Coarse-grained modeling of macromolecular solutions
using a configuration-based approach

V. Venkataramani and R. Sureshkumar

Department of Energy, Environment, and Chemical Engineering,
Washington University, Saint Louis, Missouri 63130

B. Khomami®

Department of Chemical and Biomolecular Engineering,
University of Tennessee, Knoxville, Tennessee 37996

(Received 9 January 2008; final revision received 30 June 2008)

Synopsis

An accurate, configuration-based, coarse-grained model for dilute macromolecular solutions is
presented. The basic approach relies on exploring the macromolecular configurational diversity
present in the flow of dilute polymeric solutions and identifying and partitioning the most
frequently observed configurations, e.g., folds, half dumbbells, kinks, dumbbells, coils, and
stretched states. The probability of finding any one of these configurations is calculated using a
master configuration map that dictates the conditional probability of finding a configuration with a
given chain extension. Each configuration class is modeled using a dumbbell description with a
suitably modified drag coefficient. The configuration-based model is implemented using a
Brownian dynamics simulation and the predictions are compared with the corresponding bead-
spring model and finitely extensible nonlinear elastic dumbbell in homogeneous steady shear and
uniaxial extension. Finally, prospects for model improvement are discussed. © 2008 The Society

of Rheology. [DOI: 10.1122/1.2964201]

I. INTRODUCTION

Modeling and simulation of the dynamics of synthetic and biopolymer solutions under
flow are essential to process and product design in several technologies. Traditionally, the
focus has been on describing macroscopic properties under flow conditions that are
critical to applications such as polymer processing. Recently, the emergence of bio- and
nanotechnologies have presented novel problems that require the description of flows at
length scales comparable to molecular length scales and the accurate description of the
diffusion of the center-of-mass of the molecules. Furthermore, they have enabled the
study of dynamics at the single-molecule level thereby elucidating the diversity of events
at this level. Molecular individuality is the crucial element in understanding the macro-
scopic dynamics of these macromolecular solutions. The fact that the evolution of mol-
ecules that exist in a variety of configurations at equilibrium is predisposed by their initial
configuration and the nature of the flow field imposed diversifies the dynamics of indi-
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vidual molecules. Therefore, the key to developing models that accurately describe mac-
roscopically observed properties lies in understanding the coupling between the evolution
of the underlying microstructure and external force fields such as flow, thermal, or chemi-
cal gradients. While continuum-level models can provide semiquantitative description of
the macroscopic viscoelastic stress, they do not attempt to capture the details of micro-
structure evolution. Brownian dynamics simulation (BDS), based on a realistic microme-
chanical description of the polymer chain (e.g. multisegment bead-spring models), can
provide accurate information on the microstructure. However, self-consistent incorpora-
tion of BDS into a flow simulation can be computationally prohibitive or often infeasible
for nonhomogeneous flows. Hence, it is desirable to develop computationally tractable
multiscale simulations that contain sufficiently accurate microstructure information while
capable of predicting the kinematics in nonhomogeneous flows. In this article, we present
a hierarachical, configuration-based approach to the modeling of dilute polymer solutions
under flow.

In the past decade, development of special purpose algorithms (e.g., combined finite
element/Brownian dynamics method) together with the astounding increase in computa-
tional power have made possible process-level, concurrent multiscale flow simulations
where stochastic differential equations for micromechanical models for polymer dynam-
ics at the mesoscopic level are self-consistently solved together with the conservation
equations for mass and momentum [Laso and Ottinger (1993); Hulsen et al. (1997);
Somasi and Khomami (2000, 2001); Gigras and Khomami (2002); Suen et al. (2002);
Lozinski et al. (2003); Gupta et al. (2004); Keunings (2004); Woo et al. (2004)]. Clearly,
the accuracy of these multiscale simulations greatly depends on that of the mesoscopic-
level model used to describe the polymer chain dynamics. Hence, much research effort in
the past decades has been devoted to the development of accurate microstructural models
for polymeric solutions as well as coarse graining approaches to allow efficient process
level multiscale simulations of polymeric solutions [Bird et al. (1987a, 1987b); Hua et al.
(1999); Ottinger (1999); Somasi et al. (2002); Underhill and Doyle (2004)].

Among the mesoscopic models, the bead-rod model presents the finest level of de-
scription for the macromolecule. The model is based on the concept of a Kuhn step,
which determines the length of the rods in between beads, as the distance beyond which
portions of the molecule execute uncorrelated motions. The bead-rod model has exten-
sively been used to study the macroscopic response of the A-DNA molecule by Hur et al.
(2000). The model provides accurate predictions for both macroscopic properties such as
the stresses and microstructural properties such as the distribution functions. However,
for synthetic or biological polymers of interest, the use of the bead-rod model in complex
flow calculations is impossible due to the large number of Kuhn steps required [O(10%)].
At the next level of coarse graining is the bead-spring model which is obtained by
replacing a set of rods with two beads connected by a phantom entropic spring. The beads
represent the drag, while the springs mimic the concerted motion of the set of underlying
bead-rod segments. The force-extension (FE) behavior of the spring is derived at equi-
librium under the assumption that the internal degrees of freedom at scales finer than that
represented by a spring have sufficient time to sample the configuration space accessible
to them compared to the time scale of relaxation of the entire macromolecule, i.e.,
equilibriated local motions. Although the FE behavior of traditional models such as the
Hookean or finitely extensible nonlinear elastic (FENE) model is valid only at equilib-
rium, the internal degrees of freedom account for sufficient configurational detail to
provide reasonable predictions for both macroscopic and microscopic properties [Hur et
al. (2000); Somasi et al. (2002); Schroeder et al. (2004); and references therein]. The use
of the random walk spring model [Underhill and Doyle (2004, 2005)] at a finer scale of
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description can exactly match the predictions of the bead-rod model with significant
savings in time and computational cost [Venkataramani e al. (2008)]. Despite the accu-
racy and computational advantage of the bead-spring models, their incorporation into
complex flow calculations is limited to a few springs [Koppol et al. (2007)]. Therefore,
there is a need for coarse graining the description of the macromolecule further.

Dumbbell models are the favored choice for studying complex flows for two reasons.
First, combining a Brownian dynamics approach with macroscopic flow equations is
feasible, in terms of memory and computational requirements [Koppol et al. (2007)].
Second, dumbbell-based models can be simplified by approximating the configurational
distribution function to, for instance, a Gaussian distribution, yielding constitutive models
for the macroscopic stress. In the dumbbell model, the entire macromolecule is described
as two beads connected by a spring. The configurational diversity of the underlying
macromolecule is purely described by the elastic nature of the spring. Therefore, the
spring force used to describe the molecule is crucial in order to obtain realistic predic-
tions for macroscopic properties. The Oldroyd-B model {derived from the Hookean
spring [Bird er al. (1987b)]} has been widely used to describe the behavior of Boger
fluids, since it predicts a constant viscosity and a finite first normal stress coefficient. It
has especially been successful in studying the stability of unidirectional shear-dominated
flows [Sureshkumar and Beris (1995); Al-Mubaiyedh er al. (2000); Lin et al. (2004);
Arora and Sureshkumar (2005)]. However, the Hookean spring extends infinitely, leading
to unrealistic predictions for the extensional viscosity past the coil-to-stretch point. The
FENE [Warner (1972)] model circumvents the problem of infinite extension by prescrib-
ing a maximum extension limit by making the spring force infinite as the spring ap-
proaches the maximum extension. The FENE model predicts a shear-thinning viscosity
and first normal stress coefficient, as well as a plateau in the extensional viscosity at high
extension rates [Herrchen and Ottinger (1997); Wiest and Tanner (1989)]. Moreover, the
prediction of non-Newtonian phenomena of interest has led to its use in complex flow
calculations, either via the CONNFESSIT method [Laso and Ottinger (1993); Ottinger et
al. (1997)], or the LPM method [Halin et al. (1998)]. The FENE-P [Wedgewood and Bird
(1988)] model, derived by applying the Peterlin approximation to the FENE model, has
been widely used in complex flow studies {for e.g., in the analysis of turbulent drag
reduction of dilute polymer solutions [Li ef al. (2006)]} due to the ease of coupling with
the governing equations of mass and momentum. However, in the FENE-P model, only
the mean-squared end-to-end distance is constrained to be less than the squared maxi-
mum extension. This leads to quantitative differences between the predictions of the
FENE and FENE-P models [Keunings (1997); Sizaire er al. (1999)]. Several modifica-
tions to the FENE-P model have been proposed to address this [van Heel er al. (1998)]
and predict the stress-conformation hysteresis exhibited by polymer solutions in
contraction-expansion flows using continuum-level constitutive equations derived from
the FENE spring {for, e.g., FENE-L and FENE-LS [Lielens et al. (1998, 1999)],
FENE-M, FENE-MR, FENE-LSM, and FENE-LSMR [Zhou and Akhavan (2004)]}. Al-
though these models are improvements over the FENE-P model, they are complex to
incorporate in a complex flow calculation, due to the increased number of equations
required to describe the moments of the distribution function. Therefore, they have not
been used as widely as the FENE-P model.

The inaccurate predictions of the FENE dumbbell models have been attributed to the
lack of sufficient internal degrees of freedom required to faithfully describe the flow-
induced changes in the configuration of the molecule. Doyle er al. (1998) proposed a
configuration-dependent drag that varies linearly with the extension of the FENE dumb-
bell in order to account for the change in the drag experienced by the molecule as it
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transitions from a coiled state to an extended state. In this case, the ratio of the maximum
to coiled-state drag coefficient can be used as a parameter to obtain close agreement with
experimental observations. The idea was extended by Schroeder er al. (2004) to incor-
porate the effect of hydrodynamic interactions (HI) through a conformation dependent
drag calculated from BDSs. Multiple relaxation modes were incorporated in the
FENE-PM model developed by Wedgewood et al. (1991) and the adaptive length scale
(ALS) model developed by Ghosh er al. (2002). In the FENE-PM model, an approxima-
tion to the multimode FENE-P model leads to a decoupling and reduction in the number
of equations for the stresses from the different modes. In the ALS model, the number of
segments used to describe the molecule varies based on the strain experienced: close to
equilibrium and at high extensions, a single dumbbell model is used, whereas at inter-
mediate extensions, a number of internal segments are introduced to represent the com-
plex configurations assumed by the molecule. The model predicts the tensile stress in
good agreement with a bead-spring model, while providing only a qualitative prediction
of the stress conformation hysteresis. However, under steady shear, the model still suffers
deficiencies and predicts stresses which are comparable to those obtained from the FENE
dumbbell model.

Coarse graining, as can be noted from the extensive research that has been undertaken
to date, has met with several obstacles due to the inherent nature of its development, i.e.,
reducing the level of detail in order to save computational time. The loss of detail has
always directly led to a loss in the accuracy of the predicted microscopic and macro-
scopic properties. Although the dumbbell description is favorable for implementation in a
complex flow calculation due to the reduced degrees of freedom, the macroscopic prop-
erties predicted by the dumbbell models have been shown to be at best qualitative in
comparison to experimental observations [Doyle er al. (1998)]. Based on the findings of
single molecule studies, this deviation from observed properties is known to stem from
the lack of configurational information in the description of the macromolecule [Perkins
et al. (1997); Smith er al. (1999); Babcock et al. (2000, 2003); Doyle et al. (2000);
Schroeder et al. (2003); Teixeira et al. (2005)]. However, coupling bead-spring models
with complex flow calculations is still a challenge due to limitations of computation and
memory. We seek to address this issue by constructing a configuration-based, coarse-
grained model that incorporates configurational information by the partitioning of the
phase space accessible to the molecule into a few configuration classes. We incorporate
the configurational diversity of the molecule by describing the evolution of the distribu-
tions of these configuration classes under flow while each of these classes is described
using a simple dumbbell model. We distinguish among dumbbells belonging to different
configuration classes by evaluating specific properties that are characteristic of the con-
figuration class.

The article is organized as follows. We begin by studying the configurational diversity
of a macromolecule in two standard flow types, namely, shear and uniaxial extension to
elucidate the importance of molecular individuality in Sec. II. We identify a few distinct
classes into which most configurations can be classified and use these as a basis set to
explore the configurational phase space of the macromolecule in Sec. III A. A dumbbell-
based model is developed for each of the configuration classes by calculating a modified
drag coefficient for each configuration class in Sec. III B. The procedure for the imple-
mentation of the configuration-based model using the two concepts developed in Secs.
IIT A and II B is presented in Sec. III C followed by the predictions of the coarse-grained
model in Sec. IV. Finally a discussion of the model along with prospects for improvement
are presented in Sec. V.
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Il. CONFIGURATIONAL DIVERSITY

In this section, we investigate the configurational diversity of a macromolecule by
studying the phase space sampled by the \-DNA molecule under standard flow types,
namely, steady shear, and uniaxial extension. Within the last decade, the use of video
fluorescence microscopy has led to a tremendous amount of research on the DNA mol-
ecule, particularly its static and dynamic properties and behavior under different flow
conditions [Perkins et al. (1997); Smith and Chu (1998); Smith er al. (1999)]. The
A-DNA molecule in varying lengths has increasingly been used due to its long chain
nature that allows for easy visualization under the microscope. Tags can be attached at the
ends of the molecule and it can be fluorescently dyed to track the dynamics. Several
studies have also focused on modeling the DNA molecule using bead-rod and bead-
spring descriptions and have provided excellent comparisons with experimental observa-
tions for both macroscopic and microscopic properties [Hur et al. (2000); Somasi er al.
(2002)]. The model description for the molecule has also been well documented. There-
fore, the A-phage DNA molecule is considered in this study. The findings from the
sampling of the phase space of the molecule are then used to elucidate the relevance of
molecular individuality by relating the configurational distributions to observed macro-
scopic properties. The macromolecule is described as a set of beads connected by springs.
We consider free-draining molecules in the absence of excluded-volume effects. The
configurational diversity of the molecule is studied via the Brownian dynamics (BD)
approach. In this method, around 10°—10* identical model molecules (also referred to as
trajectories) are assigned random initial configurations. The trajectories are equilibrated
and then exposed to flow. We observe the configurations of each of these trajectories as
they evolve under the influence of flow via an automated configuration sorting algorithm.
Experiments by Smith and co-workers [Smith and Chu (1998); Smith er al. (1999)]
showed the existence of several configuration types such as folds, half dumbbells, kinks,
dumbbells, coils, and stretched in several different flow types. We use these configuration
classes to classify the configurations sampled by the macromolecule. The details of the
governing equations, model parameters, solution procedure, and configuration sorting are
presented in the Appendix.

A. Steady shear flow

The velocity field in steady shear flow is given as v,=7yy, v,=v,=0, where 7 is the
shear rate. The rotational and extensional components of the flow field are equal. This
gives rise to very interesting dynamics, both at a configurational as well as macroscopic
level.

Figure 1 shows the evolution of the shear [(a) 7,,] stress, tensile [(b) 7,,] stress and the
configurational probabilities (c) as a function of time from the inception of steady shear
flow at Wi=10 and 100. Figures 1(a) and 1(b) clearly show the existence of an overshoot
for the shear and tensile stresses respectively. At Wi=10, the magnitude of the overshoot
is not very large with respect to the steady state stress that is attained for both the shear
and tensile stress. Accordingly, the configurational probability distributions (CPDs) do
not exhibit overshoots. The CPDs monotonically increase to their steady state distribu-
tions for all configuration classes, except for the coiled configuration class. However, at
higher Wi, the magnitude of the overshoot is larger for both the shear and tensile stresses.
This is reflected in the corresponding overshoot in the CPD, especially for the folded and
stretched states. The overshoot in the shear stress occurs due to an initial alignment and
stretching of coiled configurations along the direction of flow [Babcock er al. (2000)] and
is seen to coincide with a minimum in the coiled configuration state. The insets in Fig. 1
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FIG. 1. Comparison of the (a) shear stress (7,,) scaled with (nkgT), (b) tensile stress (7,,) scaled with (nkzT),
and (c) configurational probabilities (p;) as a function of time for the \-DNA molecule at Wi=10 and 100. The
insets in (c) show the steady state configurational probability distribution for each of the Wi.

show that the steady state CPD shows a discernable probability of occurrence for all the
configuration classes, consistent with end-over-end tumbling dynamics [Smith et al.
(1999); Doyle er al. (2000)]. Figure 2 shows the steady state CPD as a function of Wi and
shows the existence of all the configuration classes even for large Wi. This can be
explained by the fact that in shear flow at steady state, once a molecule is stretched out
by flow, there is a finite probability that a Brownian fluctuation in the velocity gradient
direction might be large enough to displace the molecule out of the shear direction and
cause a tumbling event. As the molecule tumbles, it returns to a coiled state. Based on
previous observations, depending on the initial coiled configuration of the molecule, its
evolution can be different. Since the choice of the coiled configuration is random follow-
ing tumbling, there is almost an equal probability of it evolving into any one of the five
other configuration classes. At lower Wi we observe higher probabilities for the coiled
state, which can be explained by analyzing the frequency of tumbling. It has been ob-
served earlier by Teixeira et al. (2005) that the tumbling frequency scales with Wi to the
power of 2/3. This implies that the rate of stretching of the molecule is slower at lower
Wi than at larger Wi, thereby allowing the molecule to spend longer times in the coiled
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FIG. 2. Steady state configurational probability distributions, p;, as a function of Wi for the different configu-
ration classes under steady shear flow.

configuration. At higher Wi the molecule unravels quickly followed by a tumbling event,
and then returns to the coiled state from where it can equally populate any of the con-
figuration classes. Therefore, at very large Wi the steady state CPDs approach nearly a
constant distribution.

B. Steady uniaxial extensional flow

The velocity field in uniaxial extensional flow is given as v,=éx, v,=—(€é/2)y and
v.=—(€é/2)z, where € is the extension rate. Extensional flows are different from shearing
flow since the rates of extension and rotation are not the same. Therefore, there are
differences in the dynamics at the microstructural level, leading to different steady state
configurations and macroscopic properties [Perkins er al. (1997); Smith et al. (1999)].

Figure 3 shows the dimensionless elongational viscosity [(7,,—7,,)/ €] as a function of
the Wi. The coil-to-stretch transition occurs around a dimensionless critical extension of
Wi=0.5 [de Gennes (1974)]. At high Wi, the elongational viscosity plateaus to a new
value much greater than three times the zero shear viscosity. Figure 4 shows a plot of the
tensile stress and the corresponding CPDs as a function of time for Wi=0.5, 1, and 100.
In Fig. 3, these are marked with black diamond symbols. Below the critical extension
rate, the only configuration that exists is the coiled state. However, around Wi=0.5, we
observe the occurrence of other configuration classes. At Wi=1, we continue to observe
many configuration classes even at steady state, even though the flow is purely exten-
sional. The existence of a bistable configuration region near the critical strain rate has
already been proposed by de Gennes (1974) and proven by Schroeder et al. (2003). We
support this finding further by calculating the CPDs at steady state near the critical
extension rate. It can be seen that near Wi=0.5, more than one configuration class is
probable, but at higher Wi the only configuration sampled is the stretched state, explain-
ing the occurrence of a stress-conformation hysteresis. A plot of the steady state CPDs
under uniaxial extensional flow as a function of Wi (Fig. 5) also displays the existence of
multiple configuration classes in a narrow window around the critical strain rate. Stress-
conformation hysteresis can further be understood by studying the configurational distri-
butions that are observed upon the relaxation of molecules that were initially at steady
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FIG. 3. Dimensionless elongational viscosity (7g) scaled with (nkzT\) as a function of Wi for the \-DNA
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flow for the A-DNA molecule using a bead-spring representation.

lll. CONFIGURATION-BASED, COARSE-GRAINED MODEL

The existence of configurations that are ubiquitous in different flow types has provided
a basis for the development of a coarse-grained model. These configuration classes can be
viewed as subsets of the phase space of all accessible configurations such that at equi-
librium only the coiled state is accessible while under flow conditions several other states
are accessible. Each configuration class is a subset consisting of all molecules with a
prescribed mesoscopic configuration; each class thereby has a distribution function that
describes the diversity of configurations within the subset. For example, all molecules in
a stretched state can be classified into a subset, and the associated distribution function
describes the distribution of the lengths of the molecules that constitute this configuration
class. The sum of the subsets will yield the total phase space. Therefore, the probability
of occurrence p; of a configuration class i can be calculated as a ratio of the partition
function of the configuration class to that of the entire phase space. In a BDS, this can
easily be calculated as a ratio of the number of trajectories of a given configuration N, to
the total number of trajectories Ny, i.e.,
N;
pi= N, (1)
The description of a configuration class requires the calculation of the probability distri-
bution function within the class and a measure of the frictional property of the configu-
ration class in order to calculate the macroscopic stresses associated with the configura-
tion class. These properties have been traditionally studied by analyzing the
configurations at equilibrium and using statistical mechanics principles to relate them to
coarse-grained properties. However, in the development of the configuration-based
model, the existence of several of the classes only outside equilibrium has precluded the
use of these standard procedures of statistical mechanics. Therefore, we seek other strat-
egies to calculate these properties by studying the nonequilibrium configurations.
Instead of invoking approximations for the distribution function of configuration
classes, we use BD simulations using detailed microstructural models to guide us in
calculating distribution functions for the different configuration classes. Although the
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macromolecule is coarse grained into a single dumbbell description, the hydrodynamic/
elastic properties of the dumbbells of different configuration classes are not the same. We
investigate different routes to effectively describe the properties of the different configu-
ration classes by studying the hydrodynamic and elastic properties, and dynamical be-
havior of the configuration classes, using a fine-grained model. The development of the
coarse-grained model based on configuration classes can therefore be broken down into
two steps: (i) obtaining the distribution function within a configuration class, and (ii)
developing a coarse-grained representation that is unique to each configuration class.

A. Configurational distribution functions

Using the coarse-grained description, the distribution function of molecules belonging
to a particular configuration class must represent the underlying distribution of the fine-
scaled description of the macromolecule. Since the macromolecule is coarse-grained into
a single dumbbell, the quantity of interest is the end-to-end vector. The end-to-end vector
is the simplest microstructural variable that can directly be derived as a vector sum of the
orientation vectors of the springs of the underlying fine-scale model. This linear addition
allows for a straightforward derivation of the equation that governs the evolution of the
dumbbells. Therefore, while developing distribution functions for the different configu-
ration classes, we are interested only in the distribution of the end-to-end vector. How-
ever, the task of calculating this distribution function is complicated by the fact that
different flow fields have different effects on the mesoscopic configuration, leading to
different distribution functions. Hence, a few key simplifications are made in order to
make this a more tractable problem.

The two distinct variables in our description, namely, the configuration class and the
end-to-end distance, are used to parametrize the phase space accessible to the molecules.
If we focus on molecules with a chosen end-to-end distance Q, the partitioning of the
phase space into six configuration classes dictates that the configuration of a molecule
with the selected end-to-end distance must belong to one of the six configuration classes.
Therefore, if the probability that a molecule with a given end-to-end distance belongs to
one of the six configuration classes be written as p(i|Q), such that

Neonf

> plo)=1, )
i=1

we can generate a configuration map of the conditional probabilities of the different
configuration classes as a function of the end-to-end distance. In a BDS, p(i| Q) can be
calculated by counting the number of trajectories of a given configuration class (i) with a
chosen end-to-end distance (Q) and dividing it by the total number of trajectories with the
same end-to-end distance. Again, different flow fields and transients can lead to different
calculated configuration maps. However, to provide a representation of all the different
configuration maps, we hypothesize that the configuration map is not a strong function of
the flow type or transients, and we generate a master configuration map (MCM) that is
calculated as an average over many different flow types, flow strengths, and strains.
Obviously, this simplification can lead to differences between the actual and calculated
distribution functions, and the effect of the hypothesis will be put to test as described in
the following sections. The MCM thus generated provides a measure of global transition
probabilities between configuration classes in the form of a conditional probability of
occurrence for a configuration type for a fixed end-to-end distance. This guides the
evolution of the dumbbells as well as the configuration class they will fall under as they
are strained by the flow. The use of the configuration map to calculate the configurational
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distribution functions will be elaborated in Sec. III C which describes the implementation
of the configuration-based model.

The calculation of the MCM requires a systematic exploration of the configuration
classes sampled by the molecule as it is exposed to different flow types. Although this
seems to be an intractable problem, for the purpose of generating the configuration map
we choose only steady shear, steady uniaxial elongation, and steady biaxial elongation,
and study the evolution of the configurations of the trajectories as a function of strain and
that of flow strength. These three flow types are chosen since they span the region of
allowable combinations of the invariants of the finger strain tensor [Bird er al. (1987a)].
Uniaxial extension and biaxial stretching are the boundaries of the invariant space, while
simple shear is in the middle of the allowable region. Using the configurational distribu-
tions thus obtained, we can generate the MCM. Figures 6(a), 7(a), and 8(a) show repre-
sentative plots of the CPDs as a function of time at Wi=100 in steady shear, biaxial
extension, and uniaxial extension, respectively. The conditional probabilities for the dif-
ferent configuration classes for selected end-to-end distances (i.e., 25%, 50%, and 75% of
the maximum stretch of the molecule) are, respectively, shown as a function of strain for
the same flow strength in Figs. 6(b), 7(b), and 8(b). Under steady shear, the molecules
initially transition from a coiled state into various configuration classes (r=1.4). At di-
mensionless times of 2.8 and 4.2, the stretched configuration has a higher probability of
occurrence, coinciding with the overshoot in the shear and normal stresses. However, at
steady state (r=8.4), most of the configurations are equally populated, which is in accord
with the tumbling dynamics. From the plots for the conditional probability [Fig. 6(b)], it
can be seen that molecules with an end-to-end distance equal to 25% of the maximum
stretch favor the folded configuration, molecules with a fractional end-to-end distance of
0.5 favor the half dumbbell and kinked configurations, and molecules with a fractional
end-to-end distance of 0.75 prefer the half dumbbell and stretched configurations.

In biaxial extensional flow [Fig. 7(a)], initially, the molecules are mostly coiled (¢
=0.175). As the strain (¢=0.35) approaches the critical strain at which the coil-to-stretch
transition occurs, most of the configuration classes are equally populated. However, past
the critical strain, most of the molecules transition into a stretched state. This is consistent
with the series of molecular events that occurs in extensional flows. A similar trend is also
observed under uniaxial extension [Fig. 8(a)].

The plots for the conditional probability of occurrence of configuration classes are
carefully analyzed in biaxial and uniaxial extensional flow. For strains greater than the
critical strain, the configurational probability distributions clearly show that the mol-
ecules are predominantly in the stretched state. However, the conditional probability
calculated for molecules with a fractional end-to-end distance of 0.25 shows that the
folded state is the only configuration that these molecules sample. Based on the corre-
sponding configurational distribution function, it can be clearly noted that the molecular
population corresponding to a fractional end-to-end distance of 0.25 is very small. There-
fore, the conditional probabilities calculated for this fractional end-to-end distance are
biased, due to limitations posed by the BDS technique used to calculate the conditional
probabilities. Therefore, when developing configuration maps, we consider only those
conditional probability plots wherein the ensemble sizes are significantly large (>10% of
the total ensemble size) to allow for the calculation of meaningful distributions. Typi-
cally, in extensional flows, conditional probabilities calculated are meaningful for most
configuration classes only below the critical strain while at higher strains, conditional
probabilities corresponding to the end-to-end distance of the stretched states can be easily
calculated. Therefore, in the case of uniaxial extensional flow, in Fig. 8(b), we present the
conditional probability distributions only below the critical extension rate.
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FIG. 6. (a) Configurational probability distributions as a function of time in steady shear flow at Wi=100. (b)
Conditional probability distribution functions for the end-to-end distance of different configuration classes as a
function of time under steady shear flow at Wi=100.

A persistent trend that can be observed by comparing Figs. 6(b), 7(b), and 8(b) is that
for a fractional end-to-end distance of 0.25, the folded configuration is preferred, while
for a fractional end-to-end distance of 0.5, half dumbbell and kinked configurations are
preferred, and for a fractional end-to-end distance of 0.75, half dumbbell, kinked, and
stretched states are preferred. Moreover, the probability of occurrence of any one of these
configuration classes is approximately the same in all the conditional probability plots.
This observation is independent of the flow type, strain or the individual configurational
distribution functions that vary with different flow types. It therefore provides a basis to
support the accuracy and applicability of the MCM hypothesis. Conditional probability
plots similar to Figs. 6(b), 7(b), and 8(b) were computed for various Wi and at various
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FIG. 7. (a) Configurational probability distributions as a function of time in steady biaxial extensional flow at
Wi=100. (b) Conditional probability distribution functions for the end-to-end distance of different configuration
classes as a function of time under steady biaxial extensional flow at Wi=100.1 Note, there are no configura-
tions present at these extensions under biaxial extension for Wi=100.

strains. An average over all these different conditional probability plots yields the MCM.
Here, we present a consolidated MCM wherein the conditional probability of a configu-
ration is plotted along the abscissa and the corresponding end-to-end distance is plotted
along the ordinate in Fig. 9. The conditional probability of a configuration class for a
particular end-to-end distance can be calculated as the fractional length of the bar corre-
sponding to the particular configuration class. Based on Eq. (2), the total length of each
bar must be equal to unity.

B. Coarse-grained models for describing configuration classes

The second step in the development of the coarse-grained model is to obtain unique
representations for the configuration classes, so that the dynamical properties of interest
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for the coarse-grained description are in agreement with the underlying fine-grained
model. The coarse-grained dumbbell model experiences hydrodynamic drag forces on the
beads and elastic forces from the spring. These drag and elastic forces offer routes to alter
the properties of the coarse-grained model, and we investigate the effect of modifying
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FIG. 9. Master configuration map showing the conditional probability of occurrence of different configuration
classes as a function of the end-to-end distance.
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them in the following sections. The modification of the hydrodynamic properties of the
dumbbell can be incorporated via the drag coefficient of the bead or the relaxation time
of the molecule. Since the relaxation time is indirectly related to the drag coefficient,
modifying one of these properties will directly lead to a modification of the other. How-
ever, these two approaches will be studied independently in order to elucidate the advan-
tage of using one over the other for estimating modified properties. The modification of
the elastic properties, on the other hand, is incorporated via the calculation of a new
elastic force that varies with the configuration class.

The modified hydrodynamic or elastic property of the coarse-grained dumbbell model
is usually determined by equating it to the corresponding property calculated for a multi-
bead spring model. A method often used to calculate properties of a coarse-grained
representation is to simulate the constant extension ensemble. In this method, the ends of
a molecule are held fixed at a chosen distance by applying an external force at one or
both ends of the molecule and allowing it to evolve in either the presence or absence of
flow. Elastic/drag properties can be evaluated by averaging the desired property over very
large times to allow for an adequate sampling of the phase space. The technique has been
used to calculate force laws as a function of the degree of coarse graining by Underhill
and Doyle (2004; 2005) and for modified drag coefficients for systems in the presence of
HI by Schroeder et al. (2004). It has also been shown that using the constant extension
ensemble is the correct way to calculate coarse-grained properties, rather than using the
constant force ensemble [Underhill and Doyle (2004)] since it predicts the same response
as the true polymer under all constraints rather than one which is specific to the experi-
ment used to calculate the coarse-grained property as in the constant-force ensemble.
However, in the development of the configuration-based model, the use of the constant
extension ensemble can pose constraints that complicate the calculation of elastic/
hydrodynamic properties. The basis of the configuration based model is the existence of
prominent configuration classes that have been previously identified. The constraints
posed on the ends of the chain in the constant extension ensemble can therefore bias the
configurations sampled by the molecule, thereby leading to the overpopulation of con-
figuration classes in some cases, and to the exclusion of certain configuration classes
entirely in other cases. Therefore, we seek to develop a similar methodology while
allowing for the sampling of the configuration phase space of interest.

1. Drag coefficient

The concept of a modified drag coefficient for each configuration class is motivated by
the fact that the drag force experienced by an object is directly related to its size and
shape. For example, we know that the hydrodynamic drag force on a sphere translating in
a fluid is different from that of a rod translating through the fluid. Similarly, the configu-
rations that have been identified as the basis for the coarse-grained model can also be
envisioned as different sized/shaped objects having differing drag properties when ex-
posed to flow in solution. Therefore, when developing a coarse-grained model wherein
different configuration classes are represented by the same physical representation (a
dumbbell), a natural choice for incorporating the configurational diversity is the drag
coefficient of the dumbbells based on the configuration class they represent.

For calculating a modified drag coefficient for each configuration class, it is required
to fix the elastic properties of the molecule. In this case, we choose to describe each of
the configuration classes using a FENE force law. Let us consider a molecule under flow
(say, shear flow), that assumes a configuration (say, a folded state) with an end-to-end
distance Q. In the presence of flow, the forces acting on any one of the beads are the
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hydrodynamic drag force (FY), the elastic spring force (FF), and a random Brownian
force (Fﬁg ) imparted by the solvent molecules. The force balance on any bead in the chain
is given by

F?+FF+F/=0. 3)

In the case of the end bead, i=1 or i=N,. Averaging over several such chains (note that
the average of the Brownian force will be equal to zero), we obtain

(Ff)y+(F)=0. (4)

Here, we consider the forces acting on the N‘bh bead. The goal behind developing a
dumbbell-like representation for this molecule is to describe the same configuration as a
dumbbell connected by a FENE spring. Therefore, the elastic spring force can be replaced
by the force exerted on the end bead due to the FENE spring, i.e., Ff =F f ENE n the
equivalent dumbbell (represented with the superscript d), the ensemble averaged force
balance correspondingly on bead 2 can be written as

(F39) +(F3™F) = 0. (5)
Subtracting Egs. (3) and (5), we get
(Fy,) = (F3") + (F3™°F) — (Fy, ). (6)

The hydrodynamic drag force on the Ng‘ bead can be written in terms of the coarse-
grained parameter {,,s, While that of the dumbbell can be written in terms of the dumb-
bell bead drag coefficient ({;) and is given by

FH = §7(K : Rl) ’ (7)

where v is the shear rate, k is the dimensionless transpose of the velocity gradient tensor,
and R, is the position vector of the bead. The elastic force law can be written in a generic
form as

F*=Hf(0)Q, (8)

where H is the spring constant that varies based on the level of description (i.e., bead-
spring or dumbbell model represented using subscript b-s or d, respectively); f is a scalar
function that describes the nonlinear nature of the spring; and Q is the connector vector,
with Q being its magnitude. Substituting Egs. (7) and (8) into Eq. (6) we get

Seonf _ 1
=1+
La L (- R)|

Since we are interested in sampling configurations present under flow, we study the
configurations that the molecule assumes as it is exposed to standard flow conditions,
namely, steady shear, and uniaxial extension. Figures 10 and 11 show the consolidated
distribution of the lengths of molecules from various flow fields and configuration
classes. The configurational distribution functions are very similar to one another for
most configuration classes, except in the case of the stretched configuration class. The
molecules under extensional flow attain a stretched state and are able to sample higher
extensions due to the irrotational nature of the flow. Therefore, we observe a high prob-
ability for molecules in a highly stretched state. Further, there is a distribution of lengths
for molecules in different configuration classes. Therefore, ideally, a configuration-based
drag must also vary as a function of the length of the molecule in that configuration.
However, initially, we investigate the applicability of a constant configurational drag by

KH ™ (R)R) = (Hy.of (O )Qu ) )



CONFIGURATION-BASED MODEL 1159
03 . . . 03 . . . 03 . . .
() (b) ©
0.2 + 0.2 + 0.2 +
p; p; p;
0.1 + 0.1 + 0.1 +
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0/0, 0/0, 0/0,
03 . . . 04 . . . 08 . . .
(@) (e) ()
0.3 F 0.6 ] F
0.2 +
p; Pio.2 F Pioa F
0.1 +
0.1 F 0.2 s
0 | | - 0 i v . 0 . ,7—1111‘“‘_“_”]-‘
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0/0, 0/0, 0/0,

FIG. 10. Consolidated distribution of the end-to-end distance at different flow strengths for (a) folds, (b) half
dumbbells, (c) kinks, (d) dumbbells, (e) coils, and (f) stretched configuration classes under steady shear.

03 . . . 03 . . . 03 . . .
(a) (b) ©[
0.2 + 0.2 + 0.2 +
p; p; p;
; | : ;rrrr”d_‘_‘_ﬂ-n-l_m | : |
0 ‘ | ‘ 0 : | ! 0 .Fdﬂ_l-l_l_lmm
0.25 0.5 0.75 0.25 0.5 0.75 1 0.25 0.5 0.75 1
2/0, 0/0, 2/0,
0.3 L L L 0.4 L L L 0.8 L L L
@ (e) ® |
0.3 F 0.6 F
0.2 +
p; Pio.2 F o Pioad F
0.1 +
0.1 F 0.2 F
0 T T T 0 T ¥ T 0 T T T
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0/0, 0/0, 0/0,

FIG. 11. Consolidated distribution of the end-to-end distance at different flow strengths for (a) folds, (b) half
dumbbells, (c) kinks, (d) dumbbells, (e) coils, and (f) stretched configuration classes under steady uniaxial

extension.



1160 VENKATARAMANI, SURESHKUMAR, AND KHOMAMI

TABLE I. Drag coefficient for different configuration classes calculated

using Eq. (9).
Configuration Leont! La
Fold 3
Half dumbbell 2
Kink 1.15
Dumbbell 4.3
Coil 1.4
Stretched 1.85

ensemble averaging over all possible end-to-end distances and overall flow strengths and
flow types. For configuration classes wherein the distribution function is nearly Gaussian
(half dumbbells and coils), such an assumption might be reasonable. However, for con-
figuration classes where the distribution is skewed, a variable drag is required to accu-
rately describe the variation as a function of length.

The drag coefficients calculated as described above, are presented in Table L. It is clear
from our calculations that the drag coefficients of different configuration classes are
indeed different. The values obtained for the drag coefficient can be explained by ana-
lyzing Eq. (9). We denote the first force term as term 1 and the second force term as term
2 and estimate their magnitudes. For the coiled configuration class, a single dumbbell
model is sufficient to describe the dynamics of the molecule. Therefore, the magnitudes
of terms 1 and 2 should almost be equal, yielding a drag coefficient close to 1. We find
that the coiled configuration drag coefficient is slightly greater than 1. The larger drag
coefficient is due to the sorting criteria used in the configuration sorting algorithm. In the
automated algorithm, a limit is placed on the size of the molecule, i.e., all molecules
smaller than a prescribed size are identified as coils. This limit may allow larger mol-
ecules which are truly not in coiled conformations, leading to a slightly greater value for
the drag coefficient than the expected value. Moreover, since the ends of the coiled
configuration have random orientations and the forces acting on the ends are also highly
variable, the variance in term 2 is large, leading to uncertainties.

For kinked molecules, the springs at the ends of the chain are in a stretched state. In
this case, the ensemble averaged force on the last bead, using either the FENE dumbbell
model or the multibead-spring model, is very similar, yielding a drag coefficient close to
unity. In order to understand the drag coefficient calculated for the folded, half dumbbell
and stretched configuration, we also analyze the magnitude of the denominator. In all the
three cases, term 2 is greater than term 1. However, the term in the denominator (|{s*R)|)
increases from the folded state to the half dumbbell state, and is the largest for the
stretched state. The increase in the magnitude of the denominator is due to an increase in
that of the end-to-end distance as we transition from a folded to a half dumbbell state to
a stretched state. Correspondingly, we observe that the {r/{;> {up/ {4> s/ Ly

The drag coefficient for the dumbbell was found to be very large (close to two times
that of the half dumbbell configuration). The observed large value can be reasoned based
on the procedure used to calculate the drag coefficient. When a multibead-spring chain
assumes a dumbbell configuration, the ends of the molecule are embedded in the coiled
section of the molecule. Therefore, the magnitude of term 2 is relatively small. Moreover,
since the ends of the molecule are close to equilibrium, the orientation of the end springs
is almost random, leading to a large variance in the term |<K R)|, and in term 2. Alter-
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FIG. 12. Mean drag coefficient for the molecule as a function of the end-to-end distance calculated using the
configuration-dependent drag calaculated from Egq. (9).

natively, the dumbbell configuration can be viewed as to be composed of two half dumb-
bells, leading to a drag coefficient which is near two times that of the half dumbbell. This
is consistent with a drag coefficient of =4.

By using the average drag coefficients calculated for the different configuration
classes, we estimate the variation of the mean drag coefficient of the molecule as a
function of the end-to-end distance as

N, conf g
i
d

Lo i
gd(Q)— 21 p(ilQ) = (10)

Figure 12 reveals a nonmonotonic growth for the mean drag coefficient as we go from
a coiled state to a stretched state. Larson et al. (1997) have calculated the increase in the
drag on a molecule as it extends while an end of the molecule is tethered using optical
tweezers and subjected to uniform flow. They found that the drag increases monotonically
as the molecule unraveled from a coiled state to a stretched state. However, in the
experiments, the flow was imposed so that the molecule unraveled in such a way that it
aligned with the flow. In the method used above, the configurations of the molecule were
obtained from different flow types and therefore included complex configurations. The
observation of a nonmonotonic growth of the drag coefficient suggests a nonlinear con-
figurational drag coefficient for dumbbells as a function of the end-to-end distance, es-
pecially in shearing flows.

2. Relaxation time

Modifying the relaxation time of the molecule is motivated by the fact that molecules
of different lengths have differing relaxation times. Intuitively, it can be understood that
the time taken by a fully stretched molecule to relax to a coiled state is different from that
of a folded molecule. Since the relaxation time provides an estimate of the average time
taken by a molecule to relax from its nonequilibrium state to its equilibrium state, it
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directly suggests the concept of a configurational relaxation time. Therefore, developing
a configuration-dependent relaxation time also provides a route to distinguish configura-
tion classes from each other.

Conventionally, the relaxation time of a molecule is calculated by allowing an en-
semble of fully stretched molecules to relax to their equilibrium configurations and fitting
the tail of the relaxation of the tensile stress to a single exponential fit. This procedure has
been successfully used by Doyle ef al. (1997) to develop an empirical relationship for the
relaxation time of a bead-rod chain as a function of the number of rods. It has also been
used by Somasi ef al. (2002) for calculating the relaxation time of bead-spring chains as
a function of the degree of coarse graining. For the configuration based model, we are
interested in calculating the relaxation time for the different configuration classes.

For instance, let us consider the folded configuration class. In this case, we start out
with an ensemble of maximally stretched folded configurations and allow them to relax in
the absence of flow. As the folded molecules relax, they change their configuration,
populating other configuration classes. Consequently, calculating configuration dependent
relaxation times is restricted by the fact that the molecules eventually become coiled.
Although the existence of a configuration based relaxation time can be easily understood,
its accurate determination is not feasible due to the problems posed by the phase space
sampled by the molecule near equilibrium. Therefore, we do not consider the modifica-
tion of the relaxation time as a possible route to identify configurational diversity. In-
stead, we choose to study its effect indirectly via the configuration-based drag coefficient.

3. Spring force law

The idea of a configuration-dependent spring force law can easily be understood by
examining the following experiment. Let us consider a molecule that is constrained in a
tube (i.e., it cannot make excursions outside the tube walls) that has a fixed configuration.
The tube diameter is much larger than the Kuhn step size, thereby allowing the relaxation
of the molecule at length scales smaller than the persistence length. The force required to
fix the ends of the chain at the ends of the tube, while still allowing the intermediate
sections of the molecule to move within, can be calculated as a function of the end-to-end
distance of the tube (while retaining the gross configuration of the tube), yielding a
force-extension law for that configuration class. It can directly be noted that based on the
configuration of the tube that the molecule is constrained in, the force required to fix the
ends of the molecule will vary, thereby suggesting a configuration-dependent spring force
law. The idea is similar to that proposed initially using the constant extension ensemble,
but it differs in that it specifically prescribes a overall configuration for the molecule.
Although this provides a unique route to use the constant extension ensemble for con-
figuration classes, it poses some complications due to the particular choice of the con-
figuration of the tube. Therefore, we do not investigate this route for developing a coarse-
grained model.

C. The model

The implementation of the configuration-based model using the configuration-
dependent drag and the master configuration map is as follows. Initially, we start out with
all dumbbells belonging to the coiled configuration. As the flow is imposed on the
molecules, they extend and transition into different configuration classes. Correspond-
ingly, the dumbbells are also extended and transition into different configurations classes.
At any instant of time, the dumbbells are classified based on their end-to-end distances.
The number of dumbbells with a given end-to-end distance that transition from the coiled
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FIG. 13. (a) Polymer shear viscosity (75), scaled with (nkzT\), as a function of Wi for the configuration based
model, FENE dumbbell model, and 15 segment WLC. (b) First normal stress coefficient (V), scaled with
(nkgnz), as a function of Wi for the configuration based model, FENE dumbbell model, and 15 segment WLC.

state to another state is calculated based on the previously generated MCM which pre-
scribes the fraction of molecules that belong to a particular configuration class for a
chosen end-to-end distance, p(i|Q). The particular choice of molecules with a given
end-to-end distance that will transition from configuration class A at time instant ¢ to
configuration class B at time instant 7+ 6f, is arbitrarily decided upon as long as the
partitioning of the molecules is in agreement with the conditional probabilities calculated
a priori. Once the dumbbells have been assigned their new configuration classes, they are
described using the corresponding configurational drag and therefore evolve differently
from one another. The procedure is repeated until the distribution of configurations
reaches a steady state, which directly indicates the attainment of steady state for the flow
itself. The probability of occurrence of a configuration class at any instant of time can
again easily be calculated by adding the total number of dumbbells over all end-to-end
lengths that belong to a particular configuration class and dividing it by the total number
of trajectories that were simulated. Moreover, the distribution of the end-to-end distances
for each configuration class or for the entire ensemble of molecules can easily be calcu-
lated by binning the simulated trajectories.

IV. RESULTS

In this section, we present predictions for the configuration-based model (CBM) using
the configuration-dependent drag, in conjunction with the configuration map. We com-
pare the results with the underlying 15 segment bead-spring chain, and with the FENE
dumbbell model, to elucidate the advantages of the configuration-based model over the
simplistic FENE dumbbell model. The models are matched by maintaining the same
contour length for the molecule. We study the start-up of steady shear, and uniaxial
extensional flow.

A. Steady shear flow

In steady shear, the velocity field is given as, v, =¥y, v,=v,=0, where,  is the shear
rate. The shear viscosity and first normal stress coefficient for the configuration based
model, FENE dumbbell model and the underlying 15-segment worm-like chain (WLC)
are presented in Figs. 13(a) and 13(b), respectively. The shear viscosity predicted by the
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FIG. 14. Configurational probability distribution in steady shear for the configuration based model and the 15
segment WLC for (a) Wi=1, (b) Wi=10, and (c) Wi=50.

configuration based model is in good agreement with the underlying multisegment chain.
The critical shear rate, corresponding to the onset of shear thinning, is at higher Wi for
the configuration based model. However, the first normal stress coefficient is overpre-
dicted by the configuration based model over the entire range of shear rates studied. On
the other hand, the shear viscosity of the FENE dumbbell model is underpredicted for all
Wi, while the first normal stress coefficient is in good agreement with the multibead-
spring model, except at very low Wi.

In order to understand the effect of using a configuration-based drag coefficient, we
arbitrarily modify the drag coefficient for the stretched state (i.e., {s/{;=1). The predic-
tions using this modified drag coefficient, while retaining the drag coefficients for other
configuration classes from our earlier calculations, are also presented in Figs. 13(a) and
13(b). We observe that the zero-shear viscosity is in close agreement with the multibead-
spring model, while the shear viscosity in the shear-thinning regime decreases to that of
a FENE dumbbell model. Similarly, the first normal stress coefficient is over predicted at
low Wi, but is in agreement with the multibead-spring model at large Wi. The contribu-
tion of a particular configuration class to the total viscosity can be directly understood
using this method. At low Wi, the probability of occurrence of a stretched state is negli-
gible. Therefore, the modification of the stretched state drag coefficient does not affect
the observed macroscopic properties. However, at higher Wi, the molecule samples the
stretched state as it tumbles. Therefore, the modification of the drag coefficient, to ap-
proach the FENE dumbbell drag coefficient, directly leads to a response that is close to
the FENE dumbbell predictions.

The predictions from the configuration based model are insightful in understanding the
deficiencies of a simplistic dumbbell model, such as the FENE model. It is clear from our
simulations, that configurational diversity is the crucial element for obtaining accurate
predictions for the shear viscosity. The shear viscosity is indirectly related to the thick-
ness of the molecule in the direction transverse to the flow that it occupies as it tumbles
under shear flow. The dumbbell model is inherently deficient due to the lack of internal
degrees of freedom. The lack of internal modes leads to an inaccurate prediction for the
transverse direction thickness, thereby leading to an underprediction of the shear viscos-
ity. On the other hand, the configuration based model, incorporates multiple relaxation
modes by modifying the drag properties of the dumbbells belonging to the different
configuration classes. We observe that the mean of the transverse direction thickness is
comparable for the multisegment model and the configuration based model. However, the
stretch along the direction of flow for the configuration based model is greater than the
stretch for the bead-spring chain. This explains the overprediction of the first normal
stress coefficient.

Figure 14 shows the configurational probability distributions for the bead-spring chain
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and the configuration based model at Wi=1, 10, and 50. At lower Wi, folded and dumb-
bell states are predicted by the configuration based model, which are not observed for the
bead-spring chain. These configuration classes are spurious and arise due to the configu-
ration map developed earlier. It can be noted that the configuration map (Fig. 9) also
shows a finite probability for folded states at very low extensions. This probability is not
inaccurate, as such, since folded states can exist at low extensions, especially in shear
flow (as the molecule tumbles). However, these states are not accessible to the molecule
at equilibrium. The nature of the configuration map does not differentiate between these
two cases, and that is the reason for the observed configurational probabilities even at low
Wi. However, the inclusion of these configuration classes at low Wi provides an accurate
prediction for the shear viscosity, suggesting that the drag coefficient of molecules at low
Wi is indeed different from that of a FENE dumbbell. At Wi=10, the configuration based
model provides reasonable predictions for most configuration classes, except the folded
and coiled configurations. This has been reasoned earlier to arise from the nature of the
configuration map. At high Wi, the configurational based model predicts configurational
probabilities in good agreement with the multibead-spring model, except for the stretched
state. The overprediction of the first normal stress coefficient can be viewed to arise from
this.

We present the evolution of the configurational probabilities as a function of strain for
Wi=10 and Wi=50 in Fig. 15. The initial dynamics for half dumbbell, kinked, and
stretched configurations are captured well by the configuration based model. However, at
steady state, the configurational probability for the stretched state is overpredicted. The
initial dynamics for the other two configuration classes are inaccurate due to deficiencies
in the configuration map that have been stated earlier. The growth of the shear stress and
tensile stress for Wi=10 and Wi=50 are presented in Fig. 16. The steady state shear
stress is in close agreement with that of the multibead-spring model. The overshoot for
the shear stress is overpredicted by the configuration based model, especially at higher
Wi. This may be due to the faster unraveling of molecules using the configuration based
model. On the other hand, the FENE dumbbell model underpredicts the shear stress as
well as the overshoot. The tensile stress is severely overpredicted by the configuration
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FIG. 16. Evolution of (a) shear stress (7,,) and (b) tensile stress (7,,), scaled with (nkT), with strain in steady
shear at Wi=10 and Wi=50.

based model in comparison to the multibead-spring model, while the FENE dumbbell
provides reasonable comparisons for the tensile stress. The configuration-based model
with the modified drag coefficient ({s/{,=1) clearly identifies the source for the over-
prediction of normal stresses and the overshoots in the shear and tensile stress. Using the
modified drag coefficient, the configuration-based model is very close in predictions to
the FENE dumbbell model.

Two conclusions can be inferred from our simulations using the configuration based
models, i.e., for {y/{;=1.85 and {s/{;=1. The configuration dependent drag coefficient is
necessary to obtain an accurate prediction of the shear viscosity. However, this leads to an
overprediction of the tensile stress. On the other hand, the configuration based model
with {/{;=1 provides a good prediction for the tensile stress. It is known that the shear
stress is related to the transverse direction thickness of the molecule, while the tensile
stress is related to the stretch of the molecule along the flow direction. In order to obtain
agreement between the CBM and the fine-grained bead-spring model for both the shear
and tensile stress, it can therefore be deduced that, the drag along the flow and transverse
directions should be different. The use of an anisotropic drag should be successful in
correcting the deficiencies of the configuration based model. It will be explored in a
subsequent publication.

B. Start-up of uniaxial extensional flow

The velocity field in uniaxial extensional flow is given as v,=éx, v,=—(é/2)y, and
v,=—(€/2)z, where € is the extension rate. We present the extensional viscosity for the
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configurational based model ({s/{,=1.85 and {s/{,=1) in Fig. 17. At low Wi, the exten-
sional viscosity is three times the shear viscosity. The configuration based model predicts
a slightly lower plateau at low Wi, in comparison to the bead-spring model. However, it
is still an improvement over the FENE dumbbell model. Past the coil-to-stretch transition,
the configuration-based model overpredicts the extensional viscosity for all extension
rates studied here. However, the FENE dumbbell model is in close agreement with the
multibead-spring model beyond the coil-to-stretch point. The configuration based model
with the modified drag coefficient ({s/{;=1) shows good agreement with the multibead-
spring model at high Wi.

The overprediction of the viscosity can be related to the stretch of the molecule along
the direction of extension. Figure 18 shows the evolution of the tensile stress and xx
component of the conformation tensor. At both the Wi shown here, the configuration
based model overpredicts the tensile stress. At Wi=1, the FENE dumbbell model also
overpredicts the stress, while it closely follows the multibead-spring model at Wi=10.
The xx component of the conformation tensor is overpredicted by all the models at Wi
=1 and Wi=10.

The differences in the tensile stress and conformation of the molecule are more pro-
nounced when studying stress-conformation hysteresis. It is known that the relaxation of
stress and configuration occur at different rates leading to a hysteresis in the behavior of
molecules as they relax after stretching during uniaxial extension. The stress-
conformation hysteresis for all models are presented in Fig. 19 at Wi=1 and Wi=10. The
configuration-based model shows a very large stress-conformation hysteresis due to the
overprediction of both the stresses and conformation. However, the modification of the
drag property for the stretched state reduces the size of the stress-conformation hysteresis
curve. Past the coil-to-stretch transition, in uniaxial extension flow, the molecules exist in
the stretched configuration only. Therefore, the modification of the drag coefficient cor-
responding to the stretched state immediately reduces the predictions of the
configuration-based model to closely follow the FENE dumbbell model. The existence of
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internal modes in the bead-spring model leads to a large stress for smaller extensions.
Again, the idea of an anisotropic drag should be useful in obtaining closer prediction for
the conformation of the molecule, while retaining the drag coefficient of the FENE
dumbbell for the stretched state along the flow direction.
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V. SUMMARY

A configuration-based, coarse-grained model was developed for studying the dynam-
ics of macromolecular solutions. The importance of the inclusion of configurational in-
formation into a simplistic dumbbell model was explored by studying the configurations
of the molecules under steady shear and uniaxial extension and relating configurational
distributions to observed macroscopic properties. The configuration-based model was
thus developed based on the existence of a few predominant configuration classes that are
present in all flow types. These classes were used to partition the configurational phase
space of the molecule. The macromolecules were described using a single dumbbell
description with varying drag coefficients based on the configuration they represented.
The probability distribution of configurations under any flow type was derived based on
a configuration map. The configuration map was derived by exploring the configuration
phase space sampled by the molecule under different flow types and strengths. It was
found that the conditional probability for finding a molecule in a given configuration
class for a fixed end-to-end distance was universal. Therefore, the partitioning of mol-
ecules into the different configurations must always be in accordance with the configu-
ration map.

The predictions for the configuration-based model were studied using the BD ap-
proach under steady shear and uniaxial extension. The model provides good predictions
in comparison to the underlying multibead-spring model for the shear viscosity while
overpredicting the first normal stress coefficient. Modifying the stretched state drag co-
efficient provided an insight into the reason behind the overpredictions. The overpredic-
tion in the tensile stress was found to be due to the overprediction of the xx component
of the conformation tensor. On the other hand, a good prediction for the shear stress in
comparison to the FENE dumbbell model indicated that the modified drag coefficients
were crucial to obtain agreeable predictions for the shear stress. Similarly, in uniaxial
extension, the tensile stress as well as the xx component of the conformation tensor were
overpredicted. This again was tied to the drag coefficient of the stretched state which led
to an excessive prediction for the stretch of the molecule. A reduced drag coefficient for
the stretched state yielded improvements in the prediction of macroscopic as well as
microscopic properties along the direction of flow while the calculated drag coefficients
provided a good prediction for the shear stresses. These findings emphasize the fact that
configuration classes must not merely be treated as differently sized objects but as dif-
ferently shaped objects as well. Therefore, the use of an anisotropic drag which accounts
for the difference in average dimension of the configuration along and traverse to the
direction of flow could achieve good comparisons for both the shear stress and tensile
stress with a fine-scale model and forms part of the future work to improve the model.
Another aspect that could possibly lead to a fine-tuned model is the development of
guidelines for the use of the configuration map that would prevent the sampling of
configurations other than the coiled state upon inception of flow from equilibrium.

The configuration-based, coarse-grained model presents a novel way to incorporate
configurational diversity into a simplistic dumbbell model. It holds promise for studying
macromolecular dynamics in complex flow studies which has historically been limited to
dumbbell-based models due to computational limitations. The model molecule studied
here is representative of the procedures for the development of model tools required for
the implementation of the model. The use of the model for studying the flow of any
macromolecule in a complex flow geometry would therefore involve two steps. The first
step involves the development of the configuration map corresponding to the macromol-
ecule of choice and the calculation of modified drag coefficients for the configuration
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classes for that macromolecule. The second step is to use the tools developed in the first
step to implement the configuration-based model in the complex flow calculation just like
any other dumbbell model. Although the first step may seem cumbersome, as it has been
pointed out earlier, investigating the dynamics in steady shear, uniaxial, and biaxial
extension is sufficient to obtain a relatively accurate configuration map and configuration
dependent drags. With the model parameters and configuration map developed, the use of
the model for studying macromolecular flows in complex geometries can be realized.

APPENDIX

1. Governing equations

In the BD approach, the solvent is described as a continuum with a prescribed viscos-
ity that randomly collides with the macromolecule, the effect of which is modeled as a
stochastic force imparted on the macromolecule. On the other hand, the macromolecule is
explicitly modeled either as a bead-rod chain, bead-spring chain, or a dumbbell [Bird et
al. (1987a)]. The governing equation for the evolution of the extension of the macromol-
ecule is obtained by writing a force-balance on each bead and solving for the position of
the beads simultaneously. Macroscopic observables are then computed as a function of
the bead positions.

In the case of the bead-rod model, the macromolecule is represented as N, + 1 identical
beads connected by rods of length @ while in the bead-spring model, the macromolecule
is represented as NV, identical beads connected by N, springs. The position vector repre-
senting the position of bead i with respect to an arbitrary point fixed in space is repre-
sented as r;. Neglecting inertia for time scales larger than the momentum relaxation time,
the governing equation for the motion of the beads is obtained by writing a force balance
on the bead i as given in Eq. (3) where the elastic spring force can be replaced by the
connector vector force (FZC) which is due to the tension in the rods in the case of the
bead-rod model and due to the elastic force exerted by the springs in the case of the
bead-spring model.

In the absence of hydrodynamic interactions, the hydrodynamic drag force on bead i is
given by

Fi'=- (- u)), (A1)

where ¢ is the bead drag coefficient, I; is the velocity of bead i, and u; is the solvent
velocity at bead i.

In the bead-spring model, the connector vector force (FiC:FiS) is due the springs that
are attached to the beads and the effective spring force on bead i is given by

=FY i=1,
Ff:F?p—Fff] i=2,...,Nb—1,

=—F? i=N,, (A2)
N b

while in the case of a bead-rod model, the connector vector force (F=F?) is due to the
tension in the rods connected to the bead. This is given by

F/=Tw;- T juy, (A3)

where 7; is the tension in rod i and u; is the orientation vector between beads i and i
+1. The Brownian force is mathematically represented as a quantity with a zero mean
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and a second moment that balances the dissipative forces to satisfy the fluctuation dissi-
pation theorem

(F¥)=0, (A4)

2kpT{6;;
PR+ 80) = 2ks T8, A1) = 220, (A5)
where kp and T are the Boltzmann constant and temperature.

Combining the above description of forces acting on a bead in Eq. (A5), the equation

governing the motion of bead i can be written as

2kgT

0={(u] - k) + —gt gdW,.' +FT+F, (A6)
where dW/ is a Wiener process mathematically represented by a Gaussian random num-
ber with a zero mean and unit variance. Equation (A6) can be rearranged to give the time

evolution of the position vectors (r;) of the beads

ZkBT . F;S‘/T F}Ext
dri=\|——dW;+ | u; + — + — |dt, (A7)
4 4 4

where dW; is a Gaussian random number with a zero mean and variance of At.

The stochastic differential Eq. (A7) for the bead-rod model has to be solved along with
the imposition of constraints on the rods to maintain the distance between any two beads
at the length of the rods

(ri =) - (X — 1) = a’= d’z, (A8)

where ¢’ is a specified tolerance criterion (~107°-107%). The governing equation is
nondimensionalized using the following scales. The length scale used is the length of a
rod (a), the time scale used is the bead diffusion time (¢,_,a*/kzT), and the forces are
nondimensionalized using kpT/a. The resulting evolution equation is

dr’=[Pe(rc-r’) + F, ™ + F-"*Jdr* +\2dW,, (A9)

where K is the transpose of the dimensionless velocity gradient tensor. The specific form
of k for simple shear and uniaxial extensional flow are given below

1 0 0
010 1
0 -— 0
Kshear = 000 5 Kext = 2 . (AlO)
000 1
0o 0 -=
2

The starred quantities represent dimensionless variables. Nondimensionalization of the
governing equation leads to a dimensionless quantity—the Peclet number [Pe
=(y¢a?/kgT)], which is the dimensionless shear/extension rate and is calculated as the
ratio of the Weissenberg number (Pe=Wi/\*) and the dimensionless relaxation time of
the molecule. The relaxation time of the molecule has been previously calculated via
simulation and fit to an expression by Doyle et al. (1997) and is used here. The solution
procedure for the above equations is adopted from Somasi er al. (2002).

The polymer contribution to the stress can be calculated once the positions of the
beads have been calculated using the Karmers—Kirkwood expression as
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N+l

7,=n, >, (RF), (A11)
=1

where n,, is the number density of polymer chains and R; is the position vector of the
bead i relative to the center of mass of the chain

Ri=ri_rc’ (AlZ)
where
1 Ni+1
rc: ri' A13
Ni+1 E ( )

In the case of the bead-spring model, it is easier to study the evolution of the connector
vectors since the position of the chain in space is arbitrary and it is the relative positions
of the beads with respect to each other that are of importance. The evolution equation for
the connector vector (Q;) can be derived by subtracting the equations for the evolution of
r;;; and r; and is given by

F, -F\ (F-F* 2kyT
inz{uf+< ’”g )+( '*‘{ — | |t + f(dw;+1—dw;). (A14)

The length scale used is the equilibrium length of a Hookean spring (VkgT/H), the time
scale used is the relaxation time of the Hookean spring ({/4H) and the forces are non-
dimensionalized using VkgTH. The dimensionless SDE thus obtained is

o o (FE) (]
dQ; =| Pe(k-Q;) + I + 7 dt+ E(dWm—dW,-),

(A15)

where Pe=y{/4H. The Peclet number is a measure of the dimensionless flow strength
and is calculated as the ratio of the Weissenberg number to the dimensionless relaxation
time (Pe=Wi/\*). Here, the dimensionless longest (A*) relaxation time is calculated by
fitting the tail of the relaxation of tensile stress to a single exponential fit of the form

k
T =A exp<— %>+B. (A16)
In order to study the diversity of the configurational phase space, BDS is carried out by
starting initially with many trajectories (typically 10*~10°) described using the bead-
spring or bead-rod model. The initial configuration of each trajectory is randomly as-
signed, thereby selecting independent evolution paths for each molecule. Initially, the
trajectories are allowed to attain the equilibrium distribution by allowing the ensemble to
evolve in the absence of flow for a couple of relaxation times of the molecule. The
equilibrium ensemble is then exposed to flow, and the evolution of the trajectories is
monitored. At any instant of time, macroscopic properties can be evaluated by appropri-
ate ensemble averaging, and configurational distributions are obtained using the auto-
mated configuration sorting algorithm described in the following section.

2. Model parameters

The A-DNA molecule has a length of 21.2 wm [Smith ez al. (1999)] and is represented
using a 15-spring chain, coarse grained from a 150 bead-rod (N,=150) chain. The num-
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ber of rods used to describe the molecule is calculated based on the Kuhn step size (bg).

The Kuhn step length is around 0.132 wm [Hur ef al. (2000)], yielding around 150 Kuhn

segments. The force-extension behavior of the molecule follows the Marko—Siggia ex-

pression [Marko and Siggia (1995)], also known as the WLC force law. It is given as
kgT| 1 1 1 20;1Q;

Ffzb—K EE_E-FQ_O 5,-’ (A17)

o

where Q; is the connector vector between two beads, Q; is its magnitude, Q, is the
maximum length of the spring, kp is the Boltzmann constant, and 7 is the temperature.
The maximum extensibility is the square of the maximum length of the molecule [b
=Qi/(kBT/ H,)] and is calculated by

b=3(N,-1) (A18)

to be 447 [Hur et al. (2000)]. The maximum extensibility for the individual springs b, is
given by b,=b/N;=29.8. The longest relaxation time of the chain in dimensionless terms
is [Somasi ef al. (2002)]

N;=———=34.996, Al19
7 (g4H,) (A19)

where ( is the bead drag coefficient and H, is the Hookean spring constant.

3. Automated configuration sorting algorithm

In this section, we present the automated configuration sorting algorithm used to
identify configurations from a BDS of a multibead-spring chain. The configuration of a
molecule is assigned based on a brightness distribution which is calculated based on bond
and bead overlaps. The calculation of a brightness distribution is motivated from the
experimental observation of molecular configurations. Under the microscope, coiled mol-
ecules appear as bright, compact blobs; while stretched molecules appear lighter and
linear. The model molecule, at any instant of time, is described as a set of N, beads
connected by N, springs or N, rods of known orientations. The relative positions of the
beads along the backbone of the molecule can be calculated by placing the origin at the
center-of-mass of the molecule.

The first step in calculating the brightness distribution is to calculate the brightness
due to bond overlap. For this purpose, the direction of maximum extension along the
chain is calculated and is chosen as the axis along which the brightness distribution will
be evaluated. In the case of uniaxial extension, this step is not very important since the
molecule extends only along the direction of the flow. Calculating a brightness distribu-
tion along the direction of the flow does provide a good prediction for the configuration
of the molecule. However, in shearing flows, the molecule tends to tumble and move
along the shear-gradient direction. Calculating a brightness distribution based on the
direction of shear would not provide a good prediction for the configuration since excur-
sions along the shear-gradient plane will be projected into the direction of shear, giving
rise to incorrect predictions for the configuration. The springs are therefore projected
along the direction of maximum extension of the molecule in order to calculate the
brightness distribution. Once the axis of the brightness distribution is calculated, a value
of one is added along the brightness axis if a spring is present. Therefore, in cases where
the molecule turns around or bends, there will be a bond overlap leading to a brightness
value of 2 in those regions.
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FIG. 20. Schematic of configuration classes considered along with representative brightness distribution plots.

The first step provides an estimate for the changes along the contour of the molecule.
The bead-spring description of the molecule also involves springs which are elastic, to
account for the loss of degrees of freedom when coarse graining from a bead-rod de-
scription. A compressed spring would indicate configurational kinks in the underlying
bead rods, while a stretched spring would imply a straight set of rods. Therefore, ac-
counting for bead overlap which occurs due to the existence of compressed springs is
necessary in the bead-spring model to account for the configurational diversity existent at
finer scales that cannot be discerned due to coarse graining in the bead-spring model. In
the case of a bead-rod model, such as the Kramers model, this step would not be required
since the rods are of constant length. In order to account for bead overlap, we need an
estimate for the bead radius. The bead radius is calculated based on the fact that at
equilibrium, the beads cannot overlap. Since the distance between two bead centers is
given by the extension of the spring, the bead radius is assigned as the equilibrium length
of a Hookean spring. When two beads overlap, the brightness is increased by a unit value
in the corresponding region.

For the purpose of implementing the above algorithm, the brightness axis is initially
divided into a large number of bins. The length scale of the bins is much smaller than the
equilibrium length of a Hookean spring. The brightness value for each bin is determined
based on the bead/bond overlap occurring in that region on the scale of the bin size. Once
the brightness distribution is calculated as described above, it is smoothed (by taking a
mean over a couple of bins) in order to obtain a coarse-scale brightness distribution that
can be used for automated assignment of configuration classes. The criteria used for
automated assignment of configurations are adopted from earlier work by Larson et al.
(1999). The configuration classes considered in this work are inspired by observations in
experiments that have indicated the existence of similar configuration classes [Smith and
Chu (1998); Schroeder er al. (2003)]. A schematic of the configuration classes and rep-
resentative brightness distribution plots are presented in Fig. 20.

Looking at the ends of the chain, if the brightness is unity at one end and greater than
unity at the other end, the molecule can be a fold (F) or a half dumbbell (HD). If y/x
>1/4, the molecule is assigned a folded state, while if y/x<1/4, the molecule is con-
sidered as a half dumbbell (y is the length of the brightness distribution with brightness
greater than unity, x is the total length of the brightness distribution). If the brightness at
both ends of molecule is unity, the molecule is either stretched (S) or kinked (K). In this
case, we look at the brightness of the molecule in the middle of the brightness distribu-
tion. If it is unity throughout, it is considered as stretched, otherwise, as kinked. Finally,
if the brightness at both ends of the distribution is greater than 1, the molecule is either
a coil (C) or a dumbbell (D). In this case, we study the brightness distribution in the
middle of the molecule, and if it is of unit value in the middle, the molecule is assigned
a dumbbell state, otherwise, as a coiled state.
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FIG. 21. Comparison of the probability of occurrence of different configuration classes at steady state under
steady shear flow at Wi=10 for a bead-spring model with a bead-rod model for the N\-phage DNA molecule.

In order to evaluate the accuracy of the configuration sorting algorithm, we compare
the prediction for the probability of occurrence of a configuration class in steady shear
flow at Wi=10 using a bead-spring model with the prediction for the bead-rod model. As
pointed out earlier, while using the above algorithm to ascertain the configuration of a
molecule described using a bead-rod model, we do not consider bead overlap since the
rods are of fixed length. However, when comparing the configurational distributions from
a bead-spring model with those from a bead-rod model, it is important that we compare
them at the same level of coarse graining. Therefore, for the case of the Kramers model,
an equivalent bead-spring chain is constructed using the coarse-graining criteria pre-
sented by Somasi et al. (2002), i.e., we only consider every tenth bead and ignore
intermediate beads. Using the equivalent bead-spring chain for the underlying bead-rod
chain, we evaluate the configuration using the algorithm outlined above in order to obtain
the comparisons presented in Fig. 21. It can clearly be seen that the automated configu-
ration sorting algorithm provides very good comparisons for the calculated probabilities
of occurrence for different configuration classes, as long as they are compared at the same
level of coarse graining.
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