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Deformation of inherent structures to detect long-range
correlations in supercooled liquids
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We propose deformations of inherent structures as a suitable tool for detecting structural changes un-
derlying the onset of cooperativity in supercooled liquids. The non-affine displacement (NAD) field
resulting from the applied deformation shows characteristic differences between the high temperature
liquid and supercooled state, which are typically observed in dynamic quantities. The average mag-
nitude of the NAD is very sensitive to temperature changes in the supercooled regime and is found to
be strongly correlated with the inherent structure energy. In addition, the NAD field is characterized
by a correlation length that increases upon lowering the temperature towards the supercooled regime.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732859]

I. INTRODUCTION
Many liquids, when quenched fast enough, enter a su-

percooled regime that is signaled by an enormous increase in
viscosity eventually leading to glass transition. Several exper-
imental as well as theoretical studies have shown an accom-
panying qualitative change of the dynamics: while individ-
ual particle dynamics dominates at high temperatures, particle
motions become increasingly more cooperative and heteroge-
neous as the temperature is lowered.1–3 From the sizes of co-
operatively rearranging regions, a growing dynamical length
scale can be extracted near the glass transition.4–6

One of the most puzzling features of the supercooled
regime and the glass transition is the apparent lack of struc-
tural changes underlying the dramatic slowing down of the
dynamics. Some progress has recently been achieved in link-
ing structural and dynamical changes near the glass transition.
For a two-dimensional model system, a connection between
dynamical heterogeneities and local crystalline order was sug-
gested in Ref. 7. Such a connection appears to be absent in a
different two-dimensional system, where instead dynamical
heterogeneities seem to be correlated with local, short-time
dynamics8 and localized soft modes.9 A somewhat different
path has been followed by several researches, trying to relate
dynamical properties to inherent structures, which are the lo-
cal minima of the collective potential energy.10–13 It has been
shown that inherent structures govern the mechanical proper-
ties of amorphous solids.14–16 For supercooled liquids, more
and more evidence has been collected that qualitative changes
in the dynamical behavior are accompanied by changes in the
inherent structures.12, 17, 18 The local diffusivity, for example,
was suggested to be related to the basin depth of local inherent
structures.19 Similarly, unstable modes of saddle points in the
energy surface were found to be of major importance, not only
for the mobilities of particle clusters,20 but also for the glass
transition in general.21 Collective rearrangements in the inher-
ent structures corresponding to the dynamics of supercooled
liquids are reported in Ref. 22. Specially designed simulations

probing point-to-set correlations that are inspired by random
first order theory have revealed evidence for growing amor-
phous order in the supercooled regime.23 In some very recent
works, external forcing is applied to (some parts of) the sys-
tem in order to extract the characteristic sizes of cooperative
regions using mode-coupling24 or density functional theory.25

Under shear flow, it was found numerically that cooperative,
mobile regions can form anisotropic bands.26

We have found striking similarities in the onset of cooper-
ative behavior in dynamics and in the non-affine part of the in-
herent structure response to external deformations.27 That ap-
proach was motivated by a recent theory28 based on a general
framework of non-equilibrium thermodynamics. This thermo-
dynamic treatment requires information about the system’s
response to an applied, static deformation, and suggests that
the reversible part of glassy dynamics changes considerably
when approaching the glass transition. Above the glass tran-
sition, the particles can follow an imposed deformation more
or less freely, whereas when closer to the glass transition,
the particle movement becomes a hopping-like transition be-
tween different basins of attraction of the underlying inherent
structures.10, 29 By imposing the static deformations of inher-
ent structure configurations, we observed indeed a profound
difference in the non-affine displacements (NADs) when ap-
proaching the glass transition. From a systematic finite-size
scaling analysis, we found that the NAD field is characterized
by a static correlation length that is growing as in usual crit-
ical phenomena.30, 31 This length detects growing structural
correlations underlying the growing dynamical length scale
obtained from particle dynamics.4, 5, 32

Here, we present an extensive study of the NAD field in-
troduced in Refs. 27 and 30, which further demonstrates how
this quantity can effectively detect the onset of the cooperative
dynamics and shows a great potential to probe the underly-
ing structural correlations. The distribution of lengths changes
from exponential to power law upon entering the supercooled
regime and we can rationalize such a change in terms of a
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crossover from a viscous liquid to a regime dominated by
elastic effects. The mean displacement length depends expo-
nentially on the inherent structure energy, as we also discuss
using a simple toy model, and confirms the existence of two
well-distinguished regimes as a function of the temperature.
We analyze the different measures of correlations in the di-
rection of the NAD field and discuss their analogies with ob-
servations in the dynamics.6 Finally, we use a coarse-graining
procedure to extract the characteristic size of correlated re-
gions observed in the snapshots: we discuss different defi-
nitions of this length-scale and perform a finite-size scaling
analysis over different model systems, confirming the critical-
like behavior at low temperatures.

The paper is organized as follows. The model glass for-
mers used in the process and the numerical simulations are
described in Sec. II. In Sec. III, we briefly review the method
proposed in Ref. 27 to extract the displacements of inherent
structures. Our numerical results for the NAD are presented
in Secs. IV and V. Correlations between these displacements
are analyzed in Sec. V. We focus in Sec. IV on characterizing
the NAD lengths and introduce a simple model to rational-
ize the results. In Sec. VI, we extensively describe the coarse
graining procedure for the analysis of the NADs introduced in
Ref. 30 and apply it to the different model systems to extract
the temperature and the system size dependence of the cor-
relation length. Section VII contains further discussion and
conclusions.

II. MODEL DESCRIPTION

The studies presented in this paper are based on the com-
puter simulations of two different, well-established models
for structural glasses (see, e.g., Ref. 33).

The first model is the three-dimensional, binary mixture
of Lennard-Jones (BMLJ) particles introduced by Kob and
Andersen.34 Both particles have unit mass m and interact via a
Lennard-Jones potential, �ab(r) = 4εab[(σ ab/r)12 − (σ ab/r)6],
where the diameters and interaction energies are given by σ AA

= σ 0, σ AB = 0.8σ 0, σ BB = 0.88σ 0, εAA = ε, εAB = 1.5ε, and
εBB = 0.5ε. We have chosen σ 0 as the unit of length and ε

as the unit of energy. The potential is truncated and shifted to
ensure �ab(rcut) = 0, where the cut-off distance is chosen as
rcut = 2.5σ ab.

The second model considered in this study is a 50 : 50 bi-
nary mixture of soft spheres (BMSS) in three dimensions.23

Both particle types have unit mass and the interaction po-
tential is given by �ab(r) = ε(σ ab/r)12, σ ab = σ a + σ b,
a, b = {A, B}, where the sizes of particles σ ab are fixed
by setting σ A/σ B = 1.2 and the effective diameter to one;
that is, (2σA)3 + (2σB)3 + 2(σA + σB)3 = 4σ 3

0 . σ 0 is the unit
of length and density is chosen to be ρ = N/V = σ−3

0 . A
smooth cut-off is used by setting the potential to �ab(r)
= Bab(a − rcut)3 + Cab for a > r > rcut = √

3 and �ab(r)
= Cab for r > a. The values of Bab, Cab, and a are fixed by
imposing the continuity up to second derivative for �ab(r).

Bab = 169ε

r3
cut

(
σab

rcut

)12

,

TABLE I. Some parameter values for the two models used. TK denotes the
(extrapolated) Kauzmann temperature and TMCT is the mode-coupling tem-
perature. The mode coupling temperature is estimated in Refs. 34 and 35
for the BMLJ and BMSS models, respectively. For the BMLJ model, TK

has been estimated numerically as TK ≈ 0.30 (Refs. 36 and 37). There have
been several theoretical and numerical estimates for TK in the BMSS model;
0.11 � TK � 0.14 have been reported in Refs. 38 and 39. Here, we take the
numerical estimate given in Ref. 38. The onset temperature Ta of the non-
Arrhenius behavior of transport properties is estimated to be Ta ≈ 1.0 for
the BMLJ model. Ta depends somewhat on the quantities investigated and is
to be taken as a rough estimate. A careful investigation of Ta for the BMLJ
model is presented in Ref. 40.

Abbr. Potential �ab A:B TK TMCT

BMLJ 4εab[(σ ab/r)12 − (σ ab/r)6] 80:20 ≈ 0.30 0.435
BMSS ε(σ ab/r)12 50:50 ≈ 0.11 ≈ 0.226

Cab = 5ε

13

(
σab

rcut

)12

,

a = (15/13)rcut.

The potential is then shifted to ensure that �ab(a) = 0.
Main parameter values for the two models are shown in

Table I. For the ease of notation, we use the same symbols for
original and reduced quantities.

For both model systems studied here, we have care-
fully prepared 10−100 independent samples for each tem-
perature by molecular dynamics simulations, starting from
statistically independent, random initial configurations. Pe-
riodic boundary conditions were used in all cases. We have
studied systems with a number of particles N varying from
2000 up to 64 000, but most of the data here refer to
systems with N = 8000. The simulations were performed
with the molecular dynamics simulation package LAMMPS
(Ref. 41). The initial particle configurations were equilibrated
at several decreasing values of temperature in the range 0.20
≤ T ≤ 1.0 (BMSS), and 0.42 ≤ T ≤ 3.5 (BMLJ). Comparing
these temperature intervals with the mode-coupling temper-
ature TMCT given in Table I, our simulations cover the high
temperature regime down to the supercooled state and ex-
tend below the mode-coupling temperature. For all systems,
slowly cooling the configurations towards low temperatures
was achieved by coupling the system to Nosé-Hoover ther-
mostat with prescribed, slowly decreasing temperature proto-
col. When the target temperature was reached, the tempera-
ture of the thermostat was held constant and the system was
equilibrated at this temperature still in contact with the ther-
mostat. We verified that no significant drift in the internal
energy, nor in the kinetic temperature, could be observed af-
ter the thermostat was switched off and the system was fur-
ther evolved, now in the microcanonical ensemble. To test
the equilibration of samples, we also compared the kinetic
(Tkin) with the configurational temperature (Tconf) (Ref. 42).
The kinetic temperature is defined by Nf kBTkin = ∑N

j=1 mv2
j ,

where Nf denotes the number of degrees of freedom. While
the kinetic temperature is entirely determined by the parti-
cle velocities, the configurational temperature Tconf depends
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on the positions of the particles via kBTconf = 〈|∑iFi|2〉/
〈− ∑

j∇ j · Fj〉. Here, Fj denotes the total force on particle
j and ∇ j = ∂/∂rj. We verified that kinetic and configurational
temperature agree for our equilibrated samples within numer-
ical uncertainties. Finally, we calculated two-time correlation
functions and verified that no significant aging was observed
in the equilibrated samples for a waiting time of the order of
40τα , where τα is the structural relaxation time.

III. METHOD FOR EXTRACTING NAD

To extract non-affine particle displacements, we pro-
ceeded as proposed in our earlier work.27 In order to make
the paper self-contained and settle the notation, we briefly re-
view this method here.

A. Affine deformations

We apply static, affine shear deformations to the particle
configuration by mapping the particle positions ri → rd

i , with
rd
i = ri + γyiex , where γ denotes the deformation amplitude.

Since we aim at the non-affine part of the inherent structure
deformations,28 we suggested in Ref. 27 the following proce-
dure, summarized schematically in Fig. 1: start with config-
uration X = {ri} at a given temperature T. Prepare one con-
figuration Xdq by first applying the static deformation ri → rd

i

and subsequently finding the inherent structure corresponding
to this deformed configuration. The other configuration Xqd

is prepared by first finding the inherent structure correspond-
ing to the initial configuration X and after that, subjecting the
inherent structure configuration to the same deformation. Al-
most all subsequent analysis is based on the comparison be-
tween the configurations Xdq and Xqd, which we denote as
NAD, dj ≡ rdq

j − rqd
j . Thereby, we focus on the dependence

of the NAD on the temperature T of the initial configuration
and the amplitude γ of the applied deformation. We ensure
that the total displacement vanishes,

∑
jdj = 0, since a rigid

translation can always be added and does not contribute to the
NAD.

B. Inherent structure generation

From the equilibrated samples, we generate inherent
structure (IS) configurations by minimizing the potential en-
ergy via the conjugate gradient method.43 The minimization is
stopped when the potential energy change is less than a toler-
ance value 10−7ε. We verified that the results are insensitive to

d

Xd

Xqd
dqX

X

Xq

IS

γ

γ

IS

FIG. 1. Schematic plot of the preparation of the configurations Xqd and Xdq

and their NAD d.

a further decrease of the tolerance level and that the mean in-
herent structure energies for different temperatures agree well
with published data.17, 44, 45 For generating the inherent struc-
ture of deformed configurations, Xdq, the minimization is per-
formed in a deformed simulation box or, equivalently, using
Lees-Edwards boundary conditions.

C. Inherent structure properties

Inherent structures can be characterized by their mean en-
ergy eIS. In the inset of Fig. 2, we plot eIS of the inherent struc-
ture Xq as a function of T. Starting from a high temperature
plateau, eIS decreases upon cooling in the so-called landscape
dominated regime.12 In addition, we have performed various
types of structural analysis on the IS of different model sys-
tems, using, for example, pair correlation functions, coordi-
nation numbers, or bond order parameters, to characterize the
differences between the particle configurations in the initial
state and in the IS. As an example, in Fig. 2 we plot the av-
eraged bond orientational order parameter 〈Q6〉 for the model
BMLJ. 〈Q6〉 is calculated by averaging, for each temperature,
over 100 independent samples of N = 8000 particles, the lth
order bond orientational order parameter46 with l = 6. For
particle j, this quantity is calculated as

Q
j

l =
√

4π

2l + 1

(
l∑

m=−l

∣∣Qj

lm

∣∣2

)1/2

, (1)

where Q
j

lm is the locally averaged bond orientational order pa-
rameter of order l and degree m as is defined in Refs. 46 and
47. In the main frame of Fig. 2, 〈Q6〉 is plotted as a function
of temperature for the starting configuration X and its inher-
ent structure Xq. We observe that, in the range of tempera-
tures where eIS displays a strong dependence on T, the 6th
order averaged bond orientational order clearly increases for
both X and Xq. Also, as expected, the value obtained for Xq

is larger. In spite of this, the values of 〈Q6〉 are consistently

FIG. 2. (Main frame) Average bond orientational order measured in the start-
ing configuration X and its inherent structure Xq as a function of temperature
for BMLJ model. (Inset) Average energy of the inherent structure configura-
tion as a function of temperature T for BMLJ model. Error bars are smaller
than the size of the symbols.
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much lower than those expected for various crystal lattices
(e.g., Q6 ≈ 0.66 for perfect icosahedral ordering), demonstrat-
ing that there is no significant crystallinity present in the X and
Xq configurations.48

IV. CHARACTERIZING THE NAD FIELD

We have applied the procedure described in Sec. III to the
well-equilibrated configurations of the two model systems.
Various temperatures of the initial configurations as well as
different deformations are considered. Results are obtained as
averages over independently generated configurations and er-
ror bars are calculated from the standard deviation.

A. Distribution of NAD vectors

We start by characterizing the distribution of the NAD
vectors h(d). For the small deformations 10−5 � γ � 10−2 we
are interested in, the distribution h(d) is found to be isotropic
for homogeneous deformations and covers a range of dis-
placement magnitudes. We therefore conclude that our regime
of deformations is strong enough to allow the escape from
local minima. On the other hand, the deformations are small
enough such that no obvious trace of the imposed shear geom-
etry is seen in h(d). This can be seen from Fig. 3, which shows
the distribution of the Cartesian NAD components h1(|dα|),
α = 1, 2, 3. The distributions h1 show a maximum at dα

= 0. At high temperatures, h1(|dα|) decays exponentially,
h1(|dα|) ∝ exp [−|dα|/d̄c], with fit parameter d̄c ≈ 0.1 of the
order of the mean NAD length at this temperature. This be-
havior is reminiscent of the exponential distribution observed
in Ref. 22, also with d̄c ≈ 0.1, for displacements between in-
herent structures corresponding to the system’s dynamics.

This finding indicates again that the non-affine inherent
structure deformations bear remarkable similarities to dynam-
ical properties. At low temperatures, the distribution h1 is
much narrower, in agreement with the impression from the
snapshots shown in Fig. 4. More quantitatively, one finds

FIG. 3. Distribution of mismatch components h1 (defined in the text) in the
BMLJ model for the homogeneous deformation of strength γ = 10−4. Tem-
perature is increasing as T = 0.43, 0.55, 0.66, 1.0 from left to right at the
bottom of the figure. At high temperatures, the distributions are exponential
(dashed line shows a fit exp [−|dα |/0.1] to the data at T = 1.0), but start to
develop a power-law tail at low temperatures. The solid line shows a fit to a
power-law with an exponent −5/2.

that the distribution at low temperatures is no longer de-
caying exponentially but seems to exhibit power-law tails
h1(|dα|) ∝ |dα|−ν with an exponent approaching ν ≈ 2.5 at
the lowest temperatures investigated (see the solid line in
Fig. 3). It is interesting to note that the power-law distribution
h1(|dα|) ∝ |dα|−5/2 is predicted for the induced radial displace-
ments in an elastic continuum around an expanded spherical
shell.49, 50 If we can identify the latter with localized rear-
rangements, the qualitative change of the NAD distribution
from exponential to a power-law at lower temperatures appar-
ently indicates the crossover from a viscous liquid to a regime
with more pronounced elastic effects. From the goodness-of-
fit, we determine the crossover temperature where the power-
law and exponential distributions fit equally well to the data.
We find the crossover temperature to be located in the interval
T ∈ (0.65, 0.70) for the BMLJ model (data not shown).

FIG. 4. NAD field for one selected configuration at high (T = 1.0 left) and low (T = 0.42 right) temperature. Homogeneous deformation of strength γ = 10−4

was applied to the BMLJ system. For clarity, only the particles on visible surfaces are shown.
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FIG. 5. The mean length of the mismatch vectors d̄ defined in the text as a
function of temperature for the BMLJ model and for different deformation
magnitude γ .

B. Mean mismatch length

A first characterization of the NAD field {dj} is provided
by their mean length,

d̄(T , γ ) = 〈
N−1

∑
j

d2
j

〉1/2
, (2)

where the ensemble average is performed over the indepen-
dently generated samples. Figure 5 shows d̄ as a function
of temperature T for homogeneous deformations of different
strengths γ for the BMLJ model. Depending on the value of
γ , we distinguish three different regimes. For small values of
γ (γ � 10−4), we find that d̄ is essentially independent of γ .
This is an interesting observation as it suggests that we have
reached a regime of weak perturbations, where details of the
local deformation are less important for d̄. Moreover, d̄ de-
creases drastically, by roughly two orders of magnitude, as
the temperature is lowered from T � 1 to T ≈ 0.45. For larger
deformations 10−3 � γ � 10−1, the decrease of d̄ gets less
and less pronounced, until d̄ becomes essentially independent
of temperature for deformations γ � 0.1. The particular form
of the drastic decrease in d̄(T ) depends on the model system.
Qualitatively, however, the observations are the same also for
the BMSS model.

The decrease of d̄ with temperature for small deforma-
tions shown in Fig. 5 is quite similar to the decrease of the in-
herent structure energy eIS (see Ref. 13 and the inset of Fig. 5).
Therefore, we parametrically plot in Fig. 6 the average NAD
length d̄ versus eIS for the different temperatures investigated.
Our result indicates that d̄ is indeed strongly coupled to the
inherent structure energy. From Fig. 6, we observe that d̄ in-
creases exponentially with the inherent structure energy. More
quantitatively, we observe a crossover from d̄ � e−β1|eIS|, β1

= 22.5 at low temperatures to d̄ � e−β2|eIS|, β2 = 61.9 at
higher temperatures. Since the mean inherent structure en-
ergies vary inversely proportional with temperature in the
landscape-influenced regime,13 we find that d̄ � e−A/T with
a different constant A in the two regimes. The crossover from

FIG. 6. (Main frame) The mean length of NAD vectors as a function of in-
herent structure energy eIS for the BMLJ model. Note the crossover from
high temperature to low temperature regime, which happens slightly below
Ta. (Inset) Temperature dependence of d̄ and eIS.

β1 to β2 takes place at eIS ≈ −7.63, which corresponds to a
temperature T ≈ 0.6, near to the inflection point of eIS(T), see
the inset of Fig. 5.

C. Simple toy model for inherent structure NAD

Several features of the NAD field can be rationalized us-
ing a simple toy model. Let X denote again the state of our
system and Xq its closest minimum (inherent structure). For
simplicity, however, the toy model describes these states by
a single scalar variable. The imposed deformation of strength
γ deforms these configurations to Xd = X + g and Xqd = Xq

+ g, respectively, where g denotes an average amount of dis-
placement. The inherent structure of the deformed system is
Xdq = Xq + n
, where 
 denotes a typical size of an inherent
structure basin. The integer n takes values n = 0, 1, . . . , with
n = 0 corresponds to staying in the same minimum, n = 1 to
the nearest minimum, etc. The NAD d is therefore given by d
= n
 − g and its mean squared average by

d̄ =
[∑

n

pn(n
 − g)2

]1/2

. (3)

In Eq. (5c), we have introduced the probabilities pn of finding
Xdq in the nth nearest minimum. In the limit of pn → δn, 0, we
find that d̄ = g, i.e., the NAD length is given by the imposed
deformation. This is the case for extremely low temperatures
and/or vanishing deformations, not considered in the present
study. For very large deformations compared to the basin size
g 
 
, we expect an equal probability of entering a basin n in
the neighborhood �m around m = g/
, where m 
 1. There-
fore, pn ≈ 1/2�m for |n − m| < �m and zero else. Inserting
this expression into Eq. (3), we find d̄ ≈ g�m/m → �m
.
Hence, in the case of very large deformations, the average
NAD is expected to approach a limiting value. The simula-
tion data in Fig. 5 seem to indicate such a trend. However, the
mean length remains weakly sensitive to temperature varia-
tions at the largest deformation investigated.
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Finally, we consider the case of rather small deforma-
tions, where one can approximately set pn = 0 for n > 1. The
important quantity is then p1, the probability of leaving the
basin at the imposed deformation γ . Accounting in a rough
way for the equilibrium distribution within the basin, we as-
sume p1 = γ e−βε , where ε denotes a typical energy barrier
and β = (kBT)−1. The values of γ are restricted to γ ≤ 1 in
order to ensure proper probabilities p1 ≥ 0 for all tempera-
tures. With these assumptions, the mean NAD becomes

d̄ = 
[γ (1 − 2γ )e−βε + γ 2]1/2, (4)

where we have assumed g = γ
, i.e., the important length
for the imposed displacement is the typical basin size. Equa-
tion (4) predicts a number of features that can be tested by
simulations. First, for high temperatures, d̄ reaches a lim-
iting value d̄ → 


√
γ (1 − γ ) independent of temperature,

in agreement with simulation results.31 This limiting value
decreases as γ increases towards its maximum value. Sec-
ond, for small deformations γ � 1, Eq. (4) simplifies to
d̄ = 


√
γ exp [−βε/2] and predicts a square-root increase of

d̄ with the strength γ of imposed deformation. In the sim-
ulations for the BMLJ model, d̄ indeed increases with γ ,
the exponent, however, changes with temperature from 0.2 at
T = 1 to 1.0 at T = 0.42 (Ref. 31). Third, when the tem-
perature is decreased, Eq. (4) predicts a decrease of d̄ ac-
cording to the Boltzmann factor. This is in agreement with
the results discussed in Sec. IV B (see also Fig. 6). Finally,
Eq. (4) shows an exponential dependence of the average
NAD on the barrier height ε. If we can associate the inher-
ent structure energy with an effective barrier height, this pre-
diction is consistent with our numerical results (see Fig. 6).
More quantitatively, we assume that the effective barriers
are given by ε(T ) = −2β1kBT (eIS(T ) − e∞

IS ), where e∞
IS is

the high-temperature plateau of the inherent structure energy
and the coefficient β1 describes the dependence of d̄ on eIS

in the low temperature regime, as introduced at the end of
Sec. IV B. A linear relation between mean inherent structure
energies and barrier heights was indeed found numerically for
low temperatures in the BMLJ model51 and similarly in a bi-
nary soft sphere model.21 For low temperatures, the mean in-
herent structure energy decreases as eIS = e0 − σ 2/kBT, where
σ 2 can be interpreted as the variance of the inherent structure
energy distribution in the Gaussian energy landscape model.13

In fact, we find in this regime that the height of effective bar-
riers decreases linearly with temperature, ε(T) = ε0 − αkBT
for kBT < ε0/α, where ε0 = 2β1σ

2 and α = 2β1(e0 − e∞
IS ).

For the BMLJ model, we have e∞
IS ≈ −7.55, e0 ≈ −7.39, σ 2

≈ 0.12, β1 ≈ 22.5, resulting in ε0 ≈ 5.4 and α ≈ 7.6. The
value of the extrapolated barrier height ε0 is close to the one
obtained from the mean waiting time for low-lying IS.51

Within Eq. (4) of the toy model, the crossover from low to
high temperature behavior observed in Fig. 6 could be inter-
preted as different regimes in the potential energy landscape,
with different relations between minima (inherent structures)
and barrier heights. Interestingly, numerical simulations of
randomly perturbed inherent structures for the BMLJ model
indicated that the number of saddles vanishes exponentially
below T � 0.6,52 close to the temperature corresponding to

the inflection point shown in Fig. 6 as evaluated at the end of
Sec. IV B.

V. CORRELATIONS IN THE NAD FIELD

Not only the length of the NAD vectors, but also their
spatial correlation changes considerably between the liquid
and supercooled regime. Spatial correlations in the NAD field
can be clearly seen in the snapshots in Fig. 4 and were also re-
ported in our earlier study.27 In the following, we thoroughly
analyze them and use them to extract correlation lengths.

A. Correlated mobility and directions

We quantify correlations in the NAD field over a given
distance r and for deformation amplitude γ by

Cδ(r, γ ) = 〈∑i,j δdi δdj δ(r − rij )〉
〈(δd)2〉 , (5a)

C‖(r, γ ) =
〈∑

i,j

d
‖
i d

‖
j δ(r − rij )

〉
, (5b)

C⊥(r, γ ) =
〈∑

i,j

d⊥
i · d⊥

j δ(r − rij )

〉
, (5c)

where rij denotes the distance between particles i and j and
the average in the denominator is performed over all par-
ticles. The normalization is chosen such that Cδ = 1, C‖
= 1/3, and C⊥ = 2/3 for perfectly correlated particles and
Ca = 0 for uncorrelated displacements, a = {δ, ‖, ⊥}. The
same correlation functions were used in Ref. 6 in order to
study correlated displacements in hard sphere colloids. The
first function, Cδ measures correlations in the mobility, i.e.,
the magnitude of the particle displacements (with the aver-
age subtracted), δdj = |dj| − 〈|d|〉, whereas C‖, ⊥ is sensitive
to correlated directions. The latter distinguishes longitudinal
and transverse correlations of directions, with d

‖
i ≡ d̂i · r̂ij

and d⊥
i = d̂i − d̂

‖
i r̂ij , with r̂ij the unit vector connecting par-

ticles i and j and d̂i = di/|di |.
Fixing the particle separation around the first neighbor

shell and varying the deformation amplitude γ , we find that
all three correlation functions (5) are rather insensitive to γ

and start to decay only for γ � 0.1 (not shown). This value
is consistent with the threshold value determined in Ref. 53
for shear-induced transitions between different inherent struc-
tures. Since we observe correlated rearrangements at smaller
γ , we would rather conclude that such large deformations
induce transition between uncorrelated metabasins (see also
Fig. 12). The behavior of C‖ and C⊥, as well as the relation
Cδ > C‖ + C⊥ found, are quite similar to the one observed in
Ref. 6 if our deformation γ is identified with a properly scaled
time (for not too short times).

Next, we fix γ to a typical small value (γ = 10−4), as al-
ready done in Sec. IV and study the spatial dependence of the
correlation functions (5). We observe that the correlations in
mobility measured by Cδ increase as the temperature is low-
ered, but the spatial extent remains within a few particle di-
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FIG. 7. Correlation of longitudinal mismatch directions C‖ as a function of
particle separation r defined in Eq. (5). Homogeneous shear deformation with
γ = 10−4 was applied to the BMLJ model with N = 8000 particles. Inset
shows the length scale obtained by fitting an exponentially decaying function
to data.

ameters. Even shorter ranged are the transverse correlations
C⊥. The longitudinal correlations C‖, however, increase sig-
nificantly with decreasing temperatures, as shown in Fig. 7.
For small separations r, the correlation functions Ca oscil-
late due to the short-range ordering as measured by the pair
correlation function. For larger separations (r � 4), the os-
cillations have decayed and we observe an exponential de-
crease C‖(r) ∝ e−r/ξ‖ . We find the correlation length ξ ‖ to in-
crease from ξ ‖ ≈ 2.5 at high temperatures to almost 4 upon
approaching the glass transition. Similar observations have
been made in Ref. 54 in simulations of the NAD in amor-
phous solids and in Ref. 6 for displacements in hard sphere
colloidal systems when increasing the particle concentration.
In the latter, however, the length scale was found to remain on
the order of 3 particle diameters, increasing significantly only
beyond the glass transition. It was argued in Ref. 6 that the
long-range correlations of the longitudinal displacements re-
flect the string-like cooperative motion observed in computer
simulations.55 If this is indeed the case, our findings suggest
that these string-like motions arise due to underlying string-
like rearrangements between nearby inherent structures. At
larger distances, one would expect a hydrodynamic or elastic-
like response where the correlations decay not exponentially
but ∝1/r in three dimensions.56 In agreement with Ref. 6, we
find no indication of such a behavior, probably because the
correlation function has already decayed to such small values
that the numerical data do not allow us to detect the expected
power-law.

VI. COARSE-GRAINED NAD

We investigate correlations in the direction of the NAD
vectors with the help of a coarse-grained displacement field
around every particle,

Dj (b) = N−1
j

∑
k

d̂kwb

(
r

dq
jk

)
. (6)

FIG. 8. 〈D2〉1/2 defined in Eq. (6) as a function of b for selected tempera-
tures T. Results are shown for the BMLJ model under homogeneous shear
with γ = 10−4. Inset shows the growing length scale obtained by fitting an
exponential decaying function to data points, which are shown in main figure.

Here, we have defined the orientations d̂j = dj /|dj | and r
dq
jk

is the distance between particles j and k in the inherent struc-
ture of deformed configuration. Xdq, Nj = ∑

k wb(rdq
jk ) is the

number of neighbours of particles j within a distance b, and
wb(r) = 1 if r ≤ b and zero else. Since the mean length of the
NADs is strongly temperature-dependent (see Fig. 5), we use
the normalized displacements in the definition (6) in order to
separate this aspect and focus instead on the correlations be-
tween vector orientations.

When the coarse-graining length b is smaller than inter-
particle distances, only one particle contributes to the aver-
age in Eq. (6) and Dj = d̂j . As b increases, more and more
particles are involved in the average and the magnitude of Dj

decreases. Figure 8 shows the function D(b) = 〈D2(b)〉1/2 ob-
tained for the BMLJ model when subjected to homogeneous
shear deformation with amplitude γ = 10−4. The expected
decrease of D with b is indeed observed. For a fixed dis-
tance b, D(b) increases monotonically with decreasing tem-
perature. This behavior clearly indicates increasing correla-
tions between particle’s NAD orientations as the temperature
is lowered.

Moreover, Fig. 8 shows that these growing correlations
extend over distances larger than the particles diameter. Since
D(b) measures the root-mean-square NAD direction when av-
eraged over a length b, we expect D to decay when b ex-
ceeds the size of a correlated region. Therefore, the decay
D(b) ≈ exp [−b/ξ ′

D] allows to define a length scale ξ ′
D over

which the NAD vectors are correlated.16 At low temperatures,
we find that D(b) is well described by an exponential decay
over a wide range of smoothing lengths. The length scale ξ ′

D

that we obtain from a least-square fit to D(b) is shown in the
inset of Fig. 8 as a function of temperature. At high temper-
atures (T � 0.8), an exponential decay of D(b) can be ob-
served only in a narrow interval 2 � b � 4. In this regime, we
find an approximately temperature-independent length scale
of ξ ′

D ≈ 3. This length scale is somewhat larger than the size
of correlated liquid structure measured by the first peaks in

Downloaded 06 Jun 2013 to 129.132.209.102. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



024504-8 Mosayebi et al. J. Chem. Phys. 137, 024504 (2012)

FIG. 9. The coarse-graining function B(b) defined in Eq. (7) for selected
temperatures T. Results are shown for the BMLJ model under homogeneous
shear with γ = 10−4. Inset shows the growing length scale obtained by fitting
an exponential decaying function to data points, which are shown in main
figure.

the pair correlation function. Since local rearrangements have
to include neighboring particles, it is not surprising that ξ ′

D

is on the order of a few particle diameter in this regime. For
decreasing temperatures, we observe an increase of the corre-
lation length ξ ′

D to values of about 6 particle diameters. Qual-
itatively, the same observations are made also for the BMSS
model.

In order to quantify the correlations in the NAD vectors
in a different way and to show that considering the magnitude
in addition to the orientation does not alter the qualitative be-
havior, we use the same function proposed in Ref. 16 to study
the characteristic length scales of glasses,

B(b) =
〈∑

j

Uj (b)2

〉1/2

/d̄. (7)

In Eq. (7), Uj(b) denotes the coarse-grained NAD vector
Uj (b) = N−1

j

∑
k dkwb(rdq

jk ), which is the analogue to Eq. (6)
for the NAD dk instead of their unit vectors. By construc-
tion, the function B(b) has very similar limiting behavior as
D(b). For large b, B vanishes since

∑N
k=1 dk corresponds to

a rigid translation of the whole system and is conventionally
set to zero. For small b, Uj → dj and B approaches one. Fig-
ure 9 shows the function B(b) for the BMLJ model subject
to homogeneous deformation with γ = 10−4. We observe a
very similar behavior of B(b) compared to D(b). Thus, the
qualitative conclusions are robust and hold for different def-
initions of coarse-graining functions. For a more quantita-
tive comparison, we extract the correlation length ξ ′

B analo-
gous to ξ ′

D above from the decay B(b) ≈ exp [−b/ξ ′
B] (see

also the supplementary information in Ref. 30). The grow-
ing length scale, extracted by least-square fitting an exponen-
tially decaying function to the data, is plotted in the inset of
Fig. 9. The length scales ξ ′

D and ξ ′
B not only show a very sim-

ilar temperature-dependence, but are also quantitatively quite
similar.

A. Static length scale from histogram of
coarse-grained NAD

In addition to the quantities D(b) and B(b) that are av-
erages of the coarse-grained NAD, we have also studied the
distribution of the coarse-grained NAD orientations hb(D2)
and extracted a correlation length ξB directly from them. This
correlation length displays the same type of temperature de-
pendence of ξ ′

B and ξ ′
D and it is also quantitatively consistent

with them.
For small coarse-graining distances b, only a single par-

ticle contributes to the sum in Eq. (6). Hence, the histogram
of D2 values is peaked around 1, hb(D2) → δ(D2 − 1). When
coarse-graining over larger and larger distances b, Dj succes-
sively decreases and therefore hb accumulates more weight
at small values of D2 until hb becomes strongly peaked
near D2 = 0 when b becomes large.30 The observed behav-
ior bears some similarities to the distribution of order param-
eters near phase transitions, where the histogram switches
between mostly ordered to mostly disordered states when
passing through the transition. Here, the transition between
mostly correlated (peak of hb near 1) and uncorrelated (peak
near 0) regions happens at a value of b, which strongly
increases with decreasing temperature. Therefore, the his-
tograms hb(D2) allow us to define a static correlation length
ξB as the value of b that characterizes this transition. As in
Ref. 30, we choose as definition the coarse-graining distance
b for which the peak-location has shifted from one to 1/e. The
length ξB measures the average domain size of NADs over
which displacements are correlated. The temperature depen-
dence of ξB for BMLJ (BMSS) model is shown in the inset
of Fig. 10 (Fig. 11). While the value of ξB is on the order of
a particle diameter σ 0; at high temperature, it increases con-
siderably by cooling the system towards supercooled regions
in quantitative agreement with the behavior of ξ ′

B and ξ ′
D dis-

cussed in Sec. VI (see also T values listed on Table I). Alterna-
tively, one also can define ξB as the coarse-graining distance
for which the variance 〈D4〉 − 〈D2〉2 is maximized. The tem-
perature dependence of ξB is robust and does not depend on
different definitions.30, 31

How sensitive is the length scale on the amplitude γ

of the applied shear deformation? Figure 12 shows that for
small deformations, γ � 10−4, the correlation length ξB be-
comes independent of γ . This finding allows us to interpret
ξB found above as an intrinsic property of the system, charac-
terizing the correlation between two nearby inherent structure
configurations. When increasing the deformation amplitude
beyond 10−3, ξB decreases until the temperature-dependence
is washed out by the shear. In this regime, the shear deforma-
tion is strong enough to decorrelate the initial and final inher-
ent structure configuration, which may be interpreted in terms
of metabasin transitions.53

We want to stress once more that the procedure for
obtaining the correlation length in this work is performed
just on simulation snapshots with static deformation. Hence,
our length scale has a purely static character and its signif-
icant increase upon cooling can be interpreted as a struc-
tural signature of different dynamical regimes in supercooled
liquids.
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FIG. 10. Data collapse for the BMLJ model. (Inset) Static correlation length
ξB, extracted from the histogram of coarse-grained NAD orientations as a
function of temperature for different system sizes.

B. Finite-size scaling analysis

Figures 10 and 11 show that ξB depends strongly on the
linear size L of the system. The strong system-size depen-
dence together with the significant increase of ξB is remi-
niscent of critical phenomena. There, the growing correlation
length of the order parameter characterizing the transition gets
cut-off by the system size. To test if the system-size depen-
dence of ξB has any critical character at low temperatures, we
perform a finite-size scaling analysis. We assume that the cor-
relation length—associated with an unknown order parameter
for glasses—diverges with an exponent ν at the critical tem-
perature Tc as ξ ∼ t−ν , where t is the reduced distance from
the critical point, t = (T − Tc)/Tc. Therefore, ξB should di-
verge as well, and in an infinite system ξB ∼ t−ρ , where ρ

is the critical exponent characterizing its divergence. On the
basis of the scaling hypothesis for critical phenomena,57 the
corresponding quantity ξB, L(T) in a finite system of linear size
L should follow the behavior

ξB,L(T ) ∼ Lρ/νQξB
(L1/ν t), (8)

FIG. 11. Same as Fig. 10 but for the BMSS model.

FIG. 12. The length scale extracted from the peak-location of histograms of
coarse-grained NAD orientations as a function of temperature T for different
strength of shear deformation γ for the BMSS model with N = 16000. At
low γ , the length becomes independent of deformation magnitude and hence
an intrinsic property of the system.

where QξB
(x) is a universal scaling function. Therefore, plot-

ting ξB, L(T)L−ρ/ν as a function of the scaling variable tL1/ν

should collapse all data points for different system sizes onto
one master curve. The occurrence of a thermodynamic phase
transition has been put forward by the random first order the-
ory (RFOT) and related theories of the glass transition58, 59

and it has been discussed whether this could take place at the
temperature where the extrapolated configurational entropy
vanishes TK (the Kauzmann temperature). Figure 10 shows
the data collapse obtained for the the BMLJ model using TK

as the critical temperature.58, 59 For the BMLJ model, TK is es-
timated numerically to be TK ≈ 0.30 (Refs. 36 and 37). Fixing
this value for Tc, we have varied the critical exponents ν and
ρ. The best data collapse is obtained for the values ρ ≈ 0.9
± 0.1 and ν ≈ 0.65 ± 0.1, which is the case shown in
Fig. 10. The error bars for the critical exponents are estimated
by varying the latter until the quality of data collapse starts
to get worse. Because of very long equilibration time of the
system at low temperature and of the small increase of ξB for
small system sizes, our data are still relatively far from the
hypothetical critical point and this might be one of the rea-
sons for the rather large uncertainties in the values of these
exponents. The good collapse of the numerical data, how-
ever, indicates that the critical region is large enough to be
detected in the temperature range where we could equilibrate
our systems. In Ref. 30, we have performed the finite-size
scaling analysis by lifting the assumption Tc = TK. The results
showed that one still could get a data collapse for values of Tc,
which lay within the interval 0.25 ≤ Tc ≤ 0.4. For the BMSS
model, TK is estimated to be TK ≈ 0.11 (Ref. 38). Fixing Tc to
this value, the best data collapse is obtained by choosing the
critical exponents as ρ ≈ 1.5 ± 0.2 and ν ≈ 0.60 ± 0.15. The
case is shown in Fig. 11. The value of the exponent ν is simi-
lar for the BMLJ and BMSS models and this suggests that the
divergence of the underlying correlation length ξ associated
with the order parameter of the transition has the same origin
in both cases. In Ref. 30, we have shown that the dependence
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of relaxation time and configurational entropy on ξB for the
BMLJ model are also in good agreement with the predictions
of the RFOT. It is interesting to notice that, within the stan-
dard RFOT (Refs. 58 and 60), the mosaic length scale ξm is
expected to grow significantly only at very low temperatures
(T < TMCT) where long-lived metastable states occur, whereas
our results indicate that the characteristic length scale ξB starts
to grow already at relatively higher temperatures. The growth
of the so-called point-to-set correlation length at (T > TMCT)
has also been observed in the recent numerical simulations
of three glass formers in Ref. 61. Overall, the picture emerg-
ing from our results is qualitatively consistent with the RFOT
scenario. On the other hand, the uncertainties in the values
of the critical exponents, as well as different results obtained
in other recent studies,47 indicate that further quantitative in-
vestigations are still needed to better clarify the nature of the
critical behavior observed here.

VII. CONCLUSIONS

Cooperatively rearranging regions (CRR) play an im-
portant role for the dynamics of supercooled liquids with
their sizes growing moderately upon approaching the glass
transition.4–6 Very recently, structural signatures of the CRR
have been detected, suggesting medium-range order7 or lo-
calized soft modes9 as the triggers of the rearrangements.
Here, we have shown by extensive molecular simulations
that correlations in neighboring IS are quite reminiscent of
CRR that are observed in the system’s dynamics.6 The be-
havior we report here is found for different models of fragile
glasses, i.e., the Kob-Andersen model and a binary soft sphere
mixture. The distance between two IS—that are related via
shear deformation of rather small amplitude γ —sharply de-
creases with decreasing temperature below the onset temper-
ature of the landscape-dominated regime.40 We observe that
the mean distance between the two IS varies exponentially
with the inherent structure energy eIS. Furthermore, we ob-
serve a crossover between two regimes that is also present in
a qualitative change of the NAD distribution from an expo-
nential to a power-law shape. The exponent of the latter can
be rationalized from elasticity arguments.49 We use different
measures for the correlations of NAD vectors. Qualitatively,
we find similar results as experiments on correlated motions
in colloids.6 Quantitatively, the static correlation length ex-
tracted from the NAD of IS grows significantly upon getting
closer to the glass transition. Moreover, the finite-size scal-
ing of our results indicates that the correlation length diverges
at low temperatures. Since thermal fluctuations tend to wash
out the correlations in the NAD, our method is very sensitive
and provides an efficient tool to investigate correlated regions.
This is a first interesting outcome of this work. It is worth not-
ing, with this respect, that the NAD field has proven to be an
insightful investigation tool also for the mechanics of amor-
phous solids,16 and hence the approach we propose has a good
potential to bridge the investigation of supercooled liquids to
the one of amorphous solids, within a unifying picture of glass
transition. In addition, the results here discussed suggest that
the long range spatial correlations detected by the NAD field
upon lowering the temperature might indeed be the spatial

correlations underlying the onset and development of coop-
erative dynamics typically observed in supercooled liquids.
This would be a significant new insight into the physics of su-
percooled liquids and more work is currently in progress to
clarify this issue. The critical growth of spatial correlations
that we have reported here supports the overall glass transi-
tion scenario based on the RFOT and the analysis done seems
to be quite robust. On the other hand, the finite-size scaling
proposed also raises the question of identifying the critical
temperature and for the moment, we cannot rule out different
possibilities: this requires further and more quantitative anal-
ysis. Finally, it would be extremely interesting, at this point, to
be able to directly relate the growth of the correlation length
and the features of the NAD field to the change in the trans-
port properties of the system, i.e., in its viscoelastic response:
whereas, to some extent, we can relate our results to the vis-
cosity increase through the RFOT (Ref. 30), a more coherent
connection with the mechanical response and with the onset
of rigidity in the material needs to be developed.
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