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Synopsis

n accurate, configuration-based, coarse-grained model for dilute macromolecular solutions is
resented. The basic approach relies on exploring the macromolecular configurational diversity
resent in the flow of dilute polymeric solutions and identifying and partitioning the most
requently observed configurations, e.g., folds, half dumbbells, kinks, dumbbells, coils, and
tretched states. The probability of finding any one of these configurations is calculated using a
aster configuration map that dictates the conditional probability of finding a configuration with a

iven chain extension. Each configuration class is modeled using a dumbbell description with a
uitably modified drag coefficient. The configuration-based model is implemented using a
rownian dynamics simulation and the predictions are compared with the corresponding bead-

pring model and finitely extensible nonlinear elastic dumbbell in homogeneous steady shear and
niaxial extension. Finally, prospects for model improvement are discussed. © 2008 The Society
f Rheology. �DOI: 10.1122/1.2964201�

. INTRODUCTION

Modeling and simulation of the dynamics of synthetic and biopolymer solutions under
ow are essential to process and product design in several technologies. Traditionally, the
ocus has been on describing macroscopic properties under flow conditions that are
ritical to applications such as polymer processing. Recently, the emergence of bio- and
anotechnologies have presented novel problems that require the description of flows at
ength scales comparable to molecular length scales and the accurate description of the
iffusion of the center-of-mass of the molecules. Furthermore, they have enabled the
tudy of dynamics at the single-molecule level thereby elucidating the diversity of events
t this level. Molecular individuality is the crucial element in understanding the macro-
copic dynamics of these macromolecular solutions. The fact that the evolution of mol-
cules that exist in a variety of configurations at equilibrium is predisposed by their initial
onfiguration and the nature of the flow field imposed diversifies the dynamics of indi-
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1144 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
idual molecules. Therefore, the key to developing models that accurately describe mac-
oscopically observed properties lies in understanding the coupling between the evolution
f the underlying microstructure and external force fields such as flow, thermal, or chemi-
al gradients. While continuum-level models can provide semiquantitative description of
he macroscopic viscoelastic stress, they do not attempt to capture the details of micro-
tructure evolution. Brownian dynamics simulation �BDS�, based on a realistic microme-
hanical description of the polymer chain �e.g. multisegment bead-spring models�, can
rovide accurate information on the microstructure. However, self-consistent incorpora-
ion of BDS into a flow simulation can be computationally prohibitive or often infeasible
or nonhomogeneous flows. Hence, it is desirable to develop computationally tractable
ultiscale simulations that contain sufficiently accurate microstructure information while

apable of predicting the kinematics in nonhomogeneous flows. In this article, we present
hierarachical, configuration-based approach to the modeling of dilute polymer solutions
nder flow.

In the past decade, development of special purpose algorithms �e.g., combined finite
lement/Brownian dynamics method� together with the astounding increase in computa-
ional power have made possible process-level, concurrent multiscale flow simulations
here stochastic differential equations for micromechanical models for polymer dynam-

cs at the mesoscopic level are self-consistently solved together with the conservation
quations for mass and momentum �Laso and Öttinger �1993�; Hulsen et al. �1997�;
omasi and Khomami �2000, 2001�; Gigras and Khomami �2002�; Suen et al. �2002�;
ozinski et al. �2003�; Gupta et al. �2004�; Keunings �2004�; Woo et al. �2004��. Clearly,

he accuracy of these multiscale simulations greatly depends on that of the mesoscopic-
evel model used to describe the polymer chain dynamics. Hence, much research effort in
he past decades has been devoted to the development of accurate microstructural models
or polymeric solutions as well as coarse graining approaches to allow efficient process
evel multiscale simulations of polymeric solutions �Bird et al. �1987a, 1987b�; Hua et al.
1999�; Öttinger �1999�; Somasi et al. �2002�; Underhill and Doyle �2004��.

Among the mesoscopic models, the bead-rod model presents the finest level of de-
cription for the macromolecule. The model is based on the concept of a Kuhn step,
hich determines the length of the rods in between beads, as the distance beyond which
ortions of the molecule execute uncorrelated motions. The bead-rod model has exten-
ively been used to study the macroscopic response of the �-DNA molecule by Hur et al.
2000�. The model provides accurate predictions for both macroscopic properties such as
he stresses and microstructural properties such as the distribution functions. However,
or synthetic or biological polymers of interest, the use of the bead-rod model in complex
ow calculations is impossible due to the large number of Kuhn steps required �O�103��.
t the next level of coarse graining is the bead-spring model which is obtained by

eplacing a set of rods with two beads connected by a phantom entropic spring. The beads
epresent the drag, while the springs mimic the concerted motion of the set of underlying
ead-rod segments. The force-extension �FE� behavior of the spring is derived at equi-
ibrium under the assumption that the internal degrees of freedom at scales finer than that
epresented by a spring have sufficient time to sample the configuration space accessible
o them compared to the time scale of relaxation of the entire macromolecule, i.e.,
quilibriated local motions. Although the FE behavior of traditional models such as the
ookean or finitely extensible nonlinear elastic �FENE� model is valid only at equilib-

ium, the internal degrees of freedom account for sufficient configurational detail to
rovide reasonable predictions for both macroscopic and microscopic properties �Hur et
l. �2000�; Somasi et al. �2002�; Schroeder et al. �2004�; and references therein�. The use

f the random walk spring model �Underhill and Doyle �2004, 2005�� at a finer scale of
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1145CONFIGURATION-BASED MODEL
escription can exactly match the predictions of the bead-rod model with significant
avings in time and computational cost �Venkataramani et al. �2008��. Despite the accu-
acy and computational advantage of the bead-spring models, their incorporation into
omplex flow calculations is limited to a few springs �Koppol et al. �2007��. Therefore,
here is a need for coarse graining the description of the macromolecule further.

Dumbbell models are the favored choice for studying complex flows for two reasons.
irst, combining a Brownian dynamics approach with macroscopic flow equations is
easible, in terms of memory and computational requirements �Koppol et al. �2007��.
econd, dumbbell-based models can be simplified by approximating the configurational
istribution function to, for instance, a Gaussian distribution, yielding constitutive models
or the macroscopic stress. In the dumbbell model, the entire macromolecule is described
s two beads connected by a spring. The configurational diversity of the underlying
acromolecule is purely described by the elastic nature of the spring. Therefore, the

pring force used to describe the molecule is crucial in order to obtain realistic predic-
ions for macroscopic properties. The Oldroyd-B model �derived from the Hookean
pring �Bird et al. �1987b��� has been widely used to describe the behavior of Boger
uids, since it predicts a constant viscosity and a finite first normal stress coefficient. It
as especially been successful in studying the stability of unidirectional shear-dominated
ows �Sureshkumar and Beris �1995�; Al-Mubaiyedh et al. �2000�; Lin et al. �2004�;
rora and Sureshkumar �2005��. However, the Hookean spring extends infinitely, leading

o unrealistic predictions for the extensional viscosity past the coil-to-stretch point. The
ENE �Warner �1972�� model circumvents the problem of infinite extension by prescrib-

ng a maximum extension limit by making the spring force infinite as the spring ap-
roaches the maximum extension. The FENE model predicts a shear-thinning viscosity
nd first normal stress coefficient, as well as a plateau in the extensional viscosity at high
xtension rates �Herrchen and Öttinger �1997�; Wiest and Tanner �1989��. Moreover, the
rediction of non-Newtonian phenomena of interest has led to its use in complex flow
alculations, either via the CONNFESSIT method �Laso and Öttinger �1993�; Öttinger et
l. �1997��, or the LPM method �Halin et al. �1998��. The FENE-P �Wedgewood and Bird
1988�� model, derived by applying the Peterlin approximation to the FENE model, has
een widely used in complex flow studies �for e.g., in the analysis of turbulent drag
eduction of dilute polymer solutions �Li et al. �2006��� due to the ease of coupling with
he governing equations of mass and momentum. However, in the FENE-P model, only
he mean-squared end-to-end distance is constrained to be less than the squared maxi-

um extension. This leads to quantitative differences between the predictions of the
ENE and FENE-P models �Keunings �1997�; Sizaire et al. �1999��. Several modifica-

ions to the FENE-P model have been proposed to address this �van Heel et al. �1998��
nd predict the stress-conformation hysteresis exhibited by polymer solutions in
ontraction-expansion flows using continuum-level constitutive equations derived from
he FENE spring �for, e.g., FENE-L and FENE-LS �Lielens et al. �1998, 1999��,
ENE-M, FENE-MR, FENE-LSM, and FENE-LSMR �Zhou and Akhavan �2004���. Al-

hough these models are improvements over the FENE-P model, they are complex to
ncorporate in a complex flow calculation, due to the increased number of equations
equired to describe the moments of the distribution function. Therefore, they have not
een used as widely as the FENE-P model.

The inaccurate predictions of the FENE dumbbell models have been attributed to the
ack of sufficient internal degrees of freedom required to faithfully describe the flow-
nduced changes in the configuration of the molecule. Doyle et al. �1998� proposed a
onfiguration-dependent drag that varies linearly with the extension of the FENE dumb-

ell in order to account for the change in the drag experienced by the molecule as it
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1146 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
ransitions from a coiled state to an extended state. In this case, the ratio of the maximum
o coiled-state drag coefficient can be used as a parameter to obtain close agreement with
xperimental observations. The idea was extended by Schroeder et al. �2004� to incor-
orate the effect of hydrodynamic interactions �HI� through a conformation dependent
rag calculated from BDSs. Multiple relaxation modes were incorporated in the
ENE-PM model developed by Wedgewood et al. �1991� and the adaptive length scale
ALS� model developed by Ghosh et al. �2002�. In the FENE-PM model, an approxima-
ion to the multimode FENE-P model leads to a decoupling and reduction in the number
f equations for the stresses from the different modes. In the ALS model, the number of
egments used to describe the molecule varies based on the strain experienced: close to
quilibrium and at high extensions, a single dumbbell model is used, whereas at inter-
ediate extensions, a number of internal segments are introduced to represent the com-

lex configurations assumed by the molecule. The model predicts the tensile stress in
ood agreement with a bead-spring model, while providing only a qualitative prediction
f the stress conformation hysteresis. However, under steady shear, the model still suffers
eficiencies and predicts stresses which are comparable to those obtained from the FENE
umbbell model.

Coarse graining, as can be noted from the extensive research that has been undertaken
o date, has met with several obstacles due to the inherent nature of its development, i.e.,
educing the level of detail in order to save computational time. The loss of detail has
lways directly led to a loss in the accuracy of the predicted microscopic and macro-
copic properties. Although the dumbbell description is favorable for implementation in a
omplex flow calculation due to the reduced degrees of freedom, the macroscopic prop-
rties predicted by the dumbbell models have been shown to be at best qualitative in
omparison to experimental observations �Doyle et al. �1998��. Based on the findings of
ingle molecule studies, this deviation from observed properties is known to stem from
he lack of configurational information in the description of the macromolecule �Perkins
t al. �1997�; Smith et al. �1999�; Babcock et al. �2000, 2003�; Doyle et al. �2000�;
chroeder et al. �2003�; Teixeira et al. �2005��. However, coupling bead-spring models
ith complex flow calculations is still a challenge due to limitations of computation and
emory. We seek to address this issue by constructing a configuration-based, coarse-

rained model that incorporates configurational information by the partitioning of the
hase space accessible to the molecule into a few configuration classes. We incorporate
he configurational diversity of the molecule by describing the evolution of the distribu-
ions of these configuration classes under flow while each of these classes is described
sing a simple dumbbell model. We distinguish among dumbbells belonging to different
onfiguration classes by evaluating specific properties that are characteristic of the con-
guration class.

The article is organized as follows. We begin by studying the configurational diversity
f a macromolecule in two standard flow types, namely, shear and uniaxial extension to
lucidate the importance of molecular individuality in Sec. II. We identify a few distinct
lasses into which most configurations can be classified and use these as a basis set to
xplore the configurational phase space of the macromolecule in Sec. III A. A dumbbell-
ased model is developed for each of the configuration classes by calculating a modified
rag coefficient for each configuration class in Sec. III B. The procedure for the imple-
entation of the configuration-based model using the two concepts developed in Secs.

II A and III B is presented in Sec. III C followed by the predictions of the coarse-grained
odel in Sec. IV. Finally a discussion of the model along with prospects for improvement
re presented in Sec. V.
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1147CONFIGURATION-BASED MODEL
I. CONFIGURATIONAL DIVERSITY

In this section, we investigate the configurational diversity of a macromolecule by
tudying the phase space sampled by the �-DNA molecule under standard flow types,
amely, steady shear, and uniaxial extension. Within the last decade, the use of video
uorescence microscopy has led to a tremendous amount of research on the DNA mol-
cule, particularly its static and dynamic properties and behavior under different flow
onditions �Perkins et al. �1997�; Smith and Chu �1998�; Smith et al. �1999��. The
-DNA molecule in varying lengths has increasingly been used due to its long chain
ature that allows for easy visualization under the microscope. Tags can be attached at the
nds of the molecule and it can be fluorescently dyed to track the dynamics. Several
tudies have also focused on modeling the DNA molecule using bead-rod and bead-
pring descriptions and have provided excellent comparisons with experimental observa-
ions for both macroscopic and microscopic properties �Hur et al. �2000�; Somasi et al.
2002��. The model description for the molecule has also been well documented. There-
ore, the �-phage DNA molecule is considered in this study. The findings from the
ampling of the phase space of the molecule are then used to elucidate the relevance of
olecular individuality by relating the configurational distributions to observed macro-

copic properties. The macromolecule is described as a set of beads connected by springs.
e consider free-draining molecules in the absence of excluded-volume effects. The

onfigurational diversity of the molecule is studied via the Brownian dynamics �BD�
pproach. In this method, around 103–104 identical model molecules �also referred to as
rajectories� are assigned random initial configurations. The trajectories are equilibrated
nd then exposed to flow. We observe the configurations of each of these trajectories as
hey evolve under the influence of flow via an automated configuration sorting algorithm.
xperiments by Smith and co-workers �Smith and Chu �1998�; Smith et al. �1999��
howed the existence of several configuration types such as folds, half dumbbells, kinks,
umbbells, coils, and stretched in several different flow types. We use these configuration
lasses to classify the configurations sampled by the macromolecule. The details of the
overning equations, model parameters, solution procedure, and configuration sorting are
resented in the Appendix.

. Steady shear flow

The velocity field in steady shear flow is given as vx= �̇y, vy =vz=0, where �̇ is the
hear rate. The rotational and extensional components of the flow field are equal. This
ives rise to very interesting dynamics, both at a configurational as well as macroscopic
evel.

Figure 1 shows the evolution of the shear ��a� �xy� stress, tensile ��b� �xx� stress and the
onfigurational probabilities �c� as a function of time from the inception of steady shear
ow at Wi=10 and 100. Figures 1�a� and 1�b� clearly show the existence of an overshoot
or the shear and tensile stresses respectively. At Wi=10, the magnitude of the overshoot
s not very large with respect to the steady state stress that is attained for both the shear
nd tensile stress. Accordingly, the configurational probability distributions �CPDs� do
ot exhibit overshoots. The CPDs monotonically increase to their steady state distribu-
ions for all configuration classes, except for the coiled configuration class. However, at
igher Wi, the magnitude of the overshoot is larger for both the shear and tensile stresses.
his is reflected in the corresponding overshoot in the CPD, especially for the folded and
tretched states. The overshoot in the shear stress occurs due to an initial alignment and
tretching of coiled configurations along the direction of flow �Babcock et al. �2000�� and

s seen to coincide with a minimum in the coiled configuration state. The insets in Fig. 1
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1148 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
how that the steady state CPD shows a discernable probability of occurrence for all the
onfiguration classes, consistent with end-over-end tumbling dynamics �Smith et al.
1999�; Doyle et al. �2000��. Figure 2 shows the steady state CPD as a function of Wi and
hows the existence of all the configuration classes even for large Wi. This can be
xplained by the fact that in shear flow at steady state, once a molecule is stretched out
y flow, there is a finite probability that a Brownian fluctuation in the velocity gradient
irection might be large enough to displace the molecule out of the shear direction and
ause a tumbling event. As the molecule tumbles, it returns to a coiled state. Based on
revious observations, depending on the initial coiled configuration of the molecule, its
volution can be different. Since the choice of the coiled configuration is random follow-
ng tumbling, there is almost an equal probability of it evolving into any one of the five
ther configuration classes. At lower Wi we observe higher probabilities for the coiled
tate, which can be explained by analyzing the frequency of tumbling. It has been ob-
erved earlier by Teixeira et al. �2005� that the tumbling frequency scales with Wi to the
ower of 2 /3. This implies that the rate of stretching of the molecule is slower at lower
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IG. 1. Comparison of the �a� shear stress ��xy� scaled with �nkBT�, �b� tensile stress ��xx� scaled with �nkBT�,
nd �c� configurational probabilities �pi� as a function of time for the �-DNA molecule at Wi=10 and 100. The
nsets in �c� show the steady state configurational probability distribution for each of the Wi.
i than at larger Wi, thereby allowing the molecule to spend longer times in the coiled
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1149CONFIGURATION-BASED MODEL
onfiguration. At higher Wi the molecule unravels quickly followed by a tumbling event,
nd then returns to the coiled state from where it can equally populate any of the con-
guration classes. Therefore, at very large Wi the steady state CPDs approach nearly a
onstant distribution.

. Steady uniaxial extensional flow

The velocity field in uniaxial extensional flow is given as vx= �̇x, vy =−��̇ /2�y and

z=−��̇ /2�z, where �̇ is the extension rate. Extensional flows are different from shearing
ow since the rates of extension and rotation are not the same. Therefore, there are
ifferences in the dynamics at the microstructural level, leading to different steady state
onfigurations and macroscopic properties �Perkins et al. �1997�; Smith et al. �1999��.

Figure 3 shows the dimensionless elongational viscosity ���xx−�yy� / �̇� as a function of
he Wi. The coil-to-stretch transition occurs around a dimensionless critical extension of

i=0.5 �de Gennes �1974��. At high Wi, the elongational viscosity plateaus to a new
alue much greater than three times the zero shear viscosity. Figure 4 shows a plot of the
ensile stress and the corresponding CPDs as a function of time for Wi=0.5, 1, and 100.
n Fig. 3, these are marked with black diamond symbols. Below the critical extension
ate, the only configuration that exists is the coiled state. However, around Wi=0.5, we
bserve the occurrence of other configuration classes. At Wi=1, we continue to observe
any configuration classes even at steady state, even though the flow is purely exten-

ional. The existence of a bistable configuration region near the critical strain rate has
lready been proposed by de Gennes �1974� and proven by Schroeder et al. �2003�. We
upport this finding further by calculating the CPDs at steady state near the critical
xtension rate. It can be seen that near Wi=0.5, more than one configuration class is
robable, but at higher Wi the only configuration sampled is the stretched state, explain-
ng the occurrence of a stress-conformation hysteresis. A plot of the steady state CPDs
nder uniaxial extensional flow as a function of Wi �Fig. 5� also displays the existence of
ultiple configuration classes in a narrow window around the critical strain rate. Stress-

onformation hysteresis can further be understood by studying the configurational distri-
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IG. 2. Steady state configurational probability distributions, pi, as a function of Wi for the different configu-
ation classes under steady shear flow.
utions that are observed upon the relaxation of molecules that were initially at steady
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1150 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
tate under uniaxial elongational flow. The point at which the cessation of flow occurs is
ndicated by the line marker in Fig. 4. The configurational distribution functions are
ignificantly different from those observed during the start-up, indicating that the path-
ay for relaxation of molecules is different from that during start-up. This further con-
rms the existence of hysteresis when comparing start-up with relaxation in extensional
ows. The hysteresis can be explained based on the variable hydrodynamic drag that is
xerted by the flow field on molecules with different configurations.
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IG. 3. Dimensionless elongational viscosity ��E� scaled with �nkBT�� as a function of Wi for the �-DNA
olecule using a bead-spring description.
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1151CONFIGURATION-BASED MODEL
II. CONFIGURATION-BASED, COARSE-GRAINED MODEL

The existence of configurations that are ubiquitous in different flow types has provided
basis for the development of a coarse-grained model. These configuration classes can be
iewed as subsets of the phase space of all accessible configurations such that at equi-
ibrium only the coiled state is accessible while under flow conditions several other states
re accessible. Each configuration class is a subset consisting of all molecules with a
rescribed mesoscopic configuration; each class thereby has a distribution function that
escribes the diversity of configurations within the subset. For example, all molecules in
stretched state can be classified into a subset, and the associated distribution function

escribes the distribution of the lengths of the molecules that constitute this configuration
lass. The sum of the subsets will yield the total phase space. Therefore, the probability
f occurrence pi of a configuration class i can be calculated as a ratio of the partition
unction of the configuration class to that of the entire phase space. In a BDS, this can
asily be calculated as a ratio of the number of trajectories of a given configuration Ni to
he total number of trajectories NT, i.e.,

pi =
Ni

NT
. �1�

he description of a configuration class requires the calculation of the probability distri-
ution function within the class and a measure of the frictional property of the configu-
ation class in order to calculate the macroscopic stresses associated with the configura-
ion class. These properties have been traditionally studied by analyzing the
onfigurations at equilibrium and using statistical mechanics principles to relate them to
oarse-grained properties. However, in the development of the configuration-based
odel, the existence of several of the classes only outside equilibrium has precluded the

se of these standard procedures of statistical mechanics. Therefore, we seek other strat-
gies to calculate these properties by studying the nonequilibrium configurations.

Instead of invoking approximations for the distribution function of configuration
lasses, we use BD simulations using detailed microstructural models to guide us in
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IG. 5. Steady state configurational probability distributions �pi� as a function of Wi under uniaxial extensional
ow for the �-DNA molecule using a bead-spring representation.
alculating distribution functions for the different configuration classes. Although the
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1152 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
acromolecule is coarse grained into a single dumbbell description, the hydrodynamic/
lastic properties of the dumbbells of different configuration classes are not the same. We
nvestigate different routes to effectively describe the properties of the different configu-
ation classes by studying the hydrodynamic and elastic properties, and dynamical be-
avior of the configuration classes, using a fine-grained model. The development of the
oarse-grained model based on configuration classes can therefore be broken down into
wo steps: �i� obtaining the distribution function within a configuration class, and �ii�
eveloping a coarse-grained representation that is unique to each configuration class.

. Configurational distribution functions

Using the coarse-grained description, the distribution function of molecules belonging
o a particular configuration class must represent the underlying distribution of the fine-
caled description of the macromolecule. Since the macromolecule is coarse-grained into
single dumbbell, the quantity of interest is the end-to-end vector. The end-to-end vector

s the simplest microstructural variable that can directly be derived as a vector sum of the
rientation vectors of the springs of the underlying fine-scale model. This linear addition
llows for a straightforward derivation of the equation that governs the evolution of the
umbbells. Therefore, while developing distribution functions for the different configu-
ation classes, we are interested only in the distribution of the end-to-end vector. How-
ver, the task of calculating this distribution function is complicated by the fact that
ifferent flow fields have different effects on the mesoscopic configuration, leading to
ifferent distribution functions. Hence, a few key simplifications are made in order to
ake this a more tractable problem.
The two distinct variables in our description, namely, the configuration class and the

nd-to-end distance, are used to parametrize the phase space accessible to the molecules.
f we focus on molecules with a chosen end-to-end distance Q, the partitioning of the
hase space into six configuration classes dictates that the configuration of a molecule
ith the selected end-to-end distance must belong to one of the six configuration classes.
herefore, if the probability that a molecule with a given end-to-end distance belongs to
ne of the six configuration classes be written as p�i �Q�, such that

�
i=1

Nconf

p�i�Q� = 1, �2�

e can generate a configuration map of the conditional probabilities of the different
onfiguration classes as a function of the end-to-end distance. In a BDS, p�i �Q� can be
alculated by counting the number of trajectories of a given configuration class �i� with a
hosen end-to-end distance �Q� and dividing it by the total number of trajectories with the
ame end-to-end distance. Again, different flow fields and transients can lead to different
alculated configuration maps. However, to provide a representation of all the different
onfiguration maps, we hypothesize that the configuration map is not a strong function of
he flow type or transients, and we generate a master configuration map �MCM� that is
alculated as an average over many different flow types, flow strengths, and strains.
bviously, this simplification can lead to differences between the actual and calculated
istribution functions, and the effect of the hypothesis will be put to test as described in
he following sections. The MCM thus generated provides a measure of global transition
robabilities between configuration classes in the form of a conditional probability of
ccurrence for a configuration type for a fixed end-to-end distance. This guides the
volution of the dumbbells as well as the configuration class they will fall under as they

re strained by the flow. The use of the configuration map to calculate the configurational
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1153CONFIGURATION-BASED MODEL
istribution functions will be elaborated in Sec. III C which describes the implementation
f the configuration-based model.

The calculation of the MCM requires a systematic exploration of the configuration
lasses sampled by the molecule as it is exposed to different flow types. Although this
eems to be an intractable problem, for the purpose of generating the configuration map
e choose only steady shear, steady uniaxial elongation, and steady biaxial elongation,

nd study the evolution of the configurations of the trajectories as a function of strain and
hat of flow strength. These three flow types are chosen since they span the region of
llowable combinations of the invariants of the finger strain tensor �Bird et al. �1987a��.
niaxial extension and biaxial stretching are the boundaries of the invariant space, while

imple shear is in the middle of the allowable region. Using the configurational distribu-
ions thus obtained, we can generate the MCM. Figures 6�a�, 7�a�, and 8�a� show repre-
entative plots of the CPDs as a function of time at Wi=100 in steady shear, biaxial
xtension, and uniaxial extension, respectively. The conditional probabilities for the dif-
erent configuration classes for selected end-to-end distances �i.e., 25%, 50%, and 75% of
he maximum stretch of the molecule� are, respectively, shown as a function of strain for
he same flow strength in Figs. 6�b�, 7�b�, and 8�b�. Under steady shear, the molecules
nitially transition from a coiled state into various configuration classes �t=1.4�. At di-

ensionless times of 2.8 and 4.2, the stretched configuration has a higher probability of
ccurrence, coinciding with the overshoot in the shear and normal stresses. However, at
teady state �t=8.4�, most of the configurations are equally populated, which is in accord
ith the tumbling dynamics. From the plots for the conditional probability �Fig. 6�b��, it

an be seen that molecules with an end-to-end distance equal to 25% of the maximum
tretch favor the folded configuration, molecules with a fractional end-to-end distance of
.5 favor the half dumbbell and kinked configurations, and molecules with a fractional
nd-to-end distance of 0.75 prefer the half dumbbell and stretched configurations.

In biaxial extensional flow �Fig. 7�a��, initially, the molecules are mostly coiled �t
0.175�. As the strain �t=0.35� approaches the critical strain at which the coil-to-stretch

ransition occurs, most of the configuration classes are equally populated. However, past
he critical strain, most of the molecules transition into a stretched state. This is consistent
ith the series of molecular events that occurs in extensional flows. A similar trend is also
bserved under uniaxial extension �Fig. 8�a��.

The plots for the conditional probability of occurrence of configuration classes are
arefully analyzed in biaxial and uniaxial extensional flow. For strains greater than the
ritical strain, the configurational probability distributions clearly show that the mol-
cules are predominantly in the stretched state. However, the conditional probability
alculated for molecules with a fractional end-to-end distance of 0.25 shows that the
olded state is the only configuration that these molecules sample. Based on the corre-
ponding configurational distribution function, it can be clearly noted that the molecular
opulation corresponding to a fractional end-to-end distance of 0.25 is very small. There-
ore, the conditional probabilities calculated for this fractional end-to-end distance are
iased, due to limitations posed by the BDS technique used to calculate the conditional
robabilities. Therefore, when developing configuration maps, we consider only those
onditional probability plots wherein the ensemble sizes are significantly large ��10% of
he total ensemble size� to allow for the calculation of meaningful distributions. Typi-
ally, in extensional flows, conditional probabilities calculated are meaningful for most
onfiguration classes only below the critical strain while at higher strains, conditional
robabilities corresponding to the end-to-end distance of the stretched states can be easily
alculated. Therefore, in the case of uniaxial extensional flow, in Fig. 8�b�, we present the

onditional probability distributions only below the critical extension rate.
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1154 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
A persistent trend that can be observed by comparing Figs. 6�b�, 7�b�, and 8�b� is that
or a fractional end-to-end distance of 0.25, the folded configuration is preferred, while
or a fractional end-to-end distance of 0.5, half dumbbell and kinked configurations are
referred, and for a fractional end-to-end distance of 0.75, half dumbbell, kinked, and
tretched states are preferred. Moreover, the probability of occurrence of any one of these
onfiguration classes is approximately the same in all the conditional probability plots.
his observation is independent of the flow type, strain or the individual configurational
istribution functions that vary with different flow types. It therefore provides a basis to
upport the accuracy and applicability of the MCM hypothesis. Conditional probability
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lots similar to Figs. 6�b�, 7�b�, and 8�b� were computed for various Wi and at various
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1155CONFIGURATION-BASED MODEL
trains. An average over all these different conditional probability plots yields the MCM.
ere, we present a consolidated MCM wherein the conditional probability of a configu-

ation is plotted along the abscissa and the corresponding end-to-end distance is plotted
long the ordinate in Fig. 9. The conditional probability of a configuration class for a
articular end-to-end distance can be calculated as the fractional length of the bar corre-
ponding to the particular configuration class. Based on Eq. �2�, the total length of each
ar must be equal to unity.

. Coarse-grained models for describing configuration classes

The second step in the development of the coarse-grained model is to obtain unique
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epresentations for the configuration classes, so that the dynamical properties of interest
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or the coarse-grained description are in agreement with the underlying fine-grained
odel. The coarse-grained dumbbell model experiences hydrodynamic drag forces on the

eads and elastic forces from the spring. These drag and elastic forces offer routes to alter
he properties of the coarse-grained model, and we investigate the effect of modifying
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1157CONFIGURATION-BASED MODEL
hem in the following sections. The modification of the hydrodynamic properties of the
umbbell can be incorporated via the drag coefficient of the bead or the relaxation time
f the molecule. Since the relaxation time is indirectly related to the drag coefficient,
odifying one of these properties will directly lead to a modification of the other. How-

ver, these two approaches will be studied independently in order to elucidate the advan-
age of using one over the other for estimating modified properties. The modification of
he elastic properties, on the other hand, is incorporated via the calculation of a new
lastic force that varies with the configuration class.

The modified hydrodynamic or elastic property of the coarse-grained dumbbell model
s usually determined by equating it to the corresponding property calculated for a multi-
ead spring model. A method often used to calculate properties of a coarse-grained
epresentation is to simulate the constant extension ensemble. In this method, the ends of
molecule are held fixed at a chosen distance by applying an external force at one or

oth ends of the molecule and allowing it to evolve in either the presence or absence of
ow. Elastic/drag properties can be evaluated by averaging the desired property over very

arge times to allow for an adequate sampling of the phase space. The technique has been
sed to calculate force laws as a function of the degree of coarse graining by Underhill
nd Doyle �2004; 2005� and for modified drag coefficients for systems in the presence of
I by Schroeder et al. �2004�. It has also been shown that using the constant extension

nsemble is the correct way to calculate coarse-grained properties, rather than using the
onstant force ensemble �Underhill and Doyle �2004�� since it predicts the same response
s the true polymer under all constraints rather than one which is specific to the experi-
ent used to calculate the coarse-grained property as in the constant-force ensemble.
owever, in the development of the configuration-based model, the use of the constant

xtension ensemble can pose constraints that complicate the calculation of elastic/
ydrodynamic properties. The basis of the configuration based model is the existence of
rominent configuration classes that have been previously identified. The constraints
osed on the ends of the chain in the constant extension ensemble can therefore bias the
onfigurations sampled by the molecule, thereby leading to the overpopulation of con-
guration classes in some cases, and to the exclusion of certain configuration classes
ntirely in other cases. Therefore, we seek to develop a similar methodology while
llowing for the sampling of the configuration phase space of interest.

. Drag coefficient

The concept of a modified drag coefficient for each configuration class is motivated by
he fact that the drag force experienced by an object is directly related to its size and
hape. For example, we know that the hydrodynamic drag force on a sphere translating in
fluid is different from that of a rod translating through the fluid. Similarly, the configu-

ations that have been identified as the basis for the coarse-grained model can also be
nvisioned as different sized/shaped objects having differing drag properties when ex-
osed to flow in solution. Therefore, when developing a coarse-grained model wherein
ifferent configuration classes are represented by the same physical representation �a
umbbell�, a natural choice for incorporating the configurational diversity is the drag
oefficient of the dumbbells based on the configuration class they represent.

For calculating a modified drag coefficient for each configuration class, it is required
o fix the elastic properties of the molecule. In this case, we choose to describe each of
he configuration classes using a FENE force law. Let us consider a molecule under flow
say, shear flow�, that assumes a configuration �say, a folded state� with an end-to-end

istance Q. In the presence of flow, the forces acting on any one of the beads are the
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1158 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
ydrodynamic drag force �Fi
H�, the elastic spring force �Fi

E�, and a random Brownian
orce �Fi

B� imparted by the solvent molecules. The force balance on any bead in the chain
s given by

Fi
B + Fi

E + Fi
H = 0. �3�

n the case of the end bead, i=1 or i=Nb. Averaging over several such chains �note that
he average of the Brownian force will be equal to zero�, we obtain

	Fi
E
 + 	Fi

H
 = 0. �4�

ere, we consider the forces acting on the Nb
th bead. The goal behind developing a

umbbell-like representation for this molecule is to describe the same configuration as a
umbbell connected by a FENE spring. Therefore, the elastic spring force can be replaced
y the force exerted on the end bead due to the FENE spring, i.e., Fi

E=Fi
FENE. In the

quivalent dumbbell �represented with the superscript d�, the ensemble averaged force
alance correspondingly on bead 2 can be written as

	F2
H,d
 + 	F2

FENE
 = 0. �5�

ubtracting Eqs. �3� and �5�, we get

	FNb

H 
 = 	F2
H,d
 + 	F2

FENE
 − 	FNb

E 
 . �6�

he hydrodynamic drag force on the Nb
th bead can be written in terms of the coarse-

rained parameter �conf, while that of the dumbbell can be written in terms of the dumb-
ell bead drag coefficient ��d� and is given by

FH = ��̇�� · Ri� , �7�

here �̇ is the shear rate, � is the dimensionless transpose of the velocity gradient tensor,
nd Ri is the position vector of the bead. The elastic force law can be written in a generic
orm as

FE = Hf�Q�Q , �8�

here H is the spring constant that varies based on the level of description �i.e., bead-
pring or dumbbell model represented using subscript b-s or d, respectively�; f is a scalar
unction that describes the nonlinear nature of the spring; and Q is the connector vector,
ith Q being its magnitude. Substituting Eqs. �7� and �8� into Eq. �6� we get

�conf

�d
= 1 +

1

�d�̇�	� · R
�
�	HdfFENE�R�R
 − 	Hb-sf�QNs

�QNs

� . �9�

Since we are interested in sampling configurations present under flow, we study the
onfigurations that the molecule assumes as it is exposed to standard flow conditions,
amely, steady shear, and uniaxial extension. Figures 10 and 11 show the consolidated
istribution of the lengths of molecules from various flow fields and configuration
lasses. The configurational distribution functions are very similar to one another for
ost configuration classes, except in the case of the stretched configuration class. The
olecules under extensional flow attain a stretched state and are able to sample higher

xtensions due to the irrotational nature of the flow. Therefore, we observe a high prob-
bility for molecules in a highly stretched state. Further, there is a distribution of lengths
or molecules in different configuration classes. Therefore, ideally, a configuration-based
rag must also vary as a function of the length of the molecule in that configuration.

owever, initially, we investigate the applicability of a constant configurational drag by
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IG. 10. Consolidated distribution of the end-to-end distance at different flow strengths for �a� folds, �b� half

umbbells, �c� kinks, �d� dumbbells, �e� coils, and �f� stretched configuration classes under steady shear.
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IG. 11. Consolidated distribution of the end-to-end distance at different flow strengths for �a� folds, �b� half
umbbells, �c� kinks, �d� dumbbells, �e� coils, and �f� stretched configuration classes under steady uniaxial

xtension.
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1160 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
nsemble averaging over all possible end-to-end distances and overall flow strengths and
ow types. For configuration classes wherein the distribution function is nearly Gaussian
half dumbbells and coils�, such an assumption might be reasonable. However, for con-
guration classes where the distribution is skewed, a variable drag is required to accu-
ately describe the variation as a function of length.

The drag coefficients calculated as described above, are presented in Table I. It is clear
rom our calculations that the drag coefficients of different configuration classes are
ndeed different. The values obtained for the drag coefficient can be explained by ana-
yzing Eq. �9�. We denote the first force term as term 1 and the second force term as term

and estimate their magnitudes. For the coiled configuration class, a single dumbbell
odel is sufficient to describe the dynamics of the molecule. Therefore, the magnitudes

f terms 1 and 2 should almost be equal, yielding a drag coefficient close to 1. We find
hat the coiled configuration drag coefficient is slightly greater than 1. The larger drag
oefficient is due to the sorting criteria used in the configuration sorting algorithm. In the
utomated algorithm, a limit is placed on the size of the molecule, i.e., all molecules
maller than a prescribed size are identified as coils. This limit may allow larger mol-
cules which are truly not in coiled conformations, leading to a slightly greater value for
he drag coefficient than the expected value. Moreover, since the ends of the coiled
onfiguration have random orientations and the forces acting on the ends are also highly
ariable, the variance in term 2 is large, leading to uncertainties.

For kinked molecules, the springs at the ends of the chain are in a stretched state. In
his case, the ensemble averaged force on the last bead, using either the FENE dumbbell
odel or the multibead-spring model, is very similar, yielding a drag coefficient close to

nity. In order to understand the drag coefficient calculated for the folded, half dumbbell
nd stretched configuration, we also analyze the magnitude of the denominator. In all the
hree cases, term 2 is greater than term 1. However, the term in the denominator ��	� ·R
��
ncreases from the folded state to the half dumbbell state, and is the largest for the
tretched state. The increase in the magnitude of the denominator is due to an increase in
hat of the end-to-end distance as we transition from a folded to a half dumbbell state to
stretched state. Correspondingly, we observe that the �F /�d��HD /�d��S /�d.
The drag coefficient for the dumbbell was found to be very large �close to two times

hat of the half dumbbell configuration�. The observed large value can be reasoned based
n the procedure used to calculate the drag coefficient. When a multibead-spring chain
ssumes a dumbbell configuration, the ends of the molecule are embedded in the coiled
ection of the molecule. Therefore, the magnitude of term 2 is relatively small. Moreover,
ince the ends of the molecule are close to equilibrium, the orientation of the end springs

TABLE I. Drag coefficient for different configuration classes calculated
using Eq. �9�.

Configuration �conf /�d

Fold 3
Half dumbbell 2

Kink 1.15
Dumbbell 4.3

Coil 1.4
Stretched 1.85
s almost random, leading to a large variance in the term �	� ·R
�, and in term 2. Alter-
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1161CONFIGURATION-BASED MODEL
atively, the dumbbell configuration can be viewed as to be composed of two half dumb-
ells, leading to a drag coefficient which is near two times that of the half dumbbell. This
s consistent with a drag coefficient of �4.

By using the average drag coefficients calculated for the different configuration
lasses, we estimate the variation of the mean drag coefficient of the molecule as a
unction of the end-to-end distance as

�̄

�d
�Q� = �

i=1

Nconf

p�i�Q�
�i

�d
. �10�

Figure 12 reveals a nonmonotonic growth for the mean drag coefficient as we go from
coiled state to a stretched state. Larson et al. �1997� have calculated the increase in the
rag on a molecule as it extends while an end of the molecule is tethered using optical
weezers and subjected to uniform flow. They found that the drag increases monotonically
s the molecule unraveled from a coiled state to a stretched state. However, in the
xperiments, the flow was imposed so that the molecule unraveled in such a way that it
ligned with the flow. In the method used above, the configurations of the molecule were
btained from different flow types and therefore included complex configurations. The
bservation of a nonmonotonic growth of the drag coefficient suggests a nonlinear con-
gurational drag coefficient for dumbbells as a function of the end-to-end distance, es-
ecially in shearing flows.

. Relaxation time

Modifying the relaxation time of the molecule is motivated by the fact that molecules
f different lengths have differing relaxation times. Intuitively, it can be understood that
he time taken by a fully stretched molecule to relax to a coiled state is different from that
f a folded molecule. Since the relaxation time provides an estimate of the average time

0 0.25 0.5 0.75 1
0

1

2

3

4

d�

�

oQ
Q

IG. 12. Mean drag coefficient for the molecule as a function of the end-to-end distance calculated using the
onfiguration-dependent drag calaculated from Eq. �9�.
aken by a molecule to relax from its nonequilibrium state to its equilibrium state, it
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1162 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
irectly suggests the concept of a configurational relaxation time. Therefore, developing
configuration-dependent relaxation time also provides a route to distinguish configura-

ion classes from each other.
Conventionally, the relaxation time of a molecule is calculated by allowing an en-

emble of fully stretched molecules to relax to their equilibrium configurations and fitting
he tail of the relaxation of the tensile stress to a single exponential fit. This procedure has
een successfully used by Doyle et al. �1997� to develop an empirical relationship for the
elaxation time of a bead-rod chain as a function of the number of rods. It has also been
sed by Somasi et al. �2002� for calculating the relaxation time of bead-spring chains as
function of the degree of coarse graining. For the configuration based model, we are

nterested in calculating the relaxation time for the different configuration classes.
For instance, let us consider the folded configuration class. In this case, we start out

ith an ensemble of maximally stretched folded configurations and allow them to relax in
he absence of flow. As the folded molecules relax, they change their configuration,
opulating other configuration classes. Consequently, calculating configuration dependent
elaxation times is restricted by the fact that the molecules eventually become coiled.
lthough the existence of a configuration based relaxation time can be easily understood,

ts accurate determination is not feasible due to the problems posed by the phase space
ampled by the molecule near equilibrium. Therefore, we do not consider the modifica-
ion of the relaxation time as a possible route to identify configurational diversity. In-
tead, we choose to study its effect indirectly via the configuration-based drag coefficient.

. Spring force law

The idea of a configuration-dependent spring force law can easily be understood by
xamining the following experiment. Let us consider a molecule that is constrained in a
ube �i.e., it cannot make excursions outside the tube walls� that has a fixed configuration.
he tube diameter is much larger than the Kuhn step size, thereby allowing the relaxation
f the molecule at length scales smaller than the persistence length. The force required to
x the ends of the chain at the ends of the tube, while still allowing the intermediate
ections of the molecule to move within, can be calculated as a function of the end-to-end
istance of the tube �while retaining the gross configuration of the tube�, yielding a
orce-extension law for that configuration class. It can directly be noted that based on the
onfiguration of the tube that the molecule is constrained in, the force required to fix the
nds of the molecule will vary, thereby suggesting a configuration-dependent spring force
aw. The idea is similar to that proposed initially using the constant extension ensemble,
ut it differs in that it specifically prescribes a overall configuration for the molecule.
lthough this provides a unique route to use the constant extension ensemble for con-
guration classes, it poses some complications due to the particular choice of the con-
guration of the tube. Therefore, we do not investigate this route for developing a coarse-
rained model.

. The model

The implementation of the configuration-based model using the configuration-
ependent drag and the master configuration map is as follows. Initially, we start out with
ll dumbbells belonging to the coiled configuration. As the flow is imposed on the
olecules, they extend and transition into different configuration classes. Correspond-

ngly, the dumbbells are also extended and transition into different configurations classes.
t any instant of time, the dumbbells are classified based on their end-to-end distances.

he number of dumbbells with a given end-to-end distance that transition from the coiled
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1163CONFIGURATION-BASED MODEL
tate to another state is calculated based on the previously generated MCM which pre-
cribes the fraction of molecules that belong to a particular configuration class for a
hosen end-to-end distance, p�i �Q�. The particular choice of molecules with a given
nd-to-end distance that will transition from configuration class A at time instant t to
onfiguration class B at time instant t+�t, is arbitrarily decided upon as long as the
artitioning of the molecules is in agreement with the conditional probabilities calculated
priori. Once the dumbbells have been assigned their new configuration classes, they are

escribed using the corresponding configurational drag and therefore evolve differently
rom one another. The procedure is repeated until the distribution of configurations
eaches a steady state, which directly indicates the attainment of steady state for the flow
tself. The probability of occurrence of a configuration class at any instant of time can
gain easily be calculated by adding the total number of dumbbells over all end-to-end
engths that belong to a particular configuration class and dividing it by the total number
f trajectories that were simulated. Moreover, the distribution of the end-to-end distances
or each configuration class or for the entire ensemble of molecules can easily be calcu-
ated by binning the simulated trajectories.

V. RESULTS

In this section, we present predictions for the configuration-based model �CBM� using
he configuration-dependent drag, in conjunction with the configuration map. We com-
are the results with the underlying 15 segment bead-spring chain, and with the FENE
umbbell model, to elucidate the advantages of the configuration-based model over the
implistic FENE dumbbell model. The models are matched by maintaining the same
ontour length for the molecule. We study the start-up of steady shear, and uniaxial
xtensional flow.

. Steady shear flow

In steady shear, the velocity field is given as, vx= �̇y, vy =vz=0, where, �̇ is the shear
ate. The shear viscosity and first normal stress coefficient for the configuration based
odel, FENE dumbbell model and the underlying 15-segment worm-like chain �WLC�
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IG. 13. �a� Polymer shear viscosity ��S
p�, scaled with �nkBT��, as a function of Wi for the configuration based

odel, FENE dumbbell model, and 15 segment WLC. �b� First normal stress coefficient �	1�, scaled with
nkBT�2�, as a function of Wi for the configuration based model, FENE dumbbell model, and 15 segment WLC.
re presented in Figs. 13�a� and 13�b�, respectively. The shear viscosity predicted by the
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1164 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
onfiguration based model is in good agreement with the underlying multisegment chain.
he critical shear rate, corresponding to the onset of shear thinning, is at higher Wi for

he configuration based model. However, the first normal stress coefficient is overpre-
icted by the configuration based model over the entire range of shear rates studied. On
he other hand, the shear viscosity of the FENE dumbbell model is underpredicted for all

i, while the first normal stress coefficient is in good agreement with the multibead-
pring model, except at very low Wi.

In order to understand the effect of using a configuration-based drag coefficient, we
rbitrarily modify the drag coefficient for the stretched state �i.e., �S /�d=1�. The predic-
ions using this modified drag coefficient, while retaining the drag coefficients for other
onfiguration classes from our earlier calculations, are also presented in Figs. 13�a� and
3�b�. We observe that the zero-shear viscosity is in close agreement with the multibead-
pring model, while the shear viscosity in the shear-thinning regime decreases to that of
FENE dumbbell model. Similarly, the first normal stress coefficient is over predicted at

ow Wi, but is in agreement with the multibead-spring model at large Wi. The contribu-
ion of a particular configuration class to the total viscosity can be directly understood
sing this method. At low Wi, the probability of occurrence of a stretched state is negli-
ible. Therefore, the modification of the stretched state drag coefficient does not affect
he observed macroscopic properties. However, at higher Wi, the molecule samples the
tretched state as it tumbles. Therefore, the modification of the drag coefficient, to ap-
roach the FENE dumbbell drag coefficient, directly leads to a response that is close to
he FENE dumbbell predictions.

The predictions from the configuration based model are insightful in understanding the
eficiencies of a simplistic dumbbell model, such as the FENE model. It is clear from our
imulations, that configurational diversity is the crucial element for obtaining accurate
redictions for the shear viscosity. The shear viscosity is indirectly related to the thick-
ess of the molecule in the direction transverse to the flow that it occupies as it tumbles
nder shear flow. The dumbbell model is inherently deficient due to the lack of internal
egrees of freedom. The lack of internal modes leads to an inaccurate prediction for the
ransverse direction thickness, thereby leading to an underprediction of the shear viscos-
ty. On the other hand, the configuration based model, incorporates multiple relaxation
odes by modifying the drag properties of the dumbbells belonging to the different

onfiguration classes. We observe that the mean of the transverse direction thickness is
omparable for the multisegment model and the configuration based model. However, the
tretch along the direction of flow for the configuration based model is greater than the
tretch for the bead-spring chain. This explains the overprediction of the first normal
tress coefficient.
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IG. 14. Configurational probability distribution in steady shear for the configuration based model and the 15
egment WLC for �a� Wi=1, �b� Wi=10, and �c� Wi=50.
Figure 14 shows the configurational probability distributions for the bead-spring chain
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1165CONFIGURATION-BASED MODEL
nd the configuration based model at Wi=1, 10, and 50. At lower Wi, folded and dumb-
ell states are predicted by the configuration based model, which are not observed for the
ead-spring chain. These configuration classes are spurious and arise due to the configu-
ation map developed earlier. It can be noted that the configuration map �Fig. 9� also
hows a finite probability for folded states at very low extensions. This probability is not
naccurate, as such, since folded states can exist at low extensions, especially in shear
ow �as the molecule tumbles�. However, these states are not accessible to the molecule
t equilibrium. The nature of the configuration map does not differentiate between these
wo cases, and that is the reason for the observed configurational probabilities even at low

i. However, the inclusion of these configuration classes at low Wi provides an accurate
rediction for the shear viscosity, suggesting that the drag coefficient of molecules at low
i is indeed different from that of a FENE dumbbell. At Wi=10, the configuration based
odel provides reasonable predictions for most configuration classes, except the folded

nd coiled configurations. This has been reasoned earlier to arise from the nature of the
onfiguration map. At high Wi, the configurational based model predicts configurational
robabilities in good agreement with the multibead-spring model, except for the stretched
tate. The overprediction of the first normal stress coefficient can be viewed to arise from
his.

We present the evolution of the configurational probabilities as a function of strain for
i=10 and Wi=50 in Fig. 15. The initial dynamics for half dumbbell, kinked, and

tretched configurations are captured well by the configuration based model. However, at
teady state, the configurational probability for the stretched state is overpredicted. The
nitial dynamics for the other two configuration classes are inaccurate due to deficiencies
n the configuration map that have been stated earlier. The growth of the shear stress and
ensile stress for Wi=10 and Wi=50 are presented in Fig. 16. The steady state shear
tress is in close agreement with that of the multibead-spring model. The overshoot for
he shear stress is overpredicted by the configuration based model, especially at higher

i. This may be due to the faster unraveling of molecules using the configuration based
odel. On the other hand, the FENE dumbbell model underpredicts the shear stress as
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IG. 15. Evolution of configurational probabilities as a function of strain in steady shear flow for the configu-
ation based model �i� �S /�d=1.85, � �ii� �S /�d=1, ��, and the 15 segment WLC �solid lines� at �a� Wi=10 and
b� Wi=50.
ell as the overshoot. The tensile stress is severely overpredicted by the configuration
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1166 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
ased model in comparison to the multibead-spring model, while the FENE dumbbell
rovides reasonable comparisons for the tensile stress. The configuration-based model
ith the modified drag coefficient ��S /�d=1� clearly identifies the source for the over-
rediction of normal stresses and the overshoots in the shear and tensile stress. Using the
odified drag coefficient, the configuration-based model is very close in predictions to

he FENE dumbbell model.
Two conclusions can be inferred from our simulations using the configuration based

odels, i.e., for �S /�d=1.85 and �S /�d=1. The configuration dependent drag coefficient is
ecessary to obtain an accurate prediction of the shear viscosity. However, this leads to an
verprediction of the tensile stress. On the other hand, the configuration based model
ith �S /�d=1 provides a good prediction for the tensile stress. It is known that the shear

tress is related to the transverse direction thickness of the molecule, while the tensile
tress is related to the stretch of the molecule along the flow direction. In order to obtain
greement between the CBM and the fine-grained bead-spring model for both the shear
nd tensile stress, it can therefore be deduced that, the drag along the flow and transverse
irections should be different. The use of an anisotropic drag should be successful in
orrecting the deficiencies of the configuration based model. It will be explored in a
ubsequent publication.

. Start-up of uniaxial extensional flow

The velocity field in uniaxial extensional flow is given as vx= �̇x, vy =−��̇ /2�y, and
˙ ˙
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z=−�� /2�z, where � is the extension rate. We present the extensional viscosity for the
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1167CONFIGURATION-BASED MODEL
onfigurational based model ��S /�d=1.85 and �S /�d=1� in Fig. 17. At low Wi, the exten-
ional viscosity is three times the shear viscosity. The configuration based model predicts
slightly lower plateau at low Wi, in comparison to the bead-spring model. However, it

s still an improvement over the FENE dumbbell model. Past the coil-to-stretch transition,
he configuration-based model overpredicts the extensional viscosity for all extension
ates studied here. However, the FENE dumbbell model is in close agreement with the
ultibead-spring model beyond the coil-to-stretch point. The configuration based model
ith the modified drag coefficient ��S /�d=1� shows good agreement with the multibead-

pring model at high Wi.
The overprediction of the viscosity can be related to the stretch of the molecule along

he direction of extension. Figure 18 shows the evolution of the tensile stress and xx
omponent of the conformation tensor. At both the Wi shown here, the configuration
ased model overpredicts the tensile stress. At Wi=1, the FENE dumbbell model also
verpredicts the stress, while it closely follows the multibead-spring model at Wi=10.
he xx component of the conformation tensor is overpredicted by all the models at Wi
1 and Wi=10.

The differences in the tensile stress and conformation of the molecule are more pro-
ounced when studying stress-conformation hysteresis. It is known that the relaxation of
tress and configuration occur at different rates leading to a hysteresis in the behavior of
olecules as they relax after stretching during uniaxial extension. The stress-

onformation hysteresis for all models are presented in Fig. 19 at Wi=1 and Wi=10. The
onfiguration-based model shows a very large stress-conformation hysteresis due to the
verprediction of both the stresses and conformation. However, the modification of the
rag property for the stretched state reduces the size of the stress-conformation hysteresis
urve. Past the coil-to-stretch transition, in uniaxial extension flow, the molecules exist in
he stretched configuration only. Therefore, the modification of the drag coefficient cor-
esponding to the stretched state immediately reduces the predictions of the
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onfiguration-based model to closely follow the FENE dumbbell model. The existence of
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1168 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
nternal modes in the bead-spring model leads to a large stress for smaller extensions.
gain, the idea of an anisotropic drag should be useful in obtaining closer prediction for

he conformation of the molecule, while retaining the drag coefficient of the FENE
umbbell for the stretched state along the flow direction.
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1169CONFIGURATION-BASED MODEL
. SUMMARY

A configuration-based, coarse-grained model was developed for studying the dynam-
cs of macromolecular solutions. The importance of the inclusion of configurational in-
ormation into a simplistic dumbbell model was explored by studying the configurations
f the molecules under steady shear and uniaxial extension and relating configurational
istributions to observed macroscopic properties. The configuration-based model was
hus developed based on the existence of a few predominant configuration classes that are
resent in all flow types. These classes were used to partition the configurational phase
pace of the molecule. The macromolecules were described using a single dumbbell
escription with varying drag coefficients based on the configuration they represented.
he probability distribution of configurations under any flow type was derived based on
configuration map. The configuration map was derived by exploring the configuration

hase space sampled by the molecule under different flow types and strengths. It was
ound that the conditional probability for finding a molecule in a given configuration
lass for a fixed end-to-end distance was universal. Therefore, the partitioning of mol-
cules into the different configurations must always be in accordance with the configu-
ation map.

The predictions for the configuration-based model were studied using the BD ap-
roach under steady shear and uniaxial extension. The model provides good predictions
n comparison to the underlying multibead-spring model for the shear viscosity while
verpredicting the first normal stress coefficient. Modifying the stretched state drag co-
fficient provided an insight into the reason behind the overpredictions. The overpredic-
ion in the tensile stress was found to be due to the overprediction of the xx component
f the conformation tensor. On the other hand, a good prediction for the shear stress in
omparison to the FENE dumbbell model indicated that the modified drag coefficients
ere crucial to obtain agreeable predictions for the shear stress. Similarly, in uniaxial

xtension, the tensile stress as well as the xx component of the conformation tensor were
verpredicted. This again was tied to the drag coefficient of the stretched state which led
o an excessive prediction for the stretch of the molecule. A reduced drag coefficient for
he stretched state yielded improvements in the prediction of macroscopic as well as

icroscopic properties along the direction of flow while the calculated drag coefficients
rovided a good prediction for the shear stresses. These findings emphasize the fact that
onfiguration classes must not merely be treated as differently sized objects but as dif-
erently shaped objects as well. Therefore, the use of an anisotropic drag which accounts
or the difference in average dimension of the configuration along and traverse to the
irection of flow could achieve good comparisons for both the shear stress and tensile
tress with a fine-scale model and forms part of the future work to improve the model.
nother aspect that could possibly lead to a fine-tuned model is the development of
uidelines for the use of the configuration map that would prevent the sampling of
onfigurations other than the coiled state upon inception of flow from equilibrium.

The configuration-based, coarse-grained model presents a novel way to incorporate
onfigurational diversity into a simplistic dumbbell model. It holds promise for studying
acromolecular dynamics in complex flow studies which has historically been limited to

umbbell-based models due to computational limitations. The model molecule studied
ere is representative of the procedures for the development of model tools required for
he implementation of the model. The use of the model for studying the flow of any

acromolecule in a complex flow geometry would therefore involve two steps. The first
tep involves the development of the configuration map corresponding to the macromol-

cule of choice and the calculation of modified drag coefficients for the configuration
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1170 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI
lasses for that macromolecule. The second step is to use the tools developed in the first
tep to implement the configuration-based model in the complex flow calculation just like
ny other dumbbell model. Although the first step may seem cumbersome, as it has been
ointed out earlier, investigating the dynamics in steady shear, uniaxial, and biaxial
xtension is sufficient to obtain a relatively accurate configuration map and configuration
ependent drags. With the model parameters and configuration map developed, the use of
he model for studying macromolecular flows in complex geometries can be realized.

PPENDIX

. Governing equations

In the BD approach, the solvent is described as a continuum with a prescribed viscos-
ty that randomly collides with the macromolecule, the effect of which is modeled as a
tochastic force imparted on the macromolecule. On the other hand, the macromolecule is
xplicitly modeled either as a bead-rod chain, bead-spring chain, or a dumbbell �Bird et
l. �1987a��. The governing equation for the evolution of the extension of the macromol-
cule is obtained by writing a force-balance on each bead and solving for the position of
he beads simultaneously. Macroscopic observables are then computed as a function of
he bead positions.

In the case of the bead-rod model, the macromolecule is represented as Nk+1 identical
eads connected by rods of length a while in the bead-spring model, the macromolecule
s represented as Nb identical beads connected by Ns springs. The position vector repre-
enting the position of bead i with respect to an arbitrary point fixed in space is repre-
ented as ri. Neglecting inertia for time scales larger than the momentum relaxation time,
he governing equation for the motion of the beads is obtained by writing a force balance
n the bead i as given in Eq. �3� where the elastic spring force can be replaced by the
onnector vector force �Fi

C� which is due to the tension in the rods in the case of the
ead-rod model and due to the elastic force exerted by the springs in the case of the
ead-spring model.

In the absence of hydrodynamic interactions, the hydrodynamic drag force on bead i is
iven by

Fi
H = − ��ṙi − ui


� , �A1�

here � is the bead drag coefficient, ṙi is the velocity of bead i, and ui

 is the solvent

elocity at bead i.
In the bead-spring model, the connector vector force �Fi

C=Fi
S� is due the springs that

re attached to the beads and the effective spring force on bead i is given by

=F1
Sp i = 1,

Fi
S = Fi

Sp − Fi−1
Sp i = 2, . . . ,Nb − 1,

=− FNs

Sp i = Nb, �A2�

hile in the case of a bead-rod model, the connector vector force �Fi
C=Fi

T� is due to the
ension in the rods connected to the bead. This is given by

Fi
T = Tiui − Ti−1ui−1, �A3�

here Ti is the tension in rod i and ui is the orientation vector between beads i and i

1. The Brownian force is mathematically represented as a quantity with a zero mean
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1171CONFIGURATION-BASED MODEL
nd a second moment that balances the dissipative forces to satisfy the fluctuation dissi-
ation theorem

	Fi
B
 = 0, �A4�

	Fi
B�t�F j

B�t + �t�
 = 2kBT��ij���t� �
2kBT��ij

�t
, �A5�

here kB and T are the Boltzmann constant and temperature.
Combining the above description of forces acting on a bead in Eq. �A5�, the equation

overning the motion of bead i can be written as

0 = ��ui

 − ṙi� +�2kBT�

�t
dWi� + Fi

S/T + Fi
Ext, �A6�

here dWi� is a Wiener process mathematically represented by a Gaussian random num-
er with a zero mean and unit variance. Equation �A6� can be rearranged to give the time
volution of the position vectors �ri� of the beads

dri =�2kBT

�
dWi + 
ui


 +
Fi

S/T

�
+

Fi
Ext

�
�dt , �A7�

here dWi is a Gaussian random number with a zero mean and variance of �t.
The stochastic differential Eq. �A7� for the bead-rod model has to be solved along with

he imposition of constraints on the rods to maintain the distance between any two beads
t the length of the rods

�ri+1 − ri� · �ri+1 − ri� − a2 = �2, �A8�

here �2 is a specified tolerance criterion ��10−6–10−8�. The governing equation is
ondimensionalized using the following scales. The length scale used is the length of a
od �a�, the time scale used is the bead diffusion time ��b−ra

2 /kBT�, and the forces are
ondimensionalized using kBT /a. The resulting evolution equation is

dr
i
* = �Pe�� · r

i
*� + F

i

T,* + F
i

Ext,*�dt* + �2dWi, �A9�

here � is the transpose of the dimensionless velocity gradient tensor. The specific form
f � for simple shear and uniaxial extensional flow are given below

�shear = �0 1 0

0 0 0

0 0 0
� ; �ext = �

1 0 0

0 −
1

2
0

0 0 −
1

2
� . �A10�

he starred quantities represent dimensionless variables. Nondimensionalization of the
overning equation leads to a dimensionless quantity—the Peclet number �Pe
��̇�a2 /kBT��, which is the dimensionless shear/extension rate and is calculated as the

atio of the Weissenberg number �Pe=Wi /�*� and the dimensionless relaxation time of
he molecule. The relaxation time of the molecule has been previously calculated via
imulation and fit to an expression by Doyle et al. �1997� and is used here. The solution
rocedure for the above equations is adopted from Somasi et al. �2002�.

The polymer contribution to the stress can be calculated once the positions of the

eads have been calculated using the Karmers–Kirkwood expression as
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�p = np �
i=1

Nk+1

	RiFi
H
 , �A11�

here np is the number density of polymer chains and Ri is the position vector of the
ead i relative to the center of mass of the chain

Ri = ri − rc, �A12�

here

rc =
1

Nk + 1 �
i=1

Nk+1

ri. �A13�

n the case of the bead-spring model, it is easier to study the evolution of the connector
ectors since the position of the chain in space is arbitrary and it is the relative positions
f the beads with respect to each other that are of importance. The evolution equation for
he connector vector �Qi� can be derived by subtracting the equations for the evolution of

i+1 and ri and is given by

dQi = 
ui

 + �Fi+1

S − Fi
S

�
� + �Fi+1

Ext − Fi
Ext

�
��dt +�2kBT

�
�dWi+1� − dWi�� . �A14�

he length scale used is the equilibrium length of a Hookean spring ��kBT /H�, the time
cale used is the relaxation time of the Hookean spring �� /4H� and the forces are non-
imensionalized using �kBTH. The dimensionless SDE thus obtained is

dQ
i
* = 
Pe�� · Q

i
*� + �F

i+1
S,* − F

i

S,*

4
� + �F

i+1
Ext,* − F

i

Ext,*

4
��dt +�1

2
�dWi+1 − dWi� ,

�A15�

here Pe= �̇� /4H. The Peclet number is a measure of the dimensionless flow strength
nd is calculated as the ratio of the Weissenberg number to the dimensionless relaxation
ime �Pe=Wi /�*�. Here, the dimensionless longest ��*� relaxation time is calculated by
tting the tail of the relaxation of tensile stress to a single exponential fit of the form

�
xx
* = A exp�−

t*

�*
� + B . �A16�

n order to study the diversity of the configurational phase space, BDS is carried out by
tarting initially with many trajectories �typically 104–105� described using the bead-
pring or bead-rod model. The initial configuration of each trajectory is randomly as-
igned, thereby selecting independent evolution paths for each molecule. Initially, the
rajectories are allowed to attain the equilibrium distribution by allowing the ensemble to
volve in the absence of flow for a couple of relaxation times of the molecule. The
quilibrium ensemble is then exposed to flow, and the evolution of the trajectories is
onitored. At any instant of time, macroscopic properties can be evaluated by appropri-

te ensemble averaging, and configurational distributions are obtained using the auto-
ated configuration sorting algorithm described in the following section.

. Model parameters

The �-DNA molecule has a length of 21.2 
m �Smith et al. �1999�� and is represented

sing a 15-spring chain, coarse grained from a 150 bead-rod �Nk=150� chain. The num-
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1173CONFIGURATION-BASED MODEL
er of rods used to describe the molecule is calculated based on the Kuhn step size �bK�.
he Kuhn step length is around 0.132 
m �Hur et al. �2000��, yielding around 150 Kuhn
egments. The force-extension behavior of the molecule follows the Marko–Siggia ex-
ression �Marko and Siggia �1995��, also known as the WLC force law. It is given as

Fi
s =

kBT

bK �1

2

1

�1 −
Qi

Qo
�2 −

1

2
+

2Qi

Qo �Qi

Qi
, �A17�

here Qi is the connector vector between two beads, Qi is its magnitude, Qo is the
aximum length of the spring, kB is the Boltzmann constant, and T is the temperature.
he maximum extensibility is the square of the maximum length of the molecule �b
Qo

2 / �kBT /Hs�� and is calculated by

b = 3�Nk − 1� �A18�

o be 447 �Hur et al. �2000��. The maximum extensibility for the individual springs bs is
iven by bs=b /Ns=29.8. The longest relaxation time of the chain in dimensionless terms
s �Somasi et al. �2002��

�d =
�

��/4Hs�
= 34.996, �A19�

here � is the bead drag coefficient and Hs is the Hookean spring constant.

. Automated configuration sorting algorithm

In this section, we present the automated configuration sorting algorithm used to
dentify configurations from a BDS of a multibead-spring chain. The configuration of a

olecule is assigned based on a brightness distribution which is calculated based on bond
nd bead overlaps. The calculation of a brightness distribution is motivated from the
xperimental observation of molecular configurations. Under the microscope, coiled mol-
cules appear as bright, compact blobs; while stretched molecules appear lighter and
inear. The model molecule, at any instant of time, is described as a set of Nb beads
onnected by Ns springs or Nk rods of known orientations. The relative positions of the
eads along the backbone of the molecule can be calculated by placing the origin at the
enter-of-mass of the molecule.

The first step in calculating the brightness distribution is to calculate the brightness
ue to bond overlap. For this purpose, the direction of maximum extension along the
hain is calculated and is chosen as the axis along which the brightness distribution will
e evaluated. In the case of uniaxial extension, this step is not very important since the
olecule extends only along the direction of the flow. Calculating a brightness distribu-

ion along the direction of the flow does provide a good prediction for the configuration
f the molecule. However, in shearing flows, the molecule tends to tumble and move
long the shear-gradient direction. Calculating a brightness distribution based on the
irection of shear would not provide a good prediction for the configuration since excur-
ions along the shear-gradient plane will be projected into the direction of shear, giving
ise to incorrect predictions for the configuration. The springs are therefore projected
long the direction of maximum extension of the molecule in order to calculate the
rightness distribution. Once the axis of the brightness distribution is calculated, a value
f one is added along the brightness axis if a spring is present. Therefore, in cases where
he molecule turns around or bends, there will be a bond overlap leading to a brightness

alue of 2 in those regions.
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The first step provides an estimate for the changes along the contour of the molecule.
he bead-spring description of the molecule also involves springs which are elastic, to
ccount for the loss of degrees of freedom when coarse graining from a bead-rod de-
cription. A compressed spring would indicate configurational kinks in the underlying
ead rods, while a stretched spring would imply a straight set of rods. Therefore, ac-
ounting for bead overlap which occurs due to the existence of compressed springs is
ecessary in the bead-spring model to account for the configurational diversity existent at
ner scales that cannot be discerned due to coarse graining in the bead-spring model. In

he case of a bead-rod model, such as the Kramers model, this step would not be required
ince the rods are of constant length. In order to account for bead overlap, we need an
stimate for the bead radius. The bead radius is calculated based on the fact that at
quilibrium, the beads cannot overlap. Since the distance between two bead centers is
iven by the extension of the spring, the bead radius is assigned as the equilibrium length
f a Hookean spring. When two beads overlap, the brightness is increased by a unit value
n the corresponding region.

For the purpose of implementing the above algorithm, the brightness axis is initially
ivided into a large number of bins. The length scale of the bins is much smaller than the
quilibrium length of a Hookean spring. The brightness value for each bin is determined
ased on the bead/bond overlap occurring in that region on the scale of the bin size. Once
he brightness distribution is calculated as described above, it is smoothed �by taking a

ean over a couple of bins� in order to obtain a coarse-scale brightness distribution that
an be used for automated assignment of configuration classes. The criteria used for
utomated assignment of configurations are adopted from earlier work by Larson et al.
1999�. The configuration classes considered in this work are inspired by observations in
xperiments that have indicated the existence of similar configuration classes �Smith and
hu �1998�; Schroeder et al. �2003��. A schematic of the configuration classes and rep-

esentative brightness distribution plots are presented in Fig. 20.
Looking at the ends of the chain, if the brightness is unity at one end and greater than

nity at the other end, the molecule can be a fold �F� or a half dumbbell �HD�. If y /x
1 /4, the molecule is assigned a folded state, while if y /x�1 /4, the molecule is con-

idered as a half dumbbell �y is the length of the brightness distribution with brightness
reater than unity, x is the total length of the brightness distribution�. If the brightness at
oth ends of molecule is unity, the molecule is either stretched �S� or kinked �K�. In this
ase, we look at the brightness of the molecule in the middle of the brightness distribu-
ion. If it is unity throughout, it is considered as stretched, otherwise, as kinked. Finally,
f the brightness at both ends of the distribution is greater than 1, the molecule is either

coil �C� or a dumbbell �D�. In this case, we study the brightness distribution in the
iddle of the molecule, and if it is of unit value in the middle, the molecule is assigned

Stretched Kink Fold

Half Dumbbell Dumbbell Coil

IG. 20. Schematic of configuration classes considered along with representative brightness distribution plots.
dumbbell state, otherwise, as a coiled state.
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1175CONFIGURATION-BASED MODEL
In order to evaluate the accuracy of the configuration sorting algorithm, we compare
he prediction for the probability of occurrence of a configuration class in steady shear
ow at Wi=10 using a bead-spring model with the prediction for the bead-rod model. As
ointed out earlier, while using the above algorithm to ascertain the configuration of a
olecule described using a bead-rod model, we do not consider bead overlap since the

ods are of fixed length. However, when comparing the configurational distributions from
bead-spring model with those from a bead-rod model, it is important that we compare

hem at the same level of coarse graining. Therefore, for the case of the Kramers model,
n equivalent bead-spring chain is constructed using the coarse-graining criteria pre-
ented by Somasi et al. �2002�, i.e., we only consider every tenth bead and ignore
ntermediate beads. Using the equivalent bead-spring chain for the underlying bead-rod
hain, we evaluate the configuration using the algorithm outlined above in order to obtain
he comparisons presented in Fig. 21. It can clearly be seen that the automated configu-
ation sorting algorithm provides very good comparisons for the calculated probabilities
f occurrence for different configuration classes, as long as they are compared at the same
evel of coarse graining.
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