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ABSTRACT: Existing methods to obtain the primitive path network for monodisperse, linear polymers in the
molten state are critically compared. A connection is established between the original “annealing” and newer
geometrical approaches. A discrepancy of about 15% is observed in the mean primitive path length obtained by
these methods for well-entangled polymers. This deviation is attributed to disentanglement that occurs during
annealing. A number of well-equilibrated polymeric systems and some toy-configurations (rings) were studied to
estimate the relative contributions of slip and constraint release by end-looping to the observed disentanglement.
We found that about half (≈ 7.7%) of the discrepancy persists for ring polymers in which end-looping is not
possible, and may be attributed to slip alone. It is argued that the characteristics of the network obtained by
annealing become practically equivalent to those obtained by geometrical methods in the asymptotic limit of
small chain diameter and rapid quenching.

Introduction

In concentrated polymer solutions or melts, the volume
occupied by a single polymer chain is pervaded by several other
molecules. It produces topological interactions and some of the
persistent contacts constrain the mobility of the chains. Such
topological constraints are commonly called “entanglements”.
The primitive path of a polymer chain immersed in a sea of
obstacles is defined as the shortest path connecting the ends of
the chain that does not violate the topolgical constraints imposed
on it.1 The ideas of primitive paths (PP) and entanglements are
fundamental to our understanding of concentrated polymer
solutions and melts, and distinguish them from unentangled
polymer solutions. The dominant mean-field theory, called the
“tube model”,1 and its numerous refinements explain some of
the phenomenology associated with entangled linear polymers.1-8

It models polymer dynamics in a self-consistent manner by
representing chains as Gaussian PPs. Similarly, assumptions
about the PP network form the starting point for stochastic
descriptions such as “slip-link” models, which are able to explain
the rheology and dielectric relaxation in linear and branched
polymer melts.9-18

Recently, Everaers et al.19 suggested a simulation algorithm
called “annealing” based on the idea put forward by Rubinstein
and Helfand20 to construct the underlying PP network, starting
from a well-equilibrated system of densely packed polymers.
In this method, the ends of all the chains are immobilized and
intrachain excluded volume is switched off, while interchain
excluded volume is retained. As the temperature of the system
is gradually reduced to zero, the tension in the chains irons out
the excess slack in the all the chains simultaneously. In

particular, Everaers et al. showed that the above definition of
the primitive path agrees with the entanglement density that
yields the experimentally observed height of the plateau
modulus. The report by Everaers et al. inspired several other
efforts that adapted the spirit of the annealing algorithm to lattice
simulations,21 and used alternative geometrical methods to obtain
the PP network.22,23The excitement caused by this recent body
of work is understandable as these developments constitute the
missing bridge between mean-field tube theories, and slip-link
models on the one hand and microscopic descriptions via
molecular dynamics (MD) or lattice Monte Carlo (MC) meth-
ods24,25 on the other. The nonuniqueness or degeneracy of the
resulting PP network has been recognized,22,26,27 and several
new subjects such as the role of self-entanglement,28 the
difference between energy minimization and length minimiza-
tion,21,26 the location of entanglement points along a PP,22,23,27

PP statistics,8,22,23,27,29and the validity of assumptions made in
slip-link and tube models such as the chain retraction potential
and the dilution exponent have been examined.21,27,29

Thus, to date, four different methods to extract the PP network
from a simulation snapshot have been proposed:

(A) “annealing” method19,26,28(Σ ≈ 1000);
(B) lattice MC-adapted annealing method21,27 (Σ g 100);
(C) shortest multiple disconnected path approach or the “Z-

code”22,29 (Σ ≈ 1);
(D) the contour reduction topological analysis approach or

“CReTA”23 (Σ g 10).
Here,Σ is the total computing time per particle in units of

centiseconds on a modern processor. Methods B-D seek to
minimize the total contour length, while method A tends to
minimize the model-dependent total energy,19,28,30or alterna-
tively, the total path length26 of the system, by altering the spring
law that regulates the tension in the chain during annealing.
Methods C and D consider, in principle, infinitely thin paths
without the need to introduce spring or excluded volume
interaction potentials. It is important to note that these mini-
mization goals are reached subject to constraints, which
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aim to preserve the state of physically relevant entanglements.
Otherwise, the system would disentangle completely and the
shortest path, or deepest energy state, would yield straight-lines
between chain-ends. All the four methods work in discontinuous
time and coordinate space; i.e., they use discrete time steps and
finite displacements during which disentanglement processes
need to be avoided. Methods C and D deal with uncrossable
bead-connecting segments rather than excluded volume multi-
bead chains as relevant objects. They prevent disentanglement
by constraining moves of kinks (nodes) on the shortest path to
(i) lie in the plane spanned by its two adjacent segments (edges),
and (ii) to strictly shorten the path length. Methods C and D
are essentially parameter-free. Methods A and B operate on
multibead chains and are characterized by substantial chain
slippage which results from the need to soften the effect of
excluded volume interactions. Finally, the methods differ in their
computational efficiency, although all of them scale linearly
with system size. The total computing time per particle,
proportional toΣ, differs by 3 orders of magnitude.

To summarize, the annealing methods A and B require the
specification of several parameters such as the annealing time,
strength, excluded volume interaction and bead-spring char-
acteristics. In contrast, the “athermal” geometrical methods
strictly prevent disentanglement, are parameter-free, and mini-
mize length rather than energy. Given their computational
efficiency, it is likely that they will replace the annealing
methods, once a relationship has been established in detail.

In the best scenario, the properties of consequence would be
insensitive to subtle differences in the PP networks obtained
by using different methods. While this has borne out, at least
semiquantitatively, for some properties such as the distribution
of entanglement points, and PP segment length using three
different methods, namely the Z-code,29 CReTA,23 and a lattice-
based enumeration algorithm,27 other data such as the width of
the distribution of PP lengths indicate, however, that one cannot
expect this to hold in general.26 A logical step in this develop-
ment would be to compare some of the existing methods more
closely, preferably by using them on the same set of equilibrated
systems. It is in their differences that important lessons lie
waiting to be discovered. In this paper, we describe a more
universal and efficient version of the previously reported Z-code,
which will henceforth be called Z1.22,29 We will compare this
algorithm with the annealing method developed for lattice
simulations.27

Model and Methods

In order to generate configurations, we use Shaffer’s version of
the bond-fluctuation model (S-BFM), which is a variant of the
original bond-fluctuation model (BFM) proposed by Carmesin and
Kremer.31 Np polymer chains, each consisting ofN monomers or
beads, are grown as self-avoiding random walks placed on a regular
3D cubic lattice. The reasons for choosing S-BFM over the original
BFM, the methods used to equilibrate, anneal and specify the
location of entanglement points using the identification of local
deviations (ILD) technique have been described in detail in previous
publications.21,27 The systems of equilibrated polymer melts con-
sidered for PP analysis here have been reported in an earlier
publication.27 Table 1 provides a summary of these systems. The
following discussion in this section may be skipped or quickly
scanned by readers who are familiar with methods A to D. Besides
recapitulating these methods, it indicates how we accelerated
method B to arrive atΣ ≈100, and explores its “quenching”mode.
The section concludes with a summary of differences between the
Z and Z1-codes.

Annealing (Methods A and B).Shanbhag and Larson21 adapted
the annealing algorithm originally proposed by Everaers et al. to

compute the PPs of equilibrated chains for lattice MC simulations.19

The idea is to facilitate the shrinkage of the chain contours which
nevertheless maintain their noncrossability with other chains. The
acceptance probability with which moves that increase the PP length
is dialed down according to the expression,pacc(t) ) min{1, exp[-
A∆L(t/τA)2]}, where∆L is the change in contour length (positive
or negative) due to a trial move, andτA is the duration of the
annealing process. Thus,A and τA serve as two independent
parameters.

In our previous simulations,21,27we setA ) 16, andτA ≈ 10τRouse,
whereτRouseis the Rouse relaxation time. This choice implies that
pacc ) 1/e whent/τA ) 1/4 for ∆L ) + 1. For a polymer melt with
fractional occupancy of lattice sitesφ ) 0.5, the Rouse time of an
entanglement segmentτe ≈ 5000 Monte Carlo steps (MCS). Since
τRouse) τeN2, τA ) 50 000× N2. We reported earlier that increasing
τA or varying A between 10 and 20 had a negligible effect on
properties such as mean PP length〈Lpp〉 (which we denote by〈LppA〉
when it is obtained using the annealing method) and the distribution
around this mean.

In the limit of fast coolingA f ∞, the acceptance probability
becomespacc) 0 andpacc) 1 for ∆L > 0 and∆L e 0, respectively.
We label this limit, in which moves that increase the contour length
are rejected, as “quenching”. As remarked elsewhere,27 in this limit
the system often gets stuck in local minima, which it cannot jump
out of, since increases in〈LppA〉 are prohibited. As we will argue
later, entrapment in a local minima occurs due to the size of the
repulsive beads which impose a tangential structure. Methods A
and B in their quenching mode return, by construction, results
comparable with methods C and D in the limit of vanishing bead
size along the polymer backbone.

To identify the spatial location of individual entanglements, the
“local” structure of the PP has to be examined. The basic idea is
the observation that if the length of a small segment of the PP
deviates from the shortest path connecting its ends, the presence
of a topological constraint in that neighborhood which prevents
the PP segment from shortening its length may be inferred.
Shanbhag and Larson27 argued that the smallest such element which
could be examined was three consecutive PP monomers, or two
consecutive bonds. Thus, they hypothesized that if the trajectory
of the PP between a bead and its second-nearest neighbor does not
follow the shortest possible path along the cubic lattice, it is due
to an obstacle or entanglement. They showed that this natural choice
led to good agreement with the average number of entanglements
Z calculated according to the expressionZ ) 〈LppA〉2/〈R2〉, which
assumes that chains are Gaussian coils. This method will be referred
to as the identification of local deviations (ILD) method.

Effect of Annealing Parameters. In order to explore the
possibility of accelerating the annealing procedure with more
aggressive choices ofA andτA, we varied the parametersA andτA

over a wide range, and monitored the decrease in〈LppA〉 as a function
of time during the annealing procedure. We considered a well-
entangled system from Table 1, viz.N ) 300. In this analysis,〈LppA-
(t ) 0)〉 denotes the average contour length of the equilibrated chains
just before annealing, and〈LppA(t ) τA)〉 ) 〈LppA〉 is the mean PP
length at the end of the cooling process. In the inset of Figure 1,
the parameterA ) 16 was held fixed, whileτA was varied fromτe

Table 1. Description of the Systems Simulated, and
Ensemble-Averaged Primitive Path Length Obtained by Annealing

(L ppA
(A) ), Z1 (LppZ), and Annealing Followed by Z1 (L ppAfZ

(A) )a

N Np 〈R2〉 〈L ppA
(16)〉 〈LppZ〉 〈L ppAfZ

(16) 〉 〈L ppA
(16),

/〉

32 244 71.8 11.0 10.6 9.4 11.0
75 285 174.3 23.2 21.5 18.8 18.3

125 364 337.2 37.3 34.7 29.9 36.7
300 277 732.6 85.5 77.8 66.8 71.7
500 216 1189.3 140.4 125.6 107.0 116.6

a LppA
(A)

/ was calculated after connecting entanglement points obtained
via ILD with straight-line segments to partially offset the effect of the lattice.
The annealing parameters used wereA ) 16 andτA ) 10τR. Lengths are
reported in lattice units.
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to τRouse. The average contour length before the commencement of
the annealing procedure was〈LppA(t ) 0)〉 ) 421.2 ( 0.2. The
values of〈LppA(t ) τA)〉 were 85.8( 1.0, 85.5( 1.0, and 85.6(
1.0 whenτA was set toτe, 10τe, and τR, respectively. All these
results are within the standard error of mean of the〈LppA〉 reported
in Table 1 for whichτA ≈ 10τRousewas used. Besides the average
〈LppA〉, the distributions of PP lengths were also indistinguishable.
Thus, the τA used previously was overly conservative. The
computational load would have been reduced by about 2 orders of
magnitude or more for well-entangled systems, had we used 5τe <
τA < 10τe instead. In Figure 1, we considered the same system,
and heldτA fixed at 5τe. The parameter which controls the rate of
coolingA was varied. A small value ofA corresponds to a gradual
rate of cooling, and asA f ∞, the limit of quenching is approached.
For “moderate” values ofA between 10 and 1000, the average PP
length converges to approximately the same value of〈LppA〉 ≈ 85.5
(see Figure 1). We observe a precipitous decrease in〈LppA(t)〉
initially ( t < 0.02τA), which appears to be independent ofA. ForA
) 0, the acceptance probability of a MC trial move is unity
regardless of whether that move increases or decreases the total
PP length, so long as it satisfies the interchain excluded volume,
chain connectivity and uncrossability criteria. Thus, the initial
decrease in〈LppA(t)〉 stems largely from the relaxation of intrachain
excluded volume irrespective of intermolecular arrangement. For
moderate values ofA, we discern a subsequent regime in which
〈LppA(t)〉 decreases at a slower rate, with the decrease being more
gradual for smaller values ofA. In this phase, the bias applied
throughpacc(t) manifests itself. As discussed later, for much larger
values ofA, a qualitatively different picture emerges.

Z-Code and CReTA (Methods C and D).While the annealing
method A uses a small time step and moves beads simultaneously
according Newton’s equations that are coupled to a thermostat, the
“athermal” geometrical codes (methods C and D) use the maximum
possible time step, quite in the spirit of a constrained steepest
descent method. They move beads sequentially, along polymer
backbones (Z-code, and CReTA) or in space (Z1, in which spatial
resolution decreases with time). The Z-codes and CReTA prevent
disentanglement by constraining moves of kinks to lie in the plane
of their adjacent segments. They can use a large “time step” since
a single kink moves at a time. In practice, several kinks move at
the same time while leaving the length of the shortest path strictly
unchanged. Both Z- and Z1-codes do not operate with a constant
number of beads, rather, they use kinks originally located at bead
positions that tend to disappear during the minimization process,
to speed up computations. The multiple disconnected path length
of the system is thus strictly decreasing and corresponds to a
quenching mode in the language of annealing algorithms. It does
not get stuck before reaching the final state because the path is
structureless. The Z-codes yield comparable results as long as the

system size is large compared to the maximum end-to-end distance
and the chosen line thickness is not too small. Otherwise, the
original Z-code may fail and the Z1-code has to be used. This
agreement alone is a hint that the sequential order of moves does
not play a major role in determining the network. The Z1-code
removes the above-mentioned restrictions in the applicability of
the Z-code strategy. The CReTA approach (method D) is similar
in spirit and preserves, in addition, information about distances
between atomistic beads and their final position on the primitive
path at the cost of preserving the initial number of beads. Compared
to Z1, it results in a more gradual decrease of path length. Chain
thickness issues have been discussed in Tzoumanekas and The-
odorou.13,23

Results and Discussion

Comparisons between the Z1 and Annealing Algorithms.
To perform this analysis, we considered all the systems reported
in Table 1, which span the range from lightly entangled to well
entangled melts.27 The annealing parameters used to obtain the
〈LppA〉 in Table 1 wereA ) 16, andτA ) 10τRouse. Subsequently,
we applied the ILD algorithm to the resulting PP network to
identify the locations of entanglement points along the PP. For
comparison, we also applied the Z1 code to the same set of
systems.

Figure 2 depicts the average PP lengths〈LppA〉 and 〈LppZ〉
obtained by annealing and Z1, respectively. For entangled
systems, especially forN g 125, we observe a linear dependence
of 〈Lpp〉 with N, as expected. The PP length obtained by Z1,
〈LppZ〉, is systematically smaller than that obtained by annealing,
〈LppA〉, at givenN. In the lattice MC implementation of the
annealing algorithm, the beads comprising the PPs are forced
to remain on lattice sites. Thus, the coarse-grained nature of
the lattice is partly responsible for this inequality. The effect of
the grid can be filtered out to a first approximation by connecting
with straight-line segments the entanglement points identified
by ILD, on PPs generated by annealing. The agreement between
the average PP length of the PP network thus constructed
〈LppA

/ 〉 and〈LppZ〉 is slightly better (see Figure 2). We also note
that in contrast with〈LppA〉, 〈LppA

/ 〉 is smaller than〈LppZ〉.
Given a well-equilibrated system, the common objective of

the annealing and Z1 algorithms is to minimize〈Lpp〉 subject to
constraints and yield the corresponding PP network. If the

Figure 1. Effect of annealing parameters (N ) 300). Decrease in the
contour length〈LppA

(A) 〉(t) during the annealing process, withτA ) 5τe,
and varying values ofA. The inset shows〈LppA

(16)〉 during the annealing
process, withτA as the variable parameter.

Figure 2. Average primitive path length〈Lpp〉 obtained from an
equilibrated melt using annealing (circles) and Z1 (triangles). The
entanglement points on a PP obtained via ILD were connected by
straight-line segments to partly compensate for the effects of the lattice.
This measure is denoted by squares. When the annealed PP network
was provided as input, instead of the equilibrated chains, to Z1 the
〈Lpp〉 decreased further (diamonds) by about 15%.
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resulting PP network is supplied as input to the Z1 or annealing
algorithms, we expected the output to remain essentially
unchanged, since the objective function (total contour length)
has already been minimized in the starting configuration. Indeed,
this expectation was confirmed independently for both Z1 and
annealing (both methods are designed as “projectors”). We
provided the PP network obtained by annealing as input to Z1,
anticipating that the resulting average PP length would be equal
to 〈LppZ〉. To our surprise, we found that〈LppAfZ〉 < 〈LppZ〉
systematically, where〈LppAfZ〉 represents the average PP length
when the annealed configuration is provided as input to Z1.
This additional decrease in the value of〈Lpp〉 was of the order
of 15% (see Table 1). The reverse process, in which the starting
configuration for annealing is the output of Z1, cannot be
implemented in general because the unique mapping from off-
lattice co-ordinates onto a lattice requires a grid spacing that is
small compared to the smallest distance within the network
produced by Z1. The fact that the annealed network is altered
by the geometric code contains the important information that
the methods produce, except in a limiting case that we will see
later, different results for primitive path lengths (not merely
minor differences in networks characteristics, with the same
average path length, as one may expect).

In Figure 3, the PPs obtained using three different methods
mentioned above are depicted for a representative chain with
N ) 300. It supports the hypothesis that partial disentanglement
occurs during annealing. The PP generated using annealing (red
chain) seems to “obey” the same set of topological constraints
as the PP that is generated by operating Z1 on the annealed
configuration (cyan chain). In contrast, the PP generated by Z1
(green chain in Figure 3) acting on the equilibrated system
appears to obey a different set of constraints. On average, the

PPs constructed by this process are longer and encounter a larger
number of entanglements. Figures 2 and 3, taken together,
strongly suggest that at least some of the entanglements
preserved by Z1 are lost or released during annealing. This can
be discerned from Figure 4, which depicts the number of
monomers between entanglementsNe, which is related to the
average properties reported in Table 1 viaNe ) (N - 1)〈R2〉/
〈Lpp〉2. For chains of a given length, a larger value ofNe implies
a more sparsely entangled network. Depending upon the method
used to compute〈Lpp〉 (columns 4-7 in Table 1), we have four
different measures ofNe. The values ofNe vary fromNe ≈ 30
for annealing toNe ≈ 50 for annealing followed by Z1. Some
reference values obtained by different methods are available in
literature.18,32,33We observe an approximately 30% difference
in Ne obtained by Z1, depending on whether the equilibrated
system or the PP network is fed as the starting configuration.
Since Z1 prevents disentanglement, we attribute the dilution of
the entanglement density to annealing.

This still leaves us with an unanswered question: what is
the mode by which entanglements are lost during annealing?
Annealing and Z1, as elaborated earlier, differ considerably in
their respective implementations. However, there are two
essential physical differences in the processes that these two
methods model that are responsible for the partial disentangle-
ment observed during annealing, namelychain slip and end-
looping. Unlike Z1, the friction between chain contours is not
infinite (chains are not “sticky”) in the annealing algorithm and
they can slip or slide over one another. In addition, it is possible
for chain contour lengths to increase during annealing. This
results in the phenomenon of constraint release by end-looping
(CR-EL) which was recently visualized by Zhou and Larson34

in the context of “tube-sampling”, where they carried out MD
simulations of a concentrated system of polymer chains whose
ends were immobilized. In the annealing process, such end-
looping moves are certainly possible, especially at early times,
although we expect their occurrence to become less frequent
as annealing proceeds, since the availability of sufficient slack
required to form a loop becomes vanishingly small. For the sake
of completeness, we note that at nonzero temperatures end-
looping is possible during annealing without the formation of a
“loop” (although the contour length still has to increase),
especially for entanglements that are close to a chain end, as
shown in Figure 5. Thus, for linear chains, the mechanisms of
end-looping and slip are not completely independent. In the next
section, we decouple these two mechanisms by looking at a

Figure 3. PPs of a single chain obtained using different methods. The
red and green PPs were generated using Z1 and annealing, respectively.
The red PP is jagged because it is forced to conform to the lattice. The
cyan PP was obtained by applying Z1 on the previously annealed
system. The fact that the annealed network is altered by the geometric
code contains the important information that the methods produce
different results except in a limiting case of small chain diameter and
rapid quenching.

Figure 4. Average number of beads per entanglementNe, which
depends on the method used to obtain the underlying primitive path
network. The values ofNe ) (N - 1)〈R2〉/〈Lpp〉2 were obtained by using
the average properties reported in Table 1 and Figure 2.
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system of entangled rings in which end-looping cannot transpire
and differences in PP network characteristics arise exclusively
due to slip. We also study annealed networks obtained by
quenching in which moves that increase the contour length are
strictly prohibited. This study points us to an asymptotic limit
in which the annealing and geometrical methods become
formally equivalent.

Disentanglement during Annealing.Earlier in the paper (see
Figure 1), we discussed the dependence of〈LppA〉 on the
parameterA and showed that for moderate values ofA the
terminal〈LppA(t ) τA)〉 was independent ofA. We also showed
that most of the contour-length reduction occurs quickly, while
t/τA < 0.02 (see Figure 1). Further, by inspecting the〈LppAfZ〉
column in Table 2 it is evident that the level of disentanglement
is unaltered asA increases from 0 to 1000. This is reasonable
since CR-EL is more likely in the initial phase when sufficient
chain slack is available to form loops. Thus, the observed loss
of entanglements has manifested itself during the steep initial
decrease in〈Lpp〉, whereAt2/τA

2 , 1. To examine what happens
in the short initial phase wheret/τA ≈ 0.02, we increasedA
beyond 1/(0.02)2 ≈ 2500. From Table 2, we notice that the
difference between〈LppZ〉 and〈LppAfZ〉, which is a measure of
the level of disentanglement, decreases. When moves that
increase contour length are strictly rejected during annealing
(quenching, or zero-temperature annealing), the gap between
Z1 and annealing begins to close, as clearly demonstrated by
Table 2. Figure 7 depicts the starting and final configurations
of a representative chain withN ) 300 picked from the system
described in Table 1, when Z1 is employed. It is clear from the
figures that at least one entanglement that is preserved during
quenching (A f ∞) is lost during a slower annealing run with
A ) 16 due to end-looping.

Slippage during Annealing.To isolate the effect of chain-
slip, and to understand quantitative differences in path lengths
which are also present, but not caused by disentanglement, we
constructed a special system in which disentanglement by such
moves was forbidden by design. Such a system consisting of a
series of concatenated or “Olympic” rings is shown in Figure
6. The average number of beads on the rings is approximately
N ) 190, with an average initial contour length ofL ) 204.4.
To prevent the global drift of the system during annealing, the

“first” and “last” beads (which are always adjacent) were fixed
in space, similar to linear chains. Obviously, due to the bond
between these two beads, the system cannot disentangle
completely under any circumstance. Using methods described
earlier, we found that for this system〈LppA〉 ) 108.7,〈LppZ〉 )
106.3, and〈LppAfZ〉 ) 98.1. Therefore, even in this system, there
is a further reduction in〈LppZ〉. However, this difference between
〈LppZ〉 and〈LppAfZ〉 is ≈ 7.7% for rings, which is about half the
difference between the same quantities for linear chains. Figure
6 shows the configurations at the start and end of the different
methods to identify the PP network. During annealing, the
entanglement point between chains slides along chain contours
seeking to minimize〈Lpp〉. This is borne out in the figure, where
A f Z filters out the effect of the grid by straightening the
annealed path. Therefore, the observed discrepancy between
〈LppZ〉 and〈LppAfZ〉 arises due to slip alone. While disentangle-
ment, as described by dilution of the entanglement density, does
not occur in this example, it illustrates how chain slip can alter
the characteristics of the PP network that is generated.

Limiting Equivalence between Geometric and Annealing
Approaches. The geometric methods C and D essentially
operate as follows. They pick two adjacent segmentsui-1 ) r i

- r i-1 andui ) r i+1 - r i from a path withN kinks at positions
{r1, r2, ..., rN} and move kinki instantaneously to a new
position,r i f r ′i, where the new position is determined by the
intersection points created by other paths crossing the secant
area of the two chosen segments. If there is a single path
crossing the secant area atr , thenr ′i ) r i + (1 - ε)(r - r i) )
r + ε(r i - r ), whereε < 1 is related to chain thickness. If
there is no path crossing the secant area, thenr ′i lies on the
segment connectingr i-1 andr i+1, and the exact location depends
on the method. After such a move, the Z-codes eliminate a kink
and end up withN - 1 kinks. If there are two or more paths
intersecting the secant area, one can artifically introduce kinks
until a single intersecting path is left, which is a strategy
employed in Z1.

Let us now consider the original annealing method (method
A) at very low temperature. In that limit, the velocityr3 i of bead
i and the forceFi on it are equivalent, apart from a prefactor,ú,
that has dimensions of an effective friction coefficient. The force
acting on beadi is Fi ) kui+1 - kui + FEV wherek is the spring
coefficient, andFEV is the force due to excluded volume
interaction. The random noise term disappears at zero-temper-
ature. If there is no bead within the cutoff distance,FEV ) 0,
and r3 i ) (k/ú)(ui - ui-1). This velocity points in direction of
the centerr cm betweenr i+1 and r i-1, and r i(t) asymptotically
(exponentially slowly) reaches this point, i.e., asymptotically
agrees with the geometric construction. If there is a single, point-
like repulsive interaction site atr , and if we assume a radially
symmetrical excluded volume interaction potential, and related
force FEV(r), we haver3 i ) (2k/ú)(r cm - r i) + FEV(|r - r i|),
wherer cm and r are fixed. It is understood thatr i is the point
on the path closest tor , i.e. the point with the largest (if any)
contribution to the overall excluded volume force. It is sufficient
to recognize that the stationary solution of this differential

Figure 5. Out-of-secant area disentanglement process without slack
which may occur during annealing at finite temperatures where chain
slip is present. The Z-codes and CReTA leave configuration a
unchanged because the kink cannot leave the secant area (shaded region
surrounded by dashed line).

Table 2. Ensemble-Averaged Properties for theN ) 300 Case Listed in Table 1 as a Function of Strength of AnnealingAa

A ) 0 A ) 1 A ) 10 A ) 16 A ) 50 A ) 500 A ) 103 A ) 105 A ) 106 A ) 107 A ) ∞

〈LppA
(A) 〉 92.9 91.3 85.7 85.4 85.3 85.7 85.6 88.7 93.4 101.7 116.6

〈LppAfZ
(A) 〉 67.5 67.1 67.2 66.8 66.8 67.0 67.2 69.0 70.9 73.0 74.5

a Lengths are reported in lattice units.〈LppZ〉 for the equilibrated sample is 77.8. The annealing parameterA is varied, whileτA ) 10τR is held fixed. The
two extremesA ) 0 andA ) ∞ correspond to the limits where chains can freely disentangle, and where the annealing procedure gets stuck, respectively.
Accordingly, forA ) ∞, results〈LppAfZ〉 and〈LppZ〉 become very comparable, while〈LppAfZ

(Ae1000)〉 values are close to〈LppAfZ
(0) 〉, which suggests that the amount

of disentanglement in all these cases is comparably large.
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equation is the point closest tor which is attached to the center
r cm by a spring, to understand that the geometric construction
is almost equivalent. Other subtle differences, between the
geometrical and annealing methods are secondary. The chain
thickness parameterε is obviously related to the excluded
volume force strength divided by temperature, and density of
beads along the polymer contour. To summarize, at infinitely
low temperatures, the polymer chains within the annealing
approach possess infinitely large friction, and the bead motion
is confined to the secant area because the connector between
centerr cm and r i is fully embedded within the secant area, cf.
Figure 8. Thus, if the size of the beads is gradually decreased
during zero-temperature annealing, keeping the ratio of the bond-
length to bead size the same to prevent chain crossing, it can
be seen that the annealing and Z1 algorithms become equivalent.

Summary and Perspective

Methods to generate PP networks fall into two broad families,
annealing and geometrical methods. We critically reviewed and
quantitatively compared a lattice-MC based annealing method,
and Z1 which is a geometrical method. We observed a 15%
discrepancy in the mean PP length obtained by Z1〈LppZ〉, when
the annealed PP network obtained from a equilibrated entangled

polymer melt was supplied as input instead of the equilibrated
system itself. It illustrated that the entanglement density of the
PP network obtained by annealing was smaller than that
generated by Z1. We conjectured that end-looping which arises
because annealing permits increases in contour length, and chain
slip account for the observed discrepancy. Using a toy-system
comprising topologically entangled rings, we demonstrated that
chain slip acting alone can change network characteristics, even

Figure 6. Entanglement networks obtained via annealing, Z1, and annealing followed by Z1 for topologically entangled “olympic rings” on a grid,
artificially opened at arbitrarily chosen locations. These locations are easily visible in the Z construction, while slip during the annealing procedure
potentially allows to find a shorter path (disentanglement is impossible in this particular example). Af Z mainly preserves the annealed path but
straightens it since it does not operate on a grid. Average number of beads on the rings is approximately 190.

Figure 7. Effect of annealing parameterA on the entanglement network subjected to the Z-code. At least one entanglement, preserved atA ) ∞,
is obviously lost atA ) 16. Shown is a single chain from theN ) 300 sample.

Figure 8. Sketch of specific Annealing and geometric processes (Z-
codes) within the secant area of two adjacent segments during
minimization in the case of no crosspoints (top row) and a single
crosspoint (bottom row). Both methods give very comparable results
in the zero temperature limit

2902 Shanbhag and Kro¨ger Macromolecules, Vol. 40, No. 8, 2007



in the absence of end-looping (or disentanglement). For linear
chains it was observed that some entanglements that are
preserved when the system is quenched to zero temperature
rapidly, are lost during gradual cooling. We argued that the
original annealing algorithm becomes equivalent to the geo-
metrical methods when the system is cooled to zero temperature
instantaneously, and the size of the beads is gradually shrunk
while keeping the ratio of the bond-length to bead size constant.

Unlike molecular dynamics, the S-BFM is a lattice model,
and the discrete nature of the lattice introduces error. We have
been careful to point out this source of error in this paper and
in previous publications. In contrast to MD simulations, the
computational cost required to equilibrate long linear chains,
or branched polymers using S-BFM is quite small, and could
be orders of magnitude smaller. In addition, there has been a
surge of interest in hooking up these microscopic and meso-
scopic simulations with more coarse-grained models such as
beyond equilibrium molecular dynamics,8,35 and slip-link mod-
els.24,25,29The bridge between these two levels of modeling is
the PP network, which can be generated from mesoscopic
simulations and used as the starting point for slip-link models,
at least in principle. These slip-link models are coarse-grained
at about the 10 nm level, whereas S-BFM is coarse-grained at
the Kuhn step or 1 nm level. Thus, the disadvantages of S-BFM
attributable mainly to the discretization of space into a lattice
are likely to be inconsequential, while the advantages, namely,
the speed with which the dynamics or equilibrium structure of
a well-entangled system can simulated would be preserved. In
addition, S-BFM when used in tandem with Z1 allows us to
transition from a lattice to an off-lattice description. This
combination, which was demonstrated in this paper, is thus a
powerful tool in multiscale modeling of polymer melts.
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(7) Kröger, M.; Loose, W.; Hess, S.J. Rheol.1993, 37, 1057-1079.
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