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bstract

In this study, a computationally efficient algorithm for multiscale flow simulation of dilute polymer solutions using a bead-spring chain description
f polymer molecules is presented. The algorithm combines a computationally efficient extension of the earlier BCF-based semi-implicit method
i.e., approximately four-fold speed up) for multiscale flow simulations using a bead-spring dumbbell description [M. Somasi, B. Khomami,
inear stability and dynamics of viscoelastic flows using time-dependent stochastic simulation techniques, J. Non-Newtonian Fluid Mech. 93

2000) 339–362] with a highly CPU efficient predictor–corrector scheme for BD simulation of bead-spring chains [M. Somasi, B. Khomami, N.
oo, J. Hur, E. Shaqfeh, Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues,

. Non-Newtonian Fluid Mech. 108 (2002) 227–255]. The fidelity and computational efficiency of the parallel implementation of the algorithm

re demonstrated via three benchmark flow problems, namely, plane Couette flow, Poiseuille flow and 4:1:4 axisymmetric contraction–expansion
ow. The algorithm shows linear speed up with the number of processors and more importantly with the number of chain segments. In addition, the
roposed algorithm is approximately 50 times faster in comparison to the only existing fully implicit method [J. Ramirez, M. Laso, Size reduction
ethods for the implicit time-dependent simulation of micro-macro viscoelastic flow problems, J. Non-Newtonian Fluid Mech. 127 (2005) 41–49].
2006 Elsevier B.V. All rights reserved.
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. Introduction

Currently two main approaches, namely, calculation of non-
ewtonian flows: finite elements and stochastic simulation

echniques (CONNFFESSIT) [1] and Brownian configuration
elds (BCF) [2] are available for multiscale flow simula-

ion of dilute polymeric solutions. Both methodologies couple
ontinuum-level conservation equations for mass and momen-
um that are solved in an Eulerian frame of reference with

stochastic differential equation for chain dynamics solved
ia Brownian dynamics (BD) to obtain the polymeric stress
t the mesoscopic level. The CONNFFESSIT technique relies
n the tracking of individual polymer molecules within the
ow domain, hence, in complex kinematics flows it can lead
o numerically induced spatial inhomogenity in polymer con-
entration resulting in substantial errors in the computation of
olymeric stresses. However, these issues have been to a great

∗ Corresponding author. Tel.: +1 865 974 2085; fax: +1 865 974 7076.
E-mail address: bkhomami@utk.edu (B. Khomami).
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ring chain

xtent addressed in a recent variation of the CONNFFESSIT
echnique, namely the Lagrangian particle method (LPM) [3].
pecifically, in this approach, a number of fluid particles that
ontain an ensemble of polymer molecules as opposed to indi-
idual chains are tracked; hence a significant reduction in the
omputational requirements is realized. In addition, the undesir-
ble spatial depletion of polymer molecules has been addressed
y judicious insertion of particles in the depleted regions via a
ackward tracking algorithm [4].

The aforementioned drawbacks of the CONNFFESSIT
echnique have also been addressed by the BCF technique.
pecifically, the BCF approach relies on an ensemble of contin-
ous fields of spatially correlated macromolecules as opposed to
ndividual polymer molecules to describe the polymer dynam-
cs under flow. In turn, the evolution of each field is computed
sing standard Eulerian techniques leading to tremendous spa-
ial variance reduction, i.e., the polymeric stresses are spatially

mooth.

Although in recent years significant progress in variance
eduction methods [5,6] as well as algorithmic advances, i.e.,
evelopment of semi-implicit [7,8] and fully implicit [9] tech-

mailto:bkhomami@utk.edu
dx.doi.org/10.1016/j.jnnfm.2006.10.003
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d �Q (x, t) = −�u(x, t) · �∇ �Q (x, t)+κ(x, t) · �Q (x, t)+
�FE
i dt
A.P. Koppol et al. / J. Non-Newto

iques for multiscale flow simulation of dilute polymer solutions
ave been made, the multiscale approach still remains com-
utationally intensive in comparison to continuum-level flow
imulations of viscoelastic fluids using single or multimode con-
titutive equations. Hence, to date all the large-scale complex
inematics multiscale flow simulations of dilute polymeric solu-
ions have been restricted to very simple mesoscopic models for
he polymer molecule, namely, single segment elastic dumbbell

odels [10,11].
In recent years, fluorescence microscopy of model macro-

olecules, namely DNA, in a variety of flow fields has provided
n avenue for examining the fidelity of various mesoscopic level
odels describing polymer dynamics under flow. Specifically,

t has been shown that multi-segment bead-rod and bead-spring
escriptions can describe both single molecule dynamics such
s molecular individualism, and unraveling dynamics, as well
s the solution rheological properties such as viscosity and
ean molecular extension (i.e., an indirect measure of normal

tresses) with good accuracy [12,13]. In addition, it has been
hown that single segment elastic dumbbell models as well as
losed form constitutive equations obtained by invoking various
losures such as the FENE-P, FENE-LS at this level of descrip-
ion can at best qualitatively describe the polymer dynamics and
heological properties of dilute polymer solutions [12,13].

These findings clearly underscore the fact that a multi-
egment description of the macromolecule or reduced order
oarse-grained models that contain information regarding the
nternal degrees of freedom of the macromolecule are required
or quantitative modeling of dilute polymer solutions under flow.

otivated by this fact, Ramirez and Laso [14] have extended
heir recently developed fully implicit method based on the BCF
pproach [9] to multi-segment bead-spring models for describ-
ng the polymer dynamics. Although, their method due to its
ully implicit nature allows for accurate and stable solutions with
elatively large time-steps, it is highly computationally intensive
nd difficult to implement due to the use of a highly specialized
ize reduction technique for implicitly solving a large system
f coupled non-linear equations, constituting the macroscopic
onservation equations and the governing BCF equations.

In this paper, we present a computationally efficient semi-
mplicit method for large-scale multiscale flow simulations of
ilute polymeric solutions using bead-spring chains. Essentially
his method combines a computationally efficient semi-implicit
redictor–corrector scheme for BD simulations of bead-spring
hains [15] with a numerically efficient extension (i.e., a four-
old speed up) of a BCF-based semi-implicit multiscale flow
imulation algorithm [7]. In what follows, the fidelity and com-
utational efficiency of a parallel implementation of this new
lgorithm are demonstrated via three benchmark flow prob-
ems. In turn, the computational efficiency of this method is
ompared with the fully implicit method of Ramirez and Laso
14].
. Governing equations

The mass and momentum conservation equations governing
he creeping flow of an incompressible fluid in the absence of
luid Mech. 141 (2007) 180–192 181

ody forces are as follows:

�∇P + �∇ · τ-- = 0, (1)

� · �u = 0, (2)

here P, τ-- and �u are the dimensionless isotropic fluid pres-
ure, deviatoric stress tensor and velocity vector, respectively.

and τ-- are non-dimensionlized with (η0uc/L), and �u is
on-dimensionlized with uc, where L and uc are the chosen char-
cteristic length and velocity scales, and η0 is the zero shear
iscosity of the fluid.

The extra stress (τ--) in Eqs. (1) and (2) is split into the stress
ontribution from the polymer and the solvent as follows:

-- = τ--p + τ--s. (3)

he solvent stress contribution τ--s is assumed to be Newtonian,
herefore:

--s = 2βγ̇
--
, (4)

here β is the ratio of the solvent to the zero shear viscosity, i.e.,
= ηs/η0. And γ̇

--
is the rate of deformation tensor of the fluid,

efined as

˙
--

= 1

2
( �∇�u+ �∇�uT). (5)

The macromolecules are modeled as freely draining,
on-interacting bead-spring chains. The polymeric stress con-
ribution, τ--pis computed using the Kramer’s expression [16] as
ollows:

--p = 1 − β

We∗

N∑
i=1

(〈 �Fi �Qi〉 − 〈 �Fi �Qi〉eqbm), (6)

here N is the number of segments in the bead-spring model;
·〉 the ensemble average; 〈 �Fi �Qi〉eqbm = I--, the unit tensor; �Qi

he dimensionless connector vector between the two beads of
he ith segment scaled with the equilibrium length of a Hookean
umbbell

√
kT/H , with a spring constant H; �Fi is the dimen-

ionless entropic force vector for the ith segment. In this study,
e have chosen to use the FENE force law:

�
i =

�Qi

1 − (Q2
i /b)

, (7)

here b is the square of the dimensionless segmental maximum
xtensibility, i.e., b = HQ2

0/kT ; Q0 the maximum extensi-
ility of each segment; We* = We((N + 1)2 − 1)/(3 + 15/b) [17],
e = λHuc/L is the Weissenberg number and λH is the Hookean

elaxation time of the bead-spring chain.
In the BCF approach, the evolution equation for the ith con-

ector vector �Qi is given by[ ]

i i -- i

4We

+
√

1

2We
[d �Wi+1(t) − d �Wi(t)], (8)
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here

� E
i =

⎧⎪⎨
⎪⎩

−2 �Fi + �Fi+1; i = 1,
�Fi−1 − 2 �Fi + �Fi+1; 1 < i < N,

�Fi−1 − 2 �Fi; i = N.

(9)

n Eq. (8), the term d �Wi(t) is the Wiener process that accounts
or the Brownian force experienced by the ith bead. It is math-
matically represented as a Gaussian random vector with zero
ean and a variance of dt. The term �u(x, t) · �∇ �Q(x, t) accounts

or the convection of a configuration field under the influence
f the flow field. Note that the Wiener process is independent
f x indicating that the configuration field is subjected to a spa-
ially uniform Brownian force at each time step. As a result,
he configuration field vector, �Qi(x, t) evolves as a smooth and
ontinuous function for spatially correlated velocity fields, thus
aking the BCF technique ideally suitable for implementation

n a finite element context.

. Computational technique

The DEVSS-G formulation [18–20] is used for discretization
f the governing equations. In this formulation, a stabilization
erm is added to the momentum equation as shown below:

� 2�u− �∇P + �∇ ·
[
τ--p − (1 − β)(G-- +G--

T)
]

= 0, (10)

hereG-- is the discrete interpolant of the velocity gradient ( �∇�u),
nd the term in the square brackets is the discrete form of the
lastic stress tensor. The added stabilization term vanishes in
he strong formulation but not in the weak form, hence it main-
ains the elliptic nature of the momentum equation. Hence, asG--
approaches” the exact solution the original momentum equa-
ion is restored.

The modified momentum equation (10), the continuity equa-
ion (2), and the velocity gradient interpolant,G-- are discretized
sing the Galerkin technique. The weak form for these equations
re given below:

( �∇�v) : ( �∇�u+ �∇�uT − PI-- +Σ)] = [�v : �σ]Γ , (11)

q; �∇ · �u] = 0, (12)

g : (G-- − �∇�u)] = 0, (13)

here

= τ--p − (1 − β)(G-- +G--
T), (14)

nd [a : b] (or [a ; b]) and [a : b]Γ are the standard inner prod-
cts of (a , b) in the flow domain Ω and on the boundary Γ ,
espectively. σ is the traction vector on the boundary.

The flow domain Ω is divided into quadrilateral finite ele-
ents in which the shape functions are defined. The hierarchic

hape functions based on the Legendre polynomials as proposed

y Szabo and Babuska [21] are used to approximate the vari-
bles. Specifically, the velocity components are approximated
sing second order polynomials (p = 2), and the velocity gra-
ient, stress, and pressure variables are approximated using
luid Mech. 141 (2007) 180–192

ilinear shape functions (p = 1). The choice of the shape func-
ions to approximate the velocities, velocity gradients and
ressure satisfy the Brezzi–Babuska condition [22]. The shape
unctions used to approximate the stresses are in accordance
ith that proposed in earlier studies [7,22].
The Galerkin projection is used to evaluate the polymeric

tress via:(
τ--p − 1 − β

We∗

N∑
i=1

(〈 �Fi �Qi〉 − I--)

)
: a--

]
= 0, (15)

here a-- is chosen from the bilinear continuous polynomial space
p = 1).

The BCF equations (8) are discretized using the SUPG tech-
ique [22] in which the weighting functions are modified as

-- = φ
--

+ (�u · �∇φ
--
)h/|�u| and φ

--
represents the weighting function

n the Galerkin formulation as shown below:[(
d �Qi −

(
−�u · �∇ �Qi + κ-- · �Qi + 1

4We
�FE
i

)
dt

−
√

1

2We
(d �Wi+1(t) − d �Wi(t))

)
: Z--

]
= 0, (16)

here Z-- is selected from the bilinear continuous polynomial
pace (p = 1).

.1. Algorithm development

The algorithm is developed employing a computationally
fficient time integration method based on a semi-implicit
redictor–corrector scheme, where the stress and velocity fields
re alternatively updated in a decoupled fashion until a self-
onsistent solution is obtained at each time step. The resulting
inear system of equations obtained at each time step are solved
sing a state-of-the-art frontal LU decomposition solver for
nite element applications, which was also used in our ear-

ier work [7] and was found to be computationally robust and
fficient. The algorithmic details are presented below:

At time t = 0, the configuration fields are initialized to their
quilibrium values and the velocity field corresponding to the
quilibrium polymeric stress is obtained. The evolution of the
onfiguration fields and the velocity field is computed using the
ollowing steps.

The initial estimate for the velocity field variables of the
n + 1)th time step used in both the BCF equation (8) as well
s the SUPG test function (Z-- ) is set to the previous time step
n), i.e., �u∗ = �un and κ--

∗ = κ--
n.

Step 1. In the predictor step, an estimate for each configu-
ration field Q∗

i , i = 1, . . ., N is obtained from the solution at
the previous time step (n) using the explicit Euler integration
scheme as shown below:[ ]

�Q∗
i = �Qn

i + −�u∗ · �∇ �Qn
i + κ--

∗ · �Qn
i +

4We
�Fi 
t

+
√

1

2We
(d �Wn+1

i+1 (t) − d �Wn+1
i (t)). (17)
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Step 2. In the corrector step, the configuration fields for the
current time stepQn+1

i , i = 1, . . ., N are determined employing
a semi-implicit scheme shown below:

�Qn+1
i +

[
�u∗ · �∇ �Qn+1

i − κ--
∗ · �Qn+1

i

]

t

= �Qn
i + 
t

4We
�̃FE,n+1

i +
√

1

2We
(d �Wn+1

i+1 (t) − d �Wn+1
i (t)),

(18)

where

�̃FE,n+1

i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2 �̃F
n+1

i + �Fni+1; i = 1,

�Fn+1
i−1 − 2 �̃F

n+1

i + �Fni+1; 1 < i < N,

�Fn+1
i−1 − 2 �̃F

n+1

i ; i = N.

(19)

n the configuration field update (Eq. (18)), the �u · �∇ �Q and κ-- · �Q
erms, and the spring force of the (i − 1)th segment are treated
mplicitly, the spring force of the (i + 1)th segment is treated

xplicitly, while the spring force of the ith segment ( �̃F
n+1

i ) is
btained by solving the BCF equation (8) locally at the Gaussian
uadrature points. Specifically, Eq. (8) is rearranged such that
he spring force in the segment of interest is treated implicitly
nd the �u · �∇ �Q and κ-- · �Q terms are treated explicitly as shown
elow:

�̃Qn+1

i + 
t

2We
�̃Fn+1

i

= �̃Qn

i + 1

2

[
−�̃u∗ · �∇( �̃Q∗

i + �̃Qn

i ) + κ̃--
∗ · ( �̃Q∗

i + �̃Qn

i )

+ 1

2We
( �̃Fn+1

i−1 + �̃Fni+1)

]

t

+
√

1

2We
(d �Wn+1

i+1 (t) − d �Wn+1
i (t)), (20)

here the quantities with the superscript tilde are evaluated at
he local Gaussian quadrature points.

Following the same approach as our earlier works [7,15,23]

q. (20) is rearranged to obtain, a cubic equation for | �̃Qn+1

i |:
�̃Qn+1

i |3 − | �R|| �̃Qn+1

i |2 − b

(
1 + 
t

2We

)
| �̃Qn+1

i | + b| �R| = 0,

(21)

here | �R| is the magnitude of the right hand side vector of Eq.
20). The above cubic equation has a unique solution between 0

nd
√
b, choosing this root will ensure | �̃Qn+1

i | is not greater than

b. �̃F
n+1

i is then determined from Eq. (20), which is used in

q. (18) to update the configuration field. Although | �̃Qn+1

i |can
ever be larger than

√
b at the Gaussian quadrature points, in
egions of high stretch a minor violation of this condition could

ccur due to the projection of �̃Qn+1

i on to the bilinear basis
unctions. This issue can be resolved without loss of accuracy by
ocally substituting the violated configuration field with the one

e

a
c

luid Mech. 141 (2007) 180–192 183

hat predicts the highest permissible extension in the ensemble
with the assumption that the violated configuration field must
e almost fully stretched).

Note that the semi-implicit treatment of the spring force (Eq.
19)) makes the left hand side of Eq. (18) a function of �u∗and

--
∗, hence the mass matrix does not have to be recomputed in the
orrector step. This modification results in significant compu-
ational saving (i.e., up to four-fold speed up) in comparison to
he implicit treatment of the spring force [7], while retaining the
delity of the computations. More importantly, this modification
llows decoupling of the configuration field updates (Eqs. (17)
nd (18)) leading to independent solution for each segment at the
aussian quadrature point solution (Eq. (20)). Hence, one would

xpect to obtain a nearly linear scale up of the computation time
ith the number of segments. Clearly in a fully implicit treat-
ent a system of coupled non-linear equations has to be solved

or which the computation time does not scale up linearly with
he number of segments. Another advantage with the proposed
pproach is that the BCF equation (8) is solved in the weak form
or any order of polynomials used to approximate the configu-
ation fields and allows the use of a suitable upwinding scheme
or dicretizing the BCF equation.

The corrected configuration fields �Qn+1
i , obtained from Eq.

18) are used to update the polymeric stress as shown below:

--
n+1
p = 1 − β

We∗

N∑
i=1

(〈 �Fn+1
i

�Qn+1
i 〉 − I--). (22)

he velocity field is then updated using τ--
n+1
p in Eqs. (11)–(14)

o obtain un+1, Gn+1 and Pn+1.
The convergence of the configuration fields is estimated by

omputing the residual ε:

=
∑N
i=1|1 − | �Qn+1

i |/| �Q∗
i ||

N
. (23)

ote that the residual ε is computed relative to the magnitude
� ∗
i , which is always greater than zero. If ε is found to be greater

han a specified tolerance (i.e., typically 10−3 to 10−6) �Qn+1
i

s stored as �Q∗
i and step 2 is repeated until the residual meets

he tolerance, thus resulting in self-consistent stress and velocity
elds at each time step.

In an attempt to further speed up our simulations, we have
mplemented a number of algorithmic modifications that lead
o approximately 40% CPU reduction while maintaining the
olution accuracy: (a) the residual ε has been increased to 10−3

eading to reduction of the number of corrector steps; (b) the
umber of times the mass matrix for Eqs. (17) and (18) are
pdated is minimized by performing the updates only when the
verage relative change in �u∗and κ--

∗ exceeds 10%. Irrespective
f the above rules, after every 100 time steps the mass matrices
or Eqs. (17) and (18) are generated and the tolerance is reduced
o 10−6. It should be noted that we store the transient data after

very 100 time steps for post-processing.

The mesoscopic level simulations are inherently paralleliz-
ble, so we have implemented our algorithm on a parallel
omputing architecture, consisting of 64 SGI origin 2000 proces-
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Carreau model parameters that fit the steady shear viscosity of FENE bead-spring
models (bmax = 900)
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ors with 64 GB shared memory, 400 MHz clock speed, 8 MB
2 Cache, 800 MFLOP/s per processor, and fast Ethernet of
andwidth 1 GB/s for the inter-process communication. Mes-
age passing interface (MPI), which is widely accepted and
vailable on all major platforms, has been used to efficiently
arallelize the algorithm via optimizing the inter-process com-
unication and memory requirements. The MPI is based on a
aster–slave framework, where the master processor initiates

he parallelization and synchronizes the computations on all the
rocessors. Further, the master processor, in our implementation,
t each time step solves for the velocity field using the updated
olymeric stress, communicates the updated velocity field to all
he processors, and to avoid repetition generates and distributes
he Gaussian random numbers to all the processors. The task of
olving the BCF equations for the large number of configuration
elds and updating of the polymeric stress is distributed among
ll the processors.

. Parameter selection and fluid rheology

The rheological behavior of the fluid is predicted using equiv-
lent FENE bead-spring models with the number of segments
N) varying from 1 to 6. The equivalence between the FENE
ead-spring models has been established by relating the maxi-
um extensibility (length scale) and time constant (time scale)

f the FENE bead-spring chains with those of the FENE dumb-
ell model. For the FENE bead-spring chain with N segments,
he maximum extensibility of each spring, b is fixed to bmax/N,
here bmax is the maximum extensibility of the FENE dumbbell
odel. The time constants of the FENE bead-spring models can

e related via different approaches, such as, equating the longest
elaxation time [15], matching the zero shear material functions
p0 or ψ10 [24], or the zero shear characteristic relaxation time
cale (ψ10/2ηp0) [15]. We have chosen to equate the zero shear
haracteristic relaxation time scales since this approach has been
hown to provide a reasonable match of the steady and transient
ehavior of the FENE bead-spring chains in both shear and elon-
ational flows [15]. Based on this approach, the time constants,
hat is, the Hookean relaxation times of the FENE dumbbell
λ∗

H) and the FENE bead-spring chains (λH) [17] are related as
ollows:

H = λ∗
H

d
, where d =

(
bmax + 7

15bmax

)(
b

b+ 5

)

×
(

(2(N + 1)2 + 7) − 12((N + 1)2 + 1)

(N + 1)(b+ 7)

)
. (24)

urthermore, in order to facilitate a better comparison of the
erformance of the algorithm using different FENE bead-spring
odels we have also equated ηp0 of all the models by following

n approach suggested by van Heel et al. [25], where the number
ensity (nkT) is considered as an additional model parameter.
his procedure allows us to match ψ10 as well as ηp0 since the
atio of the two parameters is matched via Eq. (24).
Fig. 1(a) and (b) show the steady shear viscosity (ηp) and first

ormal stress coefficient (ψ1) of the FENE bead-spring models
ith bmax = 900 and 225, respectively, for We number varying

f
p
t
o

0.422 1.151 0.094

rom 0 to 40. Fig. 1(c) shows the transient extensional viscosity
ηE/η0) of the FENE bead-spring models with bmax = 225 up to

Hencky strain units at a representative We number of 20.0.
he plots in Fig. 1 have been generated via Brownian dynamics
imulation using the semi-implicit predictor–corrector scheme
14] with an ensemble size Nt = 1024, and 
t = 10−3, and by
veraging the steady state properties over 10,000 time steps.
lso shown in Fig. 1 are the statistical error bars computed

s
√
σ2/Nt , where σ2 is the variance. The FENE bead-spring

odels with bmax = 900 will be used in the plane Couette
nd Poiseuille flow benchmark problems, while the FENE
ead-spring models with bmax = 225 will be used to simu-
ate the 4:1:4 axisymmetric contraction–expansion flow. Since
he zero shear relaxation times and the zero shear viscosities
ave been matched, as expected the viscometric shear proper-
ies in the limit of γ̇ → 0 for the FENE bead-spring models
ith identical bmax values are also matched. In addition, as

xpected a more pronounced shear thinning of the viscomet-
ic shear properties with increasing number of segments is
bserved.

Fig. 1(a) also depicts the Carreau model fits for the shear
iscosity, which will be used to demonstrate the fidelity of the
lgorithm by comparing the Carreau model-based steady state
elocity profiles for the Poiseuille flow with those obtained using
he self-consistent multiscale algorithm. The Carreau model [26]
as been slightly modified by introducing a factor f multiplying
he We number (Eq. (25)) based on the premise that with an addi-
ional fitting parameter the shear viscosity data that is mostly in
he transition regime can be captured more accurately. Specif-
cally, the maximum relative error in the fits using the factor
is 0.003, while it is 0.08 otherwise. Table 1 summarizes the
arreau model parameters that provide the best fit to the shear
iscosities.
ηp

η0
= (1 − β)[1 + (f We)a](n−1)/a

. (25)

. Results and discussion

To demonstrate the fidelity and computational efficiency of
ur algorithm, the results of three benchmark flow problems,
amely, the plane Couette, Poiseuille and 4:1:4 axisymmetric
ontraction–expansion are presented. In addition, the computa-
ional efficiency of the algorithm is directly compared with the

ully implicit algorithm of Ramirez and Laso [14]. The results
resented, unless specified otherwise are at We = 5, β = 0.5, for
he FENE bead-spring models with N = 1, 3, and 6 using two sets
f Brownian configuration fields Nf = 1024 and 2048, with the
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5.2. Poiseuille flow

The Poiseuille flow has been selected because the strain rate
(γ̇) varies along the cross-section providing a means to assess

Table 2
Statistical error of the polymeric stress components in the plane Couette flow

N Nf τxx τxy

1 1024 0.172 0.025
1 2048 0.120 0.018
ig. 1. Rheology of FENE bead-spring models. The figure includes the plots o
nd (b) bmax = 225; transient extensional viscosity vs. Hencky strain for (c) bma

olerance for the residue ε= 10−3, and the time step 
t = 10−3,
hich has been found to be sufficiently small for a wide range
f We numbers in our earlier studies [7,15].

.1. Plane Couette flow

The rationale behind selecting the plane Couette flow,
amely, homogenous shear flow is the self-consistent multiscale
imulation results can be directly compared with the Brown-
an dynamics simulation results. The flow domain Ω, shown in
ig. 2(a), with the dimensionless height 1 unit and length 2π
nits has been divided into quadrilateral finite elements consist-
ng of 5 × 10 elements of the same size shown in Fig. 2(c). The
oundary conditions imposed are the standard no-slip boundary
onditions along the walls, and the periodic boundary conditions
t the entrance and exit to ensure that the flow is fully developed.

Fig. 3 depicts the transient normal and shear stress profiles,
nd the statistical error in the stress profiles. Table 2 summa-

izes the statistical error obtained at steady state, as expected
he

√
1/Nf trend is observed. Fig. 3 also shows the transient

ormal and shear stress results from the Brownian dynamics
BD) simulations of the N = 1, 3, and 6 segment FENE bead-

3
3
6
6

dy shear viscosity and first normal stress coefficient vs. We for (a) bmax = 900,
5.

pring models subjected to shear flow at We = 5, β = 0.5, with
n ensemble size Nt = 2048. The BD simulations have been per-
ormed employing the predictor–corrector scheme proposed in
ur earlier study [15]. As anticipated, the transient results from
he BD simulations match the BCF results, thus, demonstrat-
ng the excellent accuracy of the self-consistent results obtained
sing our algorithm.
1024 0.123 0.016
2048 0.091 0.012
1024 0.117 0.015
2048 0.088 0.011
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ig. 2. Schematic diagram of: (a) plane Couette geometry; (b) Poiseuille flo
ontraction–expansion geometry; (f) mesh topology in the contraction region.

he fidelity of our algorithm in an inhomogenous shear flow by
omparing the velocity and stress results with the Carreau model
nd BD predictions. The Poiseuille flow geometry, depicted in
ig. 2(b), with the dimensionless radius 1 unit and length 1 unit
as been divided into quadrilateral finite elements consisting of
× 10 elements of the same size shown in Fig. 2(c). A dimen-

ionless pressure drop 
P = 10 is imposed across the length of
he pipe. The boundary conditions that have been imposed are the
tandard no-slip boundary condition along the wall (r = 1), the
eriodic boundary conditions at the entrance and exit to ensure
hat the flow is fully developed, and the symmetry boundary
ondition along the centerline (r = 0).
The steady state velocity profiles from the BCF simulations
ave been verified by a direct comparison with the Carreau
odel predictions (see Fig. 4). As evinced by the figure good

greement is obtained suggesting that the stress and velocity

F
(
f
c

Fig. 3. Startup profiles of (a) τxx and (b
metry; (c) 50 element mesh; (d) 400 element mesh; (e) 4:1:4 axisymmetric

elds from the BCF simulations have been solved accurately.
ig. 4(d) shows the representative transient velocity profile using

he three segment FENE bead-spring chain and Nf = 2048. As
xpected, at time t = 0 the velocity profile is Newtonian since
he initial polymeric stress is zero, and as the polymeric stress
asses through the overshoot (expected for the range of strain
ates observed near the wall) the velocity profile goes through a
inimum to reach the final steady state.
The steady state stress profiles from the BCF simulations

ave been verified by comparing them with the results from
he Brownian dynamics (BD) simulations at the local We num-
er, Wel = −We(duz/dr) at various radial positions shown in

ig. 5(a). Fig. 5 also shows the steady normal (τrr) and shear
τrz) stress profiles from the BCF and BD simulations as a
unction of the local We number with the appropriate statisti-
al error bars. The comparison in Fig. 5 shows that the stress

) τxy for the plane Couette flow.
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Fig. 4. Velocity profiles of the Poiseuille flow at steady state with (a)

rofiles obtained from the BCF simulations are in good agree-
ent with the corresponding BD results, thus, demonstrating

he fidelity of the proposed algorithm for transient inhomoge-
eous flows. Furthermore, it should be noted that the stresses
redicted by the different FENE models are closer to each
ther near the centerline (where γ̇ → 0) because ηp0 and ψ10
f the FENE models have been matched. As expected away

rom the centerline, the stresses predicted by the FENE bead-
pring models with more number of segments are smaller. This
s consistent with the trend observed as a function of γ̇ shown
n Fig. 1.

m
l
m
p

Fig. 5. Steady state profiles of: (a) Wel; (b
; (b) N = 3; (c) N = 6; during transience with (d) N = 3 and Nf = 2048.

Fig. 6 shows the transient normal (τrr) and shear (τrz) stress
rofiles at different locations, r = 1.0, 0.6 and 0.2 across the
adius. The stress profiles obtained using the two sets of Brow-
ian configuration fields at the different radial locations and
or the different number of segments are sufficiently close to
ach other, thus indicating the convergence of the results. The
hear stress profiles on the wall (r = 1), as expected, satisfy the

acroscopic force balance, which in terms of the dimension-

ess quantities is 
P + 2τrz + 2β(duz/dr) = 0. The residue in the
acroscopic force balance at steady state, relative to the net

ressure force is on the order 10−4, indicating that the problem

) τrr; (c) τrz for the Poiseuille flow.
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Fig. 6. Startup profiles of: (a) τrr at r = 1.0; (b) τrz at r = 1.0; (c) τrr at r =

as been solved self-consistently with adequate accuracy. The
ontribution of τrz to the macroscopic force balance is large, i.e.,
3.76, 31.60, and 31.35% relative to the net pressure force for the
= 1, 3, and 6 segment FENE bead-spring models, respectively,

uggesting that the polymeric stress significantly modifies the
ewtonian velocity profile in this problem.

.3. 4:1:4 axisymmetric contraction–expansion flow

The 4:1:4 axisymmetric contraction–expansion flow has been
hosen to demonstrate the fidelity of the algorithm in a complex
inematics flow. The schematic representation of the flow geom-
try is presented in Fig. 2(e). The contraction ratio (R1/R2) is
elected to be 4, the re-entrant corner curvature (Rc/R2) is fixed
o 0.25, the contraction (throat) length (Lc/R2) is set to 1.8, and
he upstream and downstream sections of the flow geometry are
hosen to be sufficiently long so that the fully developed flow
an be assumed at the entrance and exit. The flow domain is
ivided into a finite element mesh consisting of 2736 quadri-
ateral elements, and the mesh topology near the contraction
egion is depicted in Fig. 2(f). The standard no-slip boundary
onditions at the wall, symmetry boundary conditions along the

enterline (r = 0), periodic boundary conditions at the entrance
nd exit, and fully developed velocity boundary condition at the
ntrance are imposed. The characteristic velocity scale (uc) is
elected to be the maximum velocity at the entrance and the

i
f
m
d

d) τrz at r = 0.6; (e) τrr at r = 0.2; (f) τrz at r = 0.2 for the Poiseuille flow.

haracteristic length scale (Lc) is selected to be the radius of
he contraction tube R2. The ratio of the solvent viscosity to the
ero shear polymer viscosity (β) is set to 0.9231. The FENE
ead-spring models with bmax = 225, and N = 1 and 3 are used
o characterize the polymer molecules.

BCF simulations were conducted with Nf = 1024 adopting
rst-order continuation in the We number such that the pressure
rop across the flow geometry (Fig. 2(e)) reaches steady state
t each We number. Representative results at two We numbers,
amely, 0.325 and 0.758, are presented. The steady state pres-
ure drop at these We numbers is considerably different from the
alue (182.76) for the Newtonian flow (We = 0), specifically, at
e = 0.325 it is 178.57 for N = 1 and 180.25 for N = 3, where as at
e = 0.758 it is 186.36 and 188.35 for N = 1 and 3, respectively.
ig. 7 shows the streamlines pattern at the two We numbers.
t We = 0.325, the upstream vortex becomes slightly larger than

he downstream vortex, and the pressure drop for both the FENE
odels (N = 1 and 3) is less than the Newtonian pressure drop.
n the contrary, at We = 0.758, for both the FENE models a sig-
ificant growth of the upstream vortex size is observed and the
ressure drop is also higher than the Newtonian value. More-
ver, the upstream vortex size and the overall pressure drop

s larger for N = 3. This suggests that the internal degrees of
reedom of the bead-spring model used to characterize the poly-
er molecules influence both the pressure drop and the vortex

ynamics. A detailed analysis of the pressure drop and the vortex
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Fig. 9 in which the CPU times are scaled with those shown in
Table 3. The CPU time that we report in this study is the CPU
time needed to run 450 time steps, that is, the difference between
the CPU times for the initial 500 and 50 time steps. Subtract-

Table 3
CPU time for different number of processors, fields and segments

CPU Parameters fixed Elements Flow Time (min)

CPUN=1 Nf = 1024, Np = 8 400 Poisuille 55.6
50 Poisuille 5.3
50 Plane Couette 4.0

CPUNf=512 N = 3, Np = 8 400 Poisuille 87.5
50 Poisuille 8.4
ig. 7. Steady state streamlines pattern of the 4.1:4 contraction–expansion flow
c) N = 1 at We = 0.758; (d) N = 3 at We = 0.758.

ynamics as a function of the We number, maximum extensi-
ility, and internal degrees of freedom will be provided in an
pcoming article.

Fig. 8 shows the steady state stress profiles (τzz) in the
ontraction region along a streamline near the wall and along
he center streamline (r = 0), respectively, for We = 0.325 and
e = 0.758. τzz has been selected to show the accuracy of the

omputations mainly because of its large magnitude and sig-
ificant variation in the contraction region. The stress profiles
long selected streamlines depicted in Fig. 8(e) and (f) have
een obtained via Lagrangian integration utilizing the self-
onsistent local velocity vectors and a fourth-order Runge–Kutta
ethod with a time step 
t = 10−3. The stress profiles follow

he expected trend, that is, along the streamline near the wall
he stress grows steeply due to the excessive stretching around
he corners accompanied by the stress relaxation between the
orners, and along the center streamlines the stress increases
moothly followed by a smooth decrease as the fluid accelerates
nd then decelerates. The comparison of the BCF results with
hose from the BD results, obtained using the predictor–corrector
cheme [15] with the ensemble size Nt = 1024 following the
agrangian approach along the streamlines demonstrates the
ccuracy of the semi-implicit algorithm.

.4. Computational efficiency
In this section, we present the CPU time comparison of the
lgorithm for the plane Couette and Poiseuille flow benchmark
roblems, described in Sections 5.1 and 5.2 using the origi-

C

ENE bead-spring models with (a) N = 1 at We = 0.325; (b) N = 3 at We = 0.325;

al 5 × 10 element mesh (Fig. 2(c)), and a mesh consisting of
0 × 40 uniformly sized quadrilateral elements (Fig. 2(d)) for
he Poiseuille flow problem. The CPU time study has been con-
ucted on the 64 processor SGI Origin 2000 machine using the
ime step 
t = 10−3, and applying the set of rules defined in
ection 3.1 to accelerate the computations. The CPU time is
rimarily effected by three parameters: the number of segments
n the bead-spring chain (N), the number of Brownian config-
ration fields used (Nf), and the number of processors chosen
Np) for the parallelization. We have studied the effect of all of
hese parameters on the CPU time and the results are shown in
50 Plane Couette 6.88

PUNp=2 N = 3, Nf = 1024 400 Poisuille 667.34
50 Poisuille 68.02
50 Plane Couette 49.63
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ig. 8. Stress profiles (τzz) along selected streamline originating from: (a) (0,3.9)
lso shown are the paths of the selected streamlines at (e) We = 0.325 and (f) W
ng the CPU time for the first 50 time steps eliminates the time
evoted to the initialization and data transfer processes, there-
ore, a better estimation of the CPU performance is obtained.
urthermore, we chose the first 500 time steps to get a conser-

v
o
e
n

= 0.325; (b) (0,0) at We = 0.325; (c) (0,3.9) at We = 0.758; (d) (0,0) at We = 0.758.
758.
ative estimation of the CPU time since during the initial stage
f a startup flow rapid changes to the polymer configuration are
xpected, therefore, a higher number of corrector steps might be
eeded.
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ig. 9. CPU time for 450 time steps with the fixed parameters shown in Table 3
f processors.

Fig. 9(a) shows the plot of the CPU time needed as a function
f the number segments, N = 1–6, used in the FENE bead-spring
odel. The CPU time increases linearly with the number of seg-
ents, which is similar to the trend observed using linear Rouse

hains (i.e., linear scale up is expected for Rouse chains) in the
ully implicit method by Ramirez and Laso [14]. This is due
o the particular choice of implementation, that is, the explicit
pdate (Eq. (18)) of the semi-implicit solution at the local Gaus-
ian qudrature points for each segment (Eq. (20)), which reduces
he scale up of the CPU time with the number of segments for the
on-linear FENE force law to be approximately the same as the
inear force law. The slopes of all the three CPU plots in Fig. 9
re close to one for the first three segments, thereafter the slopes
radually increase to a value slightly above one. The increase in
he slope is due to the fact that as the number of segments increase
he maximum extensibility of each segment decreases, therefore,
mall deviations in the computation of the configuration fields
ay lead to a large residue, requiring additional corrector steps

or the residue to meet the tolerance. Therefore, the increase in
he slope can be attributed to a pronounced non-linear effect of
he FENE force law. Clearly, increasing the number of configu-
ation fields increases the CPU time linearly with a slope close to
ne provided the communication requirements are minor. This
ssue is handled efficiency in our computations (see Fig. 9(b)).

In order to directly compare the CPU time of the proposed
lgorithm with the fully implicit method by Ramirez and Laso
14] we simulated the startup of plane Couette flow of Hookean
umbbells on a single Intel Xeon computer with a CPU speed
f 2.80 GHz using the 400 element mesh (Fig. 2(d)) at We = 1,

= 0.5, using Nf = 1000, with 
t = 0.1, and ε= 10−3. These are

he same simulation parameters as in the fully implicit method
14]. The comparison of the CPU time of the two methods
howed that our method is approximately 50 times faster than

d
a
e
p

arying: (a) number of segments; (b) number of configuration fields; (c) number

he fully implicit method to perform the time integration of 10
imensionless time units. A more comprehensive comparison
f the CPU time and memory requirements of both the meth-
ds is underway, and these results will be a subject of a future
ommunication. Furthermore, a comparison of the CPU time
ith the earlier semi-implicit algorithm [7] for dumbbell mod-

ls, where the spring force is treated implicitly showed that the
roposed algorithm is nearly four times faster in the case of the
00 element Poiseuille flow problem using Nf = 2048.

Fig. 9(c) shows the scale-up efficiency of the paralleliza-
ion scheme with the number of processors used. The scale-up
fficiency study has been performed using 2, 4, 8, 16 and 32 pro-
essors, and the scale-up efficiency was found to be about 90%.
n the parallelization scheme, only the macroscopic variables are
ommunicated, i.e., the velocity, velocity gradients, pressure and
tress variables, so the scale-up efficiency will be affected by the
esh size. The comparison of the scale-up efficiency of the 400

lement mesh and the 50 element mesh Poiseuille flow prob-
ems shows that the scale-up performance is not significantly
ifferent. Usually large finite element meshes are needed for
olving complex flow problems, in such situations the scale-up
fficiency will be slightly smaller, however, since the data com-
unication involved is not very intensive we anticipate that the

cale up would still be very efficient.

. Summary

In this study, an efficient algorithm for multiscale flow sim-
lation of dilute polymer solutions using bead-spring chain

escription of the polymer molecules has been presented. The
lgorithm self-consistently solves the stress and velocity fields at
ach time step in a decoupled fashion employing a highly com-
utationally efficient semi-implicit predictor–corrector scheme
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o reduce the non-linear BCF equations into a linear system
f equations. Flow of dilute polymeric solutions in three bench-
ark flow problems, namely, plane Couette, Poiseuille and 4:1:4

xisymmetric contraction–expansion have been simulated on a
arallel hardware architecture using FENE bead-spring models
ith the number of segments varying from 1 to 6. The results of

he benchmark problems have been verified by a direct compar-
son with Brownian dynamics results, and with the steady state
elocity profiles obtained via a Carreau model description, as
ell as by performing streamline integration. The comparison

howed that the results are in good agreement, hence demon-
trating the fidelity of the algorithm.

The results also demonstrate the linear scale up of the
PU time with the number of segments, which is due to the

emi-implicit treatment of the spring force that facilitates the
erforming of the BCF computations as if the segments were
ecoupled. In addition, due to the particular choice of our imple-
entation, that is, obtaining the solution for the spring force at

he local Gaussian quadrature points and employing it in the
xplicit update of the configuration field results in large sav-
ng in the computation time. Furthermore, a simple acceleration
cheme to speed up the computations is implemented that results
n a 40% saving in the computation time. A direct compari-
on of the algorithm with the fully implicit method by Ramirez
nd Laso [14] showed that the algorithm is approximately 50
imes faster under the same simulation conditions. Currently,
e are performing multiscale simulations of 4:1:4 axisymmet-

ic contraction–expansion flows using the proposed algorithm
nd the results of these computations will be a topic of future
ommunication.
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