting double-helical structures to a large extent is
animated in Figure 4a-e. For a gel formed by triple-helical structures see Figure 4f-k. Movies available online at ref 21.

Figure 4. Sample snapshots for systems mentioned in Table 1 taken (a-e) during the formation dynamics of the double-helical network at coverage
c ) 0.4, R ) 12, and (f-k) during the static rotation of a triple-helical network in its stationary state at c ) 0.6, R ) 12. Remaining simulation
parameters are �0 ) 1, ∆� ) 32, and rc ) 2. The time passed between snapshots (a) and (e) is 10 JC units. Movies available online at ref 21.
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characterizing the three main phases are shown on the right part
of Figure 2. Notice that these results have been obtained for a
limiting case of our model, the one where the Janus vectors are
determined by nearest-neighbor segments (R ) ∞). Under this
original setting of the JC model, we find that double-helical
network formation is favored over multihelical agglomeration.
The latter we do not observe for range of parameters used to
study phase diagrams in Figure 2b.

However, as we will demonstrate next, the presented model
is well capable of capturing the dynamics and physics of more
complex phases. A pertinent example elucidating the range of
applicability of the same model is offered next. We have varied
the range of interaction, captured by parameter R of our model.
While R ) ∞ corresponds to a maximally short-range interac-
tion, smaller powers R allow parts of the chains to interact not
only with their nearest neighbor but with surrounding material
in second- and higher-order shells. The double-helical chain is
essentially stable due to the short-range interaction chosen in
the previous examples as it effectively repulses any additional
chain approaching the formed cluster. By probing finite values
for R, we are able to observe multihelical structures, as
demonstrated in Figure 3. As is evident from these snapshots,
there is a tendency to form ideal multihelices in the absence of
surrounding chains, i.e., at low concentrations. Upon increasing
concentration, the systems starts to gel. The qualitative behavior
is summarized in Table 1, corresponding time series and
snapshots given in Figure 4. We observe formation of infinite
clusters whose mesh characteristics are apparently unaffected
by system size as soon as it exceeds 3-4 times the size of typical
spacers between junctions.

Modeling of the mechanical properties of filamentous protein
networks9 has attracted noticeable attention.22 We have evidence
that the intrinsic stiffness of bundles increases with the order
of helicity and that their effect on mesoscopic structures largely
affects the material behavior, mesh size, and other properties
of the samples. To this end, we subjected the equilibrated JC
systems to shear and elongational deformation (or flow) by
applying methods presented elsewhere.17,23 In particular, for the
double-helical JC network we find (i) a high shear modulus
(comparable with the one for a polymer melt of same concentra-
tion), (ii) strain hardening, and (iii) negative normal stresses
when sheared, in agreement with experimental findings of real
biopolymer networks.24 The dynamics of the network formation
process, the process of chain interwinding, and formation of
multihelices has been animated and is permanently available
online at ref 21, where we have summarized supporting
information movies, in particular.

To summarize, we have presented results for the phase
behavior, formation dynamics, and structure of the JC model.

The generalized JC model seems to contain a sufficient, but
minimum, amount of ingredients to capture the internal structure
of bulky, linear polymers (large side groups, achiral building
blocks such as it is the case for dendronized polymers and other
multihelical bundles). We are not aware of the existence of an
alternate, competitive coarse-grained model of such 3D semi-
flexible polymer networks. The generalized JC model should
be of use for the study of material properties of biopolymer
networks made of chiral building blocks, too. The time and
length scales19 reachable by the presented model, when com-
bined with atomistic simulation of specific chemistry (as
exemplified in4 for the unmodified JC model) in order to
estimate model parameters, may help to study the dynamics of
network formation and material properties efficiently.
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(2) Böttcher, C.; et al. Chem.sEur. J. 2005, 11, 2923. Percec, V.; et al.
Nature (London) 2002, 419, 384. Zhuang, W.; et al. AdV. Mater. 2008,
20, 3204.

(3) Christopoulos, D. K.; et al. J. Chem. Phys. 2006, 125, 204907.
(4) Ding, Y.; et al. J. Chem. Phys. 2007, 127, 094904.
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Table 1. Overview about the Effect of Interaction Quality (r)
and Coverage (c) on the Appearance of Multihelical Structures

as the Ones Shown in Figures 3 and 4 (�0 ) 1, ∆� ) 32,
rc ) 2)a

c ) 0.35 c ) 0.4 c ) 0.6 c ) 0.8

R ) 2 triple triple quadruple quintuple
R ) 12 double triple quadruple quintuple
R ) ∞ double double irregular double globule

a Parameter R influences the phase behavior only at low coverages as it
mainly influences the orientation of Janus vectors (Janus vectors point to
the average direction constructed from neighboring beads and to the closest
neighbor for small and large R values, respectively). At high coverages c,
the orientation of the Janus vector plays a minor role. The case R ) ∞ has
been discussed in more detail; cf. Figure 2.
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