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State-of-the-art tube models for the dynamics of entangled polymer melts are usually validated on the

basis of the agreement of their predictions for the linear viscoelastic properties (LVE data) of the system

against experimentally measured data. We present here a more direct and fundamental test of these

models based on their comparison against molecular dynamics (MD) simulation data for the dynamics

of primitive paths (PPs) in the system under study. More precisely, we show how one can take

advantage of a recently developed computational methodology (P. S. Stephanou, C. Baig, G. Tsolou,

V. G. Mavrantzas and M. Kr€oger, J. Chem. Phys., 2010, 132, 124904) for calculating the most

important function of all tube models, the segment survival probability j(s,t) and its average J(t) (the

overall tube survival probability), by projecting MD data of atomistically detailed samples onto the

level of the primitive paths, to directly probe mechanisms proposed for chain relaxation, such as

contour length fluctuation (CLF) and constraint release (CR). The simulation data for j(s,t) and J(t)

can be used next to evaluate refinements of the original Doi–Edwards reptation theory based on

a modified diffusion equation for j(s,t) incorporating the terms proposed to account directly or

indirectly for these effects (CLF and CR). The functions j(s,t) and J(t) determined directly from the

atomistic MD simulation data account automatically for all these relaxation mechanisms, as well as for

any other mechanism present in the real melt. We present and discuss results from such an approach

referring to model, strictly monodisperse cis- and trans-1,4-polybutadiene and polyethylene melts

containing on average up to 6 entanglements per chain, simulated in full atomistic detail for times up to

a few microseconds (that is, comparable to the chain disentanglement time sd). From the same

simulations we also present results for two other measures of the PP dynamics in the framework of the

reptation theory, the time auto-correlation function of the PP contour length L and the time auto-

correlation function of the chain end-to-end vector R. Our methodology, which serves as a bridge

between molecular simulations and analytical tube theories, helps quantify chain dynamics in entangled

polymers and understand how it is influenced by factors like melt polydispersity and chain molecular

architecture, or the presence of interfaces. It can also be straightforwardly extended to polymeric

liquids under non-equilibrium conditions (e.g., subjected to a flow field) to understand the interplay

between flow and entanglements.
1. Introduction

Dynamics in entangled polymer melts and concentrated solu-

tions has been explained by de Gennes1 and Doi and Edwards2,3

by considering the effect of topological constraints on the motion

of one chain by the surrounding chains, which can be effectively

described by the tube model. The effective tube defines essentially

the region within which the allowed conformations of the chain

are confined;4 it represents effectively all of the topological
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constraints acting on the chain and, since the surrounding chains

are also moving, its shape also changes accordingly with time. In

this picture, and in order not to violate the topological

constraints, a chain is forced to execute a motion that looks very

much like reptation through the tube. Reptation is therefore

considered to be the dominant mechanism for chain dynamics in

a system of topologically interacting molecules and if it is the

only relaxation or dynamical mode, then the polymer molecule

moves back and forth through the tube along its contour with

a one-dimensional curvilinear diffusion coefficient Dc corre-

sponding to the overall translation of a Rouse chain.

There are two key quantities in reptation theory: the value dt of

the effective tube diameter and the concept of the primitive path

(PP). The former determines essentially the average strength of

the topological interactions. The latter refers to the average chain

conformation, at any moment, if we disregard small-scale fluc-

tuations of the chain in and out the tube. Mathematically the PP

is defined as the shortest path that connects the two ends of the
This journal is ª The Royal Society of Chemistry 2011
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chain without violating the topological constraints and having

the same topology relative to the chain itself.5 To cast the

reptation idea into a theory for polymer dynamics and then use it

to develop a constitutive model for polymer melts, Doi and

Edwards2 introduced a third important quantity, the segment

survival probability function j(s,t). This represents the proba-

bility that the original tube segment s remains after time t or,

equivalently, the probability that the primitive chain segment s

remains inside the original tube (the tube at time t¼ 0) after time

t. Accordingly, the average value of j(s,t) over all primitive chain

segments, J(t), represents the portion of the primitive chain that

remains inside the initial tube at a later time t, and all the linear

viscoelastic properties of the polymeric systems can be deter-

mined from this.3

Predictions of the original theory and extensive comparisons

against viscoelasticity data (e.g., for the zero-shear viscosity h0

and the chain center-of-mass diffusion coefficient DG and their

dependence on chain length N or chain molecular weight M) for

entangled polymer melts compiled by several groups of investi-

gators have shown that reptation alone is not capable of

adequately describing the experimental observations.3,6,7 For

example, the original theory (developed for the simplest possible

system, a chain of constant contour length in a fixed network)

predicts that h0 � M3 and DG � M�2, whereas the experimental

data support that h0 � M3.4 and DG � M�2.3.3,6–8 Also, the

dynamic loss modulus G
0 0
(u) at intermediate frequencies u scales

as G
0 0
(u) � u�1/2 whereas the experimental observations suggest

a scaling of the form G
0 0
(u)� ua with�1/4 # a # 0 (although the

scaling G
0 0
(u) � u�1/2 is not entirely incorrect, since it can be

observed at an intermediate range of frequencies in measure-

ments with some very high molecular weight samples).3,6,7,9–13 To

correct for deviations between analytical predictions and direct

experimental data, several modifications of the original Doi–

Edwards theory have been proposed over recent years, namely

incorporation into the tube model, in addition to reptation, of

extra mechanisms for chain relaxation known today as contour

length fluctuation (CLF)14 and constraint release (CR).7,15

CLFs refer to the variation of the PP contour length L arising

naturally from the Rouse motion of primitive chain segments

and also from the fluctuations in the topology of the entangle-

ment network itself in the underlying melt structure.14 To

appraise its effect, we note that according to the refined reptation

theory by Doi,14 the ratio DL/hLi of contour length fluctuations

DLh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL2i � hLi2

q
over the average value hLi decreases with M;

thus, the CLF effect should become weaker and weaker as the

chain length increases (but, still, for the finite molecular weight

polymers encountered in practice, its effects should be impor-

tant).3,14 Indeed, by accounting for this, a significant improve-

ment is observed in the comparison between theoretically

predicted and measured viscoelastic data.3,10,11,13,14,16

CR refers to the release of the topological constraints imposed

on a chain by the surrounding chains, since these are also moving

with time.7,15,17 Since new constraints will also be forming with

a rate practically similar to the rate at which existing constraints

are released,11 CR should not affect the average value of the tube

diameter. Given that the tube itself exhibits Rouse dynamics

subject to these local rearrangements, the main effect of CR will

be to cause what is termed in the literature as tube
This journal is ª The Royal Society of Chemistry 2011
reorganization.7,17–19 Being a many-body interaction, it is very

difficult to account for CR in a rigorous manner in the tube

theory, its analysis requiring detailed knowledge of the local

dynamics of entanglement points (e.g., the complete statistics of

their lifetimes).

Despite the difficulties associated with the mathematical

description of the two mechanisms (CLF and CR), numerous

extensions and refinements of the original model have been

considered.20–27 For example, to account for CLF effects,

a number of investigators have proposed to use a position-

dependent curvilinear diffusion coefficient in the diffusion equa-

tion.20–22 Others have added a reaction-like term to the diffusion

equation with a position-dependent rate constant (following

a similar approach to the same problem by Doi3,14).23–25 CR, on

the other hand, can also be taken into account by introducing

a dynamic dilution parameter a,26,27 whereas a more sophisti-

cated approach17 makes use of a self-consistent methodology

where the CR effect is calculated from the dynamics of tube

constraints using information from the single-chain overall tube

survival probability function, incorporating chain reptation and

CLF effects. Inclusion of CLF and CR effects has led to tube

models with an enhanced predictive capability as far as their

agreement with experimental data (e.g., for the shear moduli

G
0
(u) and G

0 0
(u)) is concerned. However, a molecular level

understanding of the two mechanisms is still lacking. We

mention, for example, that the entanglement time se (the time at

which a polymer chain starts to feel the tube constraint) for

polybutadiene melts at 140 �C is computed from direct molecular

simulations (based on the segmental mean square displacement)

to be about 2–4 ns (see Table 2). If we make use of the value for

the temperature shifting factor aT reported by Colby et al.,28

which implies that se¼ 4.4–6.5� 10�8 s at 25 �C, then we see that

this is almost one order of magnitude smaller than the value (se¼
2.8–3.5 � 10�7 s at 25 �C and 28 �C) employed by Pattamaprom

et al.24 in their model comparison against experimental data. On

the other hand, there exists no experimental technique available

today to directly probe PP dynamics at the molecular level and

thus independently compute the values of the key variables and

functions included in modern tube theories, such as the curvi-

linear diffusion coefficient Dc(s,t) of the primitive chain segments

and their survival probability function j(s,t). To achieve this, it

would be very helpful to deal with the problem from a different

point of view, that of molecular simulations, and this is what we

pursue in this work.

Molecular dynamics (MD) simulations allow one to observe

how a molecular system evolves over time by accumulating the

motion or trajectory of its state points through phase space by

solving Hamilton’s equations of motion.29 They serve therefore

as a bridge between the microscopic characteristics of the system

and its macroscopic properties. Atomistic MD simulations have

thus helped us elucidate structure–property relationships in

polymeric systems under both equilibrium30,31 and non-equilib-

rium conditions.32,33 They are also useful in the development of

coarse-grained (CG) models for polymers, in which a unit

(usually termed as a bead or a super-atom) represents a collection

of several atoms accounting effectively for an entire polymer

segment.34–43 It is a strategy that has been followed quite exten-

sively in recent times to reduce computational cost in order to

understand material behaviors over significantly longer time and
Soft Matter, 2011, 7, 380–395 | 381
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length scales. But one should be very careful with such an

approach, since coarse graining at any level introduces irrevers-

ibility and additional dissipation in the system which, if forgotten

or ignored, may severely limit the usefulness and range of

applicability of the constructed model,38 especially under non-

equilibrium conditions.44

Although one can envisage a number of different coarse-

grained models for polymers to describe the dynamics at the level

of entire chains, one should keep in mind that (as already dis-

cussed above) the behavior of the system is governed by the

existence of entanglements. Any meaningful coarse-grained

model for polymers should therefore respect not only chain

continuity but also chain uncrossability for the proper descrip-

tion of chain dynamics. The concept of topological constraints is

central here since it helps describe the dynamics in the system in

terms of the diffusive motion of the corresponding ensemble of

primitive chains which is constrained within a cylindrical tube-

like region of diameter dt. The corresponding mathematical

problem of the reduction from the trajectory of atomistic coor-

dinates to the trajectory of primitive paths, has been addressed

by Everaers et al.,45 Kr€oger and co-workers,46,47 and Tzouma-

nekas and Theodorou.48 In a more recent study, Stephanou

et al.49 have proposed a methodology capable of quantifying

chain dynamics in an entangled polymer melt directly in terms of

the segment survival probability function j(s,t) and its average

J(t). The main advantage of the new methodology is that it

automatically accounts not only for reptation but also for CLF

and CR effects (and any other relaxation mechanisms present in

the real system), since dynamics at the level of PPs is obtained by

directly projecting data from a finer (atomistic-level) model. As

such, the results obtained from this are ideal for a direct

comparison with the predictions of modern tube models incor-

porating terms accounting for CLF and CR effects. Readers

interested in methodological details are referred to the original

publications,49,50 where preliminary results from application of

the technique to a number of model, moderately entangled linear

polyethylene (PE) and cis- and trans-1,4-polybutadiene (PB)

melts have been provided. Here we present additional results

from simulations with polymer melts characterized by approxi-

mately 3–6 entanglements per chain, referring to the probability

functions j(s,t) and J(t) and their comparison with theoretically

predicted curves. As we mentioned above, this type of informa-

tion is not experimentally obtainable today, and this demon-

strates the power and usefulness of the new methodology. On the

one hand, it provides predictions for the linear viscoelastic

properties of entangled melts, which can serve as an objective test

for the assumed relaxation mechanisms and their mathematical

description in theoretical approaches. On the other hand, it is

very important to advance experimental techniques to directly

obtain such microscopic information as j(s,t) and J(t), which

can be used for cross-checking as well as for exchanging infor-

mation between computational, theoretical and experimental

methods. It is only through this mutual complementary inter-

action between the three approaches that we can conceive

a unified viewpoint for a variety of intricate phenomena occur-

ring in polymeric materials without introducing unnecessary

empiricism or assumptions.

The paper is organized in three sections as follows: in section 2

we give a brief account of the computational methodology and
382 | Soft Matter, 2011, 7, 380–395
the simulated polymeric systems. In section 3, we present results

of our PP analysis and compare them to several tube models.

And in section 4 we summarize by discussing the major findings

of the work and possible extensions.
2. Methodology and systems studied

Our computational methodology for calculating the function

j(s,t), which has been described in detail in a recent article,49

includes the following steps:

(i) First, we determine the effective tube diameter dt either by

analyzing the segmental mean square displacement (msd) f(t) ¼
h(rn(t) � rn(0))2i (rn denotes the position vector of the nth atom

along the chain) as a function of time [Fig. 1(a)] or by monitoring

the displacement N(t) of primitive chain segments (obtained by

using the Z1-code46,47) orthogonal to the initial PP [Fig. 1(b)].

The average of the two values (which are practically the same) is

then calculated and used in the subsequent PP analysis. We also

determine the entanglement time se and the disentanglement time

sd by analyzing the segmental msd [see Fig. 1(a)] in the spirit of

the reptation theory to identify the three characteristic breaks

reflecting: the onset of tube constraints on segmental diffusion,

the Rouse-like diffusion of atomistic units combined with tube

constraints, and the crossover (at significantly longer times) to

reptation dynamics.3

(ii) Given the estimated value of the tube diameter dt and the

mapped trajectory of primitive chains (obtained by reducing the

ensemble of atomistic configurations accumulated in the course

of the MD simulations to an ensemble of primitive paths), we

proceed to construct the initial (corresponding to time t ¼ 0)

curvilinear tube around each entanglement strand in a primitive

chain. This is done geometrically by visiting entanglement

strands (straight line segments) one after the other along the

chain starting from either end and building the tube around them

piece-by-piece in the form of a small cylinder whose axis coin-

cides with the entanglement strand and whose diameter is equal

to dt. Entanglement strands meet at kink points, thus in the

construction process some care should be taken to smooth out

intersecting cylindrical volumes there to ensure that an overall

uniform tube is obtained.

(iii) We place segments along the primitive chain at equidistant

points in the normalized [0,1] interval by converting from vari-

able s to variable s/L in order to monitor chain motion in and out

of the tube at different points along its contour. A typical number

is 101 points (including the two chain ends) implying that the

interval between any two neighboring segments is 0.01. The true

coordinate of each segment in the dimensional interval [0,L] is

always easily recovered (even if the segment has migrated to

a new entanglement strand) by storing and continually keeping

the instantaneous value of the contour length L of the chain. The

main task of step (iii) is then to record the displacement of each

segment s at all later times t relative to its position at t ¼ 0 and

determine whether it has escaped the initial tube after a time t or

not, by measuring its shortest distance x from the initial PP (refer

to Fig. 2 in Ref. 49 for a schematic visualization of the concept).

(iv) As segments can escape from the tube either perpendicu-

larly or longitudinally along the chain contour, the following two

criteria are set: (i) if x(s) > dt/2, the segment s is assumed to have

escaped the initial tube; (ii) if x(s) # dt/2, the segment s is
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 An illustration of the proposed two methodologies for estimating the tube diameter dt (the results refer to the PB-cis 800 system): (a) by plotting

the mean-square displacement (msd) f(t) ¼ h(rn(t) � rn(0))2i of the innermost atomistic units versus time t in a log–log plot to identify the four char-

acteristic diffusive regimes indicative of reptation dynamics;2 the tube diameter is then estimated as dt ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
fðt*Þ

p
where f(t*) is registered at the time t¼

t* when the atomistic units start to feel the tube constraints which causes a change in the slope of the f(t) vs. t curve from 1/2 to 1/449 and (b) by observing

the displacement N(t) of the PP segments orthogonal to the initial primitive path (i.e., the PP at time t ¼ 0) versus time t to check when the PP segments

feel the tube constraint. This causes a break in the slope of the corresponding curve, which we find by fitting the curve before and after it with straight

lines. The value of N(t) at the intersection of the two lines provides an estimate of the tube radius dt/2.49
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assumed not to have escaped the tube perpendicularly but we

should further check if it has escaped the tube longitudinally. If

the segment s has escaped the tube, then j(s,t) ¼ 0; otherwise,

j(s,t) ¼ 1. In practice, there is always the possibility a chain

segment, which at some time was found to be away from the

initial tube, to return back to the tube at a later time (just as it

diffuses around in space via thermal motion). To cover this case,

a third criterion is set, called criterion of permanent escape; this

tells us when a segment s has definitely escaped the tube to

completely erase its memory of the initial tube constraint. To

formulate it we have been guided by Doi51 who proposed

a formula for computing fluctuations in the radius of the effective

curvilinear tube as follows. Let Q(r;s)dr denote the probability

that the nearest segments of the other chains lie at a distance r

within dr from the given chain. This is a function of the dimen-

sionless quantity s ¼ ðhR2i=6Þ1=2
.

l, where R denotes the chain

end-to-end vector while l is a measure of the intermolecular

separation between chains; typically, l¼ c�1/3 where c denotes the

chain number density. According to Doi,51 one can get an esti-

mate of the mean value of the tube radius by computing the

average of the function Q(r;s), i.e., by using dt/2 ¼ hri ¼Ð
N
0 drQ(r;s)r. Extending the argument to higher moments, we can

therefore estimate the fluctuation in the tube radius by taking it

to be equal to the second moment of Q(r;s), i.e., as hDr2i1/2. We

applied Doi’s idea to all polymer melts simulated here and we

found that to a good degree, hDr2i1/2 z dt/2, that is, the fluctu-

ation in the tube radius is approximately equal to its average

value. Our criterion for permanent escape is, therefore, formu-

lated as follows: if the perpendicular displacement x(s) of

a segment s at time t is larger than the tube radius dt/2 and smaller

than the tube diameter dt (i.e., if dt/2 < x(s) < dt), then j(s,t) ¼
0 as above but we allow the segment s to return back to the

original tube at later times due to thermal motion. This refers

mostly to segments wiggling around in the vicinity of the outer

surface of the tube, and it implies that these segments still keep

the memory of the initial tube constraints. On the other hand, if
This journal is ª The Royal Society of Chemistry 2011
the total perpendicular displacement of the segment is greater

than the tube diameter (i.e., if x(s) > dt), then this segment is

taken to have completely escaped the tube. That is, we put

j(s,t) ¼ 0 not only for the current time t but also for all subse-

quent times, implying that such a segment has totally lost the

memory of the initial tube (see Fig. 4 in Ref. 49 for a numerical

example). From a mechanical point of view, this is equivalent to

considering that such a segment (which has moved normally

away from the tube a distance larger than its diameter) has been

totally liberated by the initial topological constraints (thus also

from the mechanical stress arising from them). Clearly, perpen-

dicular escape is intimately related to the life time of entangle-

ments. From a theoretical point of view, it reflects the release of

local constraints, the mechanism known as constraint release

(CR) as discussed in the Introduction; and it should be particu-

larly important for weakly or moderately entangled polymers

(such as the model melts studied in this work) or for bidisperse

polymeric systems (mixtures of long and short chains of the same

polymer).52

(v) For each PP segment s, the survival probability function

j(s,t) at any time t is computed as the average value of all the

zeros and all the ones recorded for this segment along all chains

present in the system and for all possible time origins in the

accumulated trajectory. Considering that homopolymer chains

possess head-to-tail symmetry, the statistics can be improved

even further by taking that j(s,t) ¼ j(1 � s,t).

A novel aspect of our approach is that it directly accounts for

all CLF and CR effects, since the dynamical behavior of the

system at the level of primitive paths is obtained by tracing first

its microscopic dynamics (by solving Newton’s equations of

motion in the course of long MD simulations) and then reducing

each of the accumulated melt configurations to a representation

in terms of shortest paths for the chains that have the same

topology with them and in addition they respect the underlying

entanglement network as imposed by the condition of chain

uncrossability. In fact, our methodology accounts not only for

these effects (CLF and CR) but also for any other mechanism
Soft Matter, 2011, 7, 380–395 | 383
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present in the real polymeric system as long as this refers to

length scales above the average step length of the primitive paths.

Fingerprints of all these relaxation mechanisms are discernible at

the level of the PP representation, since there is practically no loss

of information in the projection from one level to the other

(except for the dynamics at distances shorter than the Kuhn or

step length of the PP). This is, indeed, an important feature of the

approach. The methodology is also applicable to a number of

polymeric systems of industrial relevance since it is independent

of details related to the molecular architecture or composition of

the constituent chains. Thus, it can deal with both homopolymer

and block-copolymer melts, with both mono- and polydisperse

samples, with bulk and interfacial systems, and with many

others.

An interesting consequence of this work is that one can make

use of the computed results for the j(s,t) function and its

average, J(t) ¼
Ð

1
0j(s,t)ds, to get estimates (in the framework of

the tube theory) of the linear viscoelastic properties of the system.

These include among others: (a) the relaxation modulus G(t) ¼
G0

NJ(t) where G0
N is the plateau modulus, (b) the storage and loss

moduli G
0
(u) ¼ G0

Nu
Ð

N
0 J(t)sin(ut)dt and G

0 0
(u) ¼ G0

Nu
Ð

N
0 J(t)-

cos(ut)dt, respectively, (c) the zero-shear viscosity h0 ¼
G0

N

Ð
N
0 J(t)dt, and (d) the steady-state shear compliance J0

e ¼
G0

N

Ð
N
0 tJ(t)dt/(G0

N

Ð
N
0 J(t)dt)2.

The above methodology has been applied to a number of

model linear polyethylene (PE) and cis-1,4- and trans-1,4-poly-

butadiene (PB) melts with a variety of chain lengths: C320, C400,

and C500 for the PE (denoted as PE320, PE400, and PE500,

respectively), C320, C400, C600, and C800 for the cis-1,4-PB

(denoted as PB-cis320, PB-cis400, PB-cis600, and PB-cis800,

respectively) and C320, C400, and C600 for the trans-1,4-PB ones

(denoted as PB-trans320, PB-trans400, and PB-trans600,

respectively).31,49,53 All these melts are monodisperse except for

the PB-cis320 and PB-cis400 ones which are characterized by

a polydispersity index (I) slightly larger than one (as equal to I ¼
1.08 and I ¼ 1.05, respectively). The atomistic trajectories have

been obtained by running isothermal–isobaric (NPT) MD

simulations with a multiple time step algorithm at temperature
Table 1 Numerical results for the density r, the mean square chain end-to-en
and the step length as of the PP for the simulated melts at temperature T ¼ 4
pressure P was set equal to 1 atm)

Systema r/g cm�3 hR2i/�A2b

PE320 (32) 0.767 6060 � 150 (8.0)
PE400 (16) 0.768 7675 � 287 (8.1)
PE500 (16) 0.769 10679 � 472 (9.0)
PB-trans320 (32) 0.837 4076 � 130 (5.9)
PB-trans400 (32) 0.838 4865 � 139 (5.6)
PB-trans600 (32) 0.838 7233 �181 (5.6)
PB-cis320 (32) 0.863 3280 � 102 (4.8)
PB-cis400 (32) 0.865 4035 � 102 (4.7)
PB-cis600 (32) 0.864 6381 � 160 (4.9)
PB-cis800 (24) 0.864 8791 � 221 (5.1)

a The numbers in parentheses indicate the number of chains in the system. b T

� 1)�l2 where N is the average number of carbon atoms per chain and �l the ave

respectively). c The number in parentheses represent the effective PP length pe
as p¼M/(rNAhR2i) where M is the molecular weight of polymer and NA is Avo
simulated polymer melts.
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T ¼ 450 K and pressure P ¼ 1 atm for the PE melts, and at

temperature T ¼ 413 K and pressure P ¼ 1 atm for the PB melts.

Sufficiently long trajectories (e.g., from 750 ns for the PB-cis320

up to 4 ms for the PB-trans600 system in real time) were accu-

mulated in all cases to reduce the statistical uncertainty of the

computed statistical averages for the physical properties of

interest and also to be able to trace dynamics up to times longer

than the chain disentanglement time sd in each system. (Readers

interested in further details of the employed MD method are

referred to the ESI accompanying the present article.†).

The contour length reduction process to generate the network

of PPs for a given atomistic configuration has been conducted via

the Z1-code:46,47 the chain ends of all chains are held fixed in

space, the intramolecular excluded volume interactions are

switched-off while maintaining the uncrossability conditions

between different chains, and a set of geometric operations are

employed that reduce the contour lengths of all polymer chains in

the system to their minimum value simultaneously. After the

minimization process has converged, the Z1-code produces a PP

network corresponding to the ensemble of atomistic chains with

a PP for each chain in the system; the PP contour length L for

each chain can thus be directly obtained by measuring the

distance from one chain end to the other along the PP. In

addition to this, the Z1-code provides the positions of the interior

‘‘kinks’’46,47 along the PP for each chain. We mention here that

the Z1-code bears several similarities with the so-called CReTA

algorithm proposed by Tzoumanekas and Theodorou.48 There-

fore, the main conclusions drawn from this work should not be

considered as being specific to the application of the Z1-code but

rather being representative of a more general class of this type of

numerical codes that employ geometric operations on an

ensemble of atomistic chains to attain the entanglement network

of PPs.

3. Results and discussion

In Table 1, we present the simulation results for the density r, the

mean square chain end-to-end distance hR2i, and the average
d distance hR2i, the average PP contour length hLi, the packing length
50 K for the PE melts and T ¼ 413 K for the PB melts (in all cases, th

hLi/�Ac p/�Ad as/�A
e

162 � 4 (0.33) 1.60 37.4 � 2
198 � 6 (0.32) 1.58 38.7 � 3
251 � 8 (0.33) 1.42 42.5 � 4
104 � 4 (0.22) 1.58 38.9 � 2
127 � 5 (0.22) 2.10 38.1 � 2
185 � 5 (0.21) 2.20 39.1 � 2
86 � 4 (0.18) 2.22 38.0 � 2
104 � 4 (0.18) 2.54 38.6 � 2
154 � 6 (0.17) 2.57 41.5 � 2
202 � 9 (0.17) 2.44 43.4 � 2

he numbers in parentheses represent the characteristic ratio Cn ^ hR2i/(
rage bond length (as equal to 1.54 �A and 1.47 �A for the PE and PB melt

r atomic bond, as equal to L/(N� 1)�l. d The packing length p is calculate
gadro’s number. e The PP step length as estimated by as¼ hR2i/hLi for th

This journal is ª The Royal Society of Chemistry 201
p,
e
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d
e
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Table 2 Results for the tube model parameters of the simulated systems
(entanglement time se, disentanglement time sd, and the tube diameter dt),
as obtained from the methods described in the text based on the
segmental msd data

System se/ns sd/ns dt/�A
a

PE320 2.1 � 0.5 316 � 32 32.8 � 2.0
PE400 2.9 � 0.4 489 � 25 32.9 � 2.8
PE500 2.8 � 0.4 1042 � 46 32.4 � 2.5
PB-trans320 3.2 � 0.7 264 � 34 25.9 � 2.7
PB-trans400 3.1 � 0.5 355 � 25 26.0 � 2.3
PB-trans600 3.2 � 0.5 1204 � 50 28.9 � 2.9
PB-cis320 1.8 � 0.4 138 � 18 31.5 � 2.1
PB-cis400 2.3 � 1.0 256 � 24 29.1 � 1.7
PB-cis600 2.1 � 0.8 500 � 70 29.9 � 1.5
PB-cis800 2.3 � 0.5 1255 � 80 30.3 � 1.6

a The tube diameter is calculated here as

dt ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
fðt*Þ

q
where f(t*) denotes the segmental msd at the time t¼ t* where the slope of
f(t) starts to deviate from ½ as segments leave the initial t1/2-regime (in
a log–log plot) and enter the following t1/4-regime [Fig. 1(a)].49 The
results are found to be quantitatively similar to those obtained by
monitoring the perpendicular displacement of the PP segments at the
time marking the onset of tube constraints on their motion [Fig. 1(b)].
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value hLi of the PP contour length, for all the polymer systems

studied in the course of this work (PE, cis-1,4-PB and trans-1,

4-PB). Focusing on the density data first, we notice the following:

a) the reported values are independent of the molecular weight

(MW) of the simulated samples (as observed experimentally for

polymers with MW above a certain value, e.g., the chain length

N z 250 observed from the previous simulations31,47), b) PE

melts are characterized by a lower density than cis-1,4 and trans-

1,4-PB ones (this is partly due to the higher temperature at which

PE was simulated here), and c) cis-1,4-PB has a slightly higher

density than trans-1,4-PB at the same temperature. All of the

above results are consistent with published experimentally

measured data for the three polymers.54 Regarding the average

chain dimensions, the data in Table 1 indicate that for the same

number of carbon atoms per chain, PE chains are significantly

longer than trans-1,4-PB chains (by approximately 50%), which,

in turn, are longer than their corresponding cis-1,4-PB analogues

(by approximately 15%). The fact that PE is characterized by

a larger chain end-to-end distance than PB indicates that it has

a higher stiffness. The cis-1,4-PB chain, on the other hand, is

shorter than the corresponding trans-1,4-PB one, which reflects

the more compact arrangement of the four carbon atoms on the

two sides of the double bond in the corresponding monomeric

unit (trans torsional states always lead to more extended

conformations than cis ones). All these conclusions are reflected

on the values of the characteristic ratio CN for the three poly-

mers, defined as CN h hR2i/(N � 1)�l2 where N denotes the

average number of carbon atoms per chain and �l the average

length per bond (this is equal to 1.54 �A for a PE molecule and

equal to 1.47 �A for a PB molecule). The simulation data for CN

(as reported in the third column of Table 1 under the results for

hR2i) are seen to be in general agreement with experimental data

according to which, in the limit of infinitely long chains, CN tends

to 7.8� 0.3 for PE,55,56 to 4.9� 0.2 for cis-PB and to 5.8� 0.2 for

trans-PB.57 Regarding the variation of hLi with chain length, for

all practical purposes this is found to be linear for the three

polymers which is in agreement with the basic concepts of the

reptation theory.2,3 Overall, for the same number of carbon

atoms per chain, the PE melts are characterized by larger hLi
values than PB melts. Trans-PB melts, on the other hand, exhibit

hLi values that are larger than those of the corresponding cis-PB

analogues (melts of the same length), a direct consequence of

their more extended conformation. A better measure of the PP

contour length is provided by the dimensionless parameter L/

(N � 1)�l expressing the effective PP length stored per atomic

bond. Its value for the three types of polymers studied here is also

reported in Table 1 (�0.33 for PE,�0.22 for trans-PB, and�0.17

for cis-PB) indicating differences which are consistent with the

corresponding hR2i data.

Two very important parameters reported in Table 1 are: (a) the

packing length p ¼ M/(rNAhR2i), and (b) the step length as ¼
hR2i/hLi of the primitive path, where M denotes the molecular

weight of the polymer and NA the Avogadro number. Their

values are related to the degree of chain entanglement and mesh

size of the underlying topological network, respectively, in the

polymer. The packing length p, in particular, is used quite

extensively in the polymer literature to relate rheological prop-

erties with chain dimension, since it embodies information about

both chain conformation and monomer packing.54,58–61 The
This journal is ª The Royal Society of Chemistry 2011
simulation results are in favour of a smaller p value for PE

compared to PB, and this should be interpreted as an indication

that PE chains overlap more than PB chains. In turn, this implies

that topological interactions in PE are stronger than in PB, which

should be associated with the more compact structure of the PB

chains. Comparing the computed p values for the two PB poly-

isomers, on the other hand, leads us to the conclusion that cis-PB

chains experience weaker topological interactions than trans-PB

chains. As far as the average value of the step length as of the PP

in the three polymers is concerned, our simulation results indi-

cate the following order: as(cis-PB melt) > as(trans-PB melt) >

as(PE melt), which is the opposite to that observed for the

packing length p. [Here we note that as the two shortest PB-cis

systems (PB-cis320 and PB-cis400) are only slightly entangled

(i.e., Z� 2) and thus lie in the transition zone between the Rouse

and reptation regimes, their results for as are considered to be less

meaningful than those of the more entangled (longer) systems

from the standpoint of the reptation theory which becomes more

accurate for more entangled systems. In addition, the relatively

large value of as computed for the PE500 melt manifests in all

probability finite system size effects due to the rather small

number of chains, only sixteen, employed in the MD simulations

with this system.]

In Table 2 we report the results of our computational

approach for the entanglement time se, the disentanglement time

sd, and the tube diameter dt, for the simulated PE and PB melts.

The first thing to notice in the data of the Table is that dt and se

are practically chain-length independent even for the moderately

entangled polymer melts addressed here, which agrees with the

basic notion of the reptation theory that the time it takes a chain

segment to ‘‘hit’’ the tube (and thus feel the topological

constraints imposed by the presence of the other chains) and the

average diameter of the effective tube (providing a measure for

these topological interactions) is independent of chain length.

More precisely, se comes out to be roughly between 2–4 ns while
Soft Matter, 2011, 7, 380–395 | 385
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dt assumes values in the range of 26–33 �A for the three polymers.

Furthermore, by comparing the simulation data for the average

tube diameter dt reported in Table 2 and the average PP step

length as reported in Table 1 we see that their values are not the

same, as as comes out to be larger than dt by 15–40%. This is

a significant finding from the present analysis: the relation

between dt and as is not clear in the tube theory and the two

concepts are used interchangeably in the tube models (or, better,

they are considered as different quantities but with the under-

standing that their values are practically the same). An effort to

define a quantitative relationship between dt and as was made by
€Ottinger62 on the basis of the Porod–Kratky model for polymer

chains coarse-grained to the level of smooth primitive paths by

assuming the action of two competing springs along the lateral

and longitudinal directions of the chain’s main contour

(accounting for the competition between chain connectivity and

chain uncrossability). €Ottinger62 found that as is equal to 2dt for

this model, which is in qualitative agreement with the results of

our direct PP analysis.

As already alluded to above, CLFs are important for most

polymers in practical applications. Both statistical–mechanical

and analytical theories3,14 suggest that DL/hLi decreases with

chain length as DL/hLi ¼ XZ�1/2 where X is a numerical constant

and Z the (average) number of entanglements per chain. Based

on a variational calculation, Doi14 has argued that the value of X

should be larger than 1.47. des Cloizeaux63 and Needs,64 on the

other hand, have proposed that X should be significantly smaller

than 1.47, approximately equal to 0.7 and 0.3, respectively. By

treating CLF as a non-Markovian stochastic process, Ketzmer-

ick and €Ottinger65 seem to favor Doi’s value (X ¼ 1.47). A

different scaling is supported by the slip-link numerical simula-

tions of Masubuchi et al.,42 according to which DL/hLi should

vary with Z (not as DL/hLi ¼ XZ�1/2 but) as DL/hLi ¼ YZ�1 with

Y¼ 3. To shed some more light on the issue, in Fig. 2 we plot 1�
Fig. 2 A plot of the average fluctuation 1 � hDLi/hLi of the PP contour

length where hDLih (hL2i � hLi2)1/2 with the number of entanglements Z

per chain for all simulated systems. The results are compared with Doi’s

theoretical prediction (Ref. 14) that 1� hDLi=hLi ¼ 1� X=
ffiffiffiffi
Z
p

for

different values of the numerical coefficient X. If we ignore the two

shortest cis-PB melts, the best fits to the simulation curves are obtained

for X z 0.5. Also included in the figure is the curve corresponding to the

scaling 1 � hDLi/hLi ¼ 1�3/Z reported by Masubushi et al. on the basis

of slip-link simulations.42
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DL/hLi versus Z for all polymer melts simulated here. The results

have been obtained by using a value for the entanglement length

Ne (as estimated by Ne ¼ NhR2i/hLi2) equal to 75 � 11 for all PE

systems, equal to 119 � 15 for all trans-PB systems, and equal to

144 � 19 for all cis-PB systems.49 Our curves seem to favor Doi’s

original suggestion that DL/hLi ¼ XZ�1/2 but with 0.5 # X # 0.7

as proposed by des Cloizeaux63 and Needs.64 In fact, if we neglect

the data for the two shortest computational samples (PB-cis320

and PB-cis400), the optimal value for X comes out to be

approximately 0.5, but clearly more MD data are needed (pref-

erably for longer chain samples and for polymers other than

linear PE and PB) to make a more conclusive statement. In the

same graph, we have also plotted the curve corresponding to the

scaling law suggested by the slip-link simulations of Masubuchi

et al.42 (that DL/hLi ¼ 3Z�1); it is clear that (at least for the

moderately entangled polymers addressed here) their model

overestimates the CLF effect. We close our discussion here by

mentioning that: (a) the predicted value of X from the PP analysis

is close to the value of X ¼ 3�1/2 z 0.58 obtained by assuming

a Gaussian distribution for contour lengths around hLi,3,14,66 and

(b) Liu et al.67 have proposed that the value X ¼ 0.7 for CLF

effects is consistent with experimental data.

A quantity directly related to CLFs is the rate of decay of the

time auto-correlation function for the contour length L. By

considering PP segments along the chain contour to follow a one-

dimensional Rouse motion, Doi showed that:3,14

hLðtÞLð0Þi � hLðtÞi2�
L2ðtÞ

�
� hLðtÞi2

¼
XN
p;odd

8

ð ppÞ2
exp

�
� p2t

sR

�
(1)

where sR is the Rouse time of the chain. We provide a test of eqn

(1) in Fig. 3 where we show plots of the normalized time auto-

correlation function of the contour length for the PE400, PB-

cis600, and PB-trans600 melts as extracted from our topological

analysis. As can be directly seen from the fits to the data in the

figure, the weighted sum of simple exponential functions in eqn

(1) (represented by dashed lines in Fig. 3) does not provide

a satisfactory description of the simulation data. A better overall

fit to the data is obtained by a stretched exponential or KWW

(Kohlrausch–Williams–Watts) function (represented by solid

lines in Fig. 3) of the form A exp[�(t/sKWW)bKWW] corresponding to

a correlation time sc ¼ A
sKWW

bKWW

G
1

bKWW

� �
where G(.) denotes

the Gamma function.68 It is then of interest to check how the

corresponding correlation (relaxation) time sc varies with chain

length and from polymer to polymer, and how it compares to the

corresponding Rouse time sR. It turns out that sc is about 30–

50% smaller than sR for all simulated PE and cis-PB systems, but

almost two times larger than sR for all trans-PB melts. These

results are useful on their own since they indicate that CLF

effects may depend (at least as far as a quantitative description is

concerned) on the molecular and architectural details of the

polymer.

In Fig. 3 two additional functions are plotted: (a) the time

auto-correlation function of the chain end-to-end unit vector

hR(t)$R(0)i/hR2i determined directly from the atomistic MD

simulations, and (b) the overall survival probability J(t)

obtained from the proposed computational analysis for relaxa-

tion at the level of PPs by integrating the function j(s,t) over s. In
This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 A comparison of the function J(t) determined from the proposed PP analysis for three of the simulated melts (PE-400, PB-cis600 and PB-

trans600) with the time auto-correlation functions of the chain end-to-end vector hR(t)$R(0)i/hR2i and of the PP contour length (hL(t)L(0)i � hLi2)/(hL2i
� hLi2). The solid and dashed lines represent the best fits to the simulation data by a KWW stretched exponential function and the weighted sum of

simple exponential functions [eqn (1) and (2)], respectively; orange lines refer to hR(t)$R(0)i/hR2i and purple lines to (hL(t)L(0)i � hLi2)/(hL2i � hLi2).

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
en

ne
ss

ee
 a

t K
no

xv
ill

e 
on

 0
1 

M
ar

ch
 2

01
1

Pu
bl

is
he

d 
on

 1
3 

O
ct

ob
er

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
32

7A
View Online
the original Doi–Edwards model, hR(t)$R(0)i/hR2i is given by the

following equation:

hRðtÞ,Rð0Þi=
�
R2
�
¼
XN
p;odd

8

ð ppÞ2
exp

�
� p2t

sd

�
(2)

The following two conclusions are drawn from the graphs of

Fig. 3: (a) The relaxation of the chain unit end-to-end vector is

significantly slower compared to that of the PP contour length;

this is clearly consistent with the tube model which predicts that

hR(t)$R(0)i/hR2i should scale with the disentanglement time sd

while
hLðtÞLð0Þi � hLðtÞi2

hL2ðtÞi � hLðtÞi2
should scale with the Rouse time sR of

the chain. (b) In the original Doi–Edwards model where CR

effects are neglected, the functions hR(t)$R(0)i/hR2i and J(t) are

equivalent: one can prove that one is equal to the other [see eqn

(6.15) in Ref. 3]. In the presence of CR, however, which should be

the case in the presently simulated melts, J(t) must drop faster

than hR(t)$R(0)i/hR2i since by locally releasing entanglements

along the chain contour, such a mechanism should accelerate

dynamics at the level of the (stress) function J(t) without

affecting dynamics at the level of the end-to-end vector. The

graphs depicted in Fig. 3 confirm this, since J(t) is seen to drop

considerably faster than hR(t)$R(0)i/hR2i for all simulated

systems. In addition, it is seen again from the figure that the data

is better fitted by a KWW function (represented by orange solid

lines) than the weighted sum of simple exponential functions in

eqn (2) (represented by orange dashed lines).
This journal is ª The Royal Society of Chemistry 2011
We now turn our attention to a key function in all tube models,

the segment survival probability j(s,t) expressing the probability

that chain (or tube) segment s remains after time t. Part (a) of

Fig. 4 presents the computed j(s,t) profiles for the simulated cis-

PB melts as a function of normalized time (units of sd) for all

segments in the normalized interval [0,1]. The graphs for the

different chain-length systems are considered to be consistent

with each other (the little deviations observed for the PB-cis800

system are mainly attributed to the larger statistical error with

which sd is computed for this system from the log–log msd plot of

the corresponding atomistic segmental msd). At the very early

times (i.e., for t/sd¼ 0.01 in Fig. 4(a) corresponding to t� se), the

value of the function j(s,t) for the majority of middle segments

(0.2 # s # 0.5) is close to unity, indicating that these are still

inside the initial tube. In turn, this suggests that chain reptation

and CR effects are rather unimportant at these very early times.

In contrast, for primitive chain segments closer to the two chain

ends, j(s,t) is significantly smaller than unity, indicating that

these have started escaping the constraints of the original tube.

This behaviour is fully consistent with the basic ideas of the

reptation theory and the underlying tube model, and proves the

significance of CLF effects especially for segments near the chain

ends. In fact, our computations reveal that even for the two

segments exactly at the two ends (s ¼ 0 and s ¼ 1), the function

j(s,t) remains above zero for some finite time. This observation,

which has also been made in some previous simulations with

a coarse-grained model for the polymer chains,69,70 contradicts

the customary assumption of the tube models (made partly for
Soft Matter, 2011, 7, 380–395 | 387
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Fig. 4 (a) Plots of the segment survival probability function j(s,t) (describing the probability that a primitive chain segment s remains in the initial tube

after time t) at three different times (early, intermediate, and late), as obtained from the present PP analysis for the four simulated cis-PB melts. (b) Same

as with (a) but for the average tube survival probability function J(t) h
Ð

1
0j(s,t)ds representing the fraction of the primitive chain that remains in the

initial tube after time t. (c) End-segment relaxation based on the computed data for j(s ¼ 0,t) and j(s ¼ 1,t) (filled symbols) and on the time auto-

correlation functions hu(s ¼ 0,t)$u(s ¼ 0,0)i and hu(s ¼ 1,t)$u(s ¼ 1,0)i of the corresponding tangent unit vectors u (empty symbols).

Table 3 Values of the characteristic relaxation times (sc) of the simu-
lated systems as estimated by the integral of: (a) the stretched-exponential
curve (e.g., Aexp[�(t/sKWW)bKWW]) describing the decay of the overall
survival probability function J(t), and (b) the segment survival proba-
bility j(s,t) at the two chain ends (s ¼ 0 or s ¼ 1)

System J(t) j(s ¼ 0,t)a

PE400 75 � 5 3.8 � 0.7 (2.3 � 0.3)
PE500 137 � 9 4.7 � 0.9 (2.3 � 0.3)
PB-trans400 59 � 5 4.8 � 0.7 (7.2 � 1.4)
PB-trans600 127 � 7 5.4 � 0.8 (6.9 � 1.3)
PB-cis600 65 � 8 4.5 � 0.7 (6.5 � 0.8)
PB-cis800 104 � 11 5.1 � 0.7 (7.4 � 1.4)

a The results denote the average of the j(s,t) values for s ¼ 0 and s ¼ 1.
Numbers in parentheses indicate relaxation times based on the decay of
the time auto-correlation function hu(s ¼ 0,t)$u(s ¼ 0,0)i of the unit
vector u of the corresponding end-strands.
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reasons of mathematical simplicity) that j(s,t) ¼ 0 for s ¼ 0 and

s ¼ 1 for all times t > 0. Even if the consequences of such an

assumption are negligible for truly long polymers, they must be

taken into account in the case of weakly entangled melts, in

particular if one wishes to make a direct and quantitative

comparison of the predictions of the model with measured data.

By accounting, for example, for the non-zero life time of PP end

segments, van Ruymbeke et al.71 in a recent study managed to

resolve the so-called ‘‘time–stress discrepancy’’ problem, namely

the inability of tube models to describe the apparent plateau

modulus of weakly-entangled, nearly monodisperse linear poly-

mer melts, despite their capability to predict rather accurately the

terminal relaxation times. The discrepancy was shown to be due

to an overestimation of CLF for the outer molecular segments.

By accounting, therefore, in their time marching algorithm for

the fact that a chain needs a short (non-zero) time practically

equal to the entanglement time se (i.e., as observed in our

previous study49 but also in the present computations) to be

considered in equilibrium within its tube, van Ruymbeke et al.71

resolved the discrepancy satisfactorily.

Also shown in Fig. 4(a) are profiles of the computed j(s,t)

curves at times longer than se (comparable, for example, to sd).

Clearly, as time increases, the entire j(s,t) curve falls to lower

values, implying that more and more PP segments escape the

initial tube due to reptation, CLF, and CR mechanisms. For the

relatively short (moderately entangled) polymer systems, studied

here, both mechanisms play a key role in the relaxation of chains

in the melt.
388 | Soft Matter, 2011, 7, 380–395
In Fig. 4(b) we present our results for the overall survival

probability J(t) (the average of j(s,t) over s) for the simulated

cis-1,4-PB systems, representing the average fraction of primitive

chain segments remaining in the initial tube after time t. Clearly,

longer chains relax slower than shorter ones, thus the computed

J(t) curve for PB-cis800 lies always above that of PB-cis600

whose J(t) is, in turn, always above that of PB-cis400. We also

observe that the J(t) curves cannot be accurately represented by

the weighted superposition of simple exponentials as predicted

by the original Doi–Edwards model;2,3 instead, one should resort

to a fitting with a stretched-exponential function, in which case
This journal is ª The Royal Society of Chemistry 2011
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one obtains the correlation times that are reported in the second

column of Table 3. Rather large differences between these times

and the corresponding disentanglement times sd (reported in

Table 2) are observed, which can be explained by the enhanced

role of CLF and CR mechanisms (that are neglected in the

original theory for reptation in a fixed network of obstacles),

especially for the rather short polymers studied in the present

work.

In Fig. 4(c) we show how j(s,t) decreases with time at the two

end segments (s ¼ 0 and s ¼ 1); we also show the decay of the

corresponding time auto-correlation functions hu(s ¼ 0,t)$u(s ¼
0,0)i and hu(s ¼ 1,t)$u(s ¼ 1,0)i for the tangent unit vectors u

along the first and last entanglement strands in the chain

(reporting always the average of the function values for s¼ 0 and

s ¼ 1). Despite that the two sets of curves do not superimpose,

they indicate that end segment relaxation: (a) is independent of

chain length (see also numerical data in Table 3), and (b) is

brought to completion after a time approximately equal to se.
49

Practically the same conclusions are drawn from the analysis

of the accumulated PP data for the trans-PB and PE melts; the

corresponding graphs for the functions of interest in this work

(j(s,t), J(t), j(s¼ 0,t)or j(s¼ 1,t), and hu(s¼ 0,t)$u(s¼ 0,0)i or

hu(s ¼ 1,t)$u(s ¼ 1,0)i) are shown in Fig. 5 for the simulated

trans-PB melts and in Fig. 5 of Ref. 49 for the simulated PE

melts. Furthermore, in Fig. 6 we compare the results of our PP

analysis for j(s,t), J(t), and j(s ¼ 0,t) for three of the simulated

systems (PE400, PB-trans600, and PB-cis800) which are char-

acterized by practically the same (average) number of entangle-

ments Z ¼ N/Ne per chain (5.33 � 1.15, 5.04 � 0.93, and 5.56 �
1.07, respectively, as estimated from the Ne values given above).
Fig. 5 Same as with Fig. 4, b

This journal is ª The Royal Society of Chemistry 2011
Although the resulting curves do not superimpose, their shapes

are quite similar, especially those between the cis- and trans-PB

melts. This is quite interesting given that cis- and trans-PB

systems are characterized by very different values of their

segmental (or monomeric) friction coefficient z: based on the

chain center-of-mass diffusion coefficient,31 z for trans-PB is

reported equal to 7.2 � 0.5 � 10�10 dyn s cm�1 which is

approximately twice as large as the value 3.2 � 0.2 � 10�10 dyn

s cm�1 reported for cis-PB.72 The large differences observed in the

computed values of the function j(s,t) between PB and PE melts

having the same number of entanglements per chain (which are

larger than the corresponding differences in the values of their

segmental friction coefficients30,31) suggests that stress relaxation

in a polymeric liquid is a rather complicated issue involving more

factors than just Z and z. The same conclusion is drawn if we

compare the J(t) and j(s¼ 0,t) plots in the three systems (shown

in parts (b) and (c), respectively, of Fig. 6).

We proceed now to a direct comparison of our computed

results for the function j(s,t) with the predictions of well known

tube models. We have decided to limit the comparison to only the

case of the PE500 melt, since this is the most entangled of all the

presently simulated melts, characterized by an average number of

entanglements per chain Z ¼ 6.67. Furthermore, and since there

have been many modifications of the tube model, the comparison

refers only to those models for which the function j(s,t) is either

analytically known or numerically obtainable through the solu-

tion of a partial differential equation. The following three models

have thus been considered: (a) the des Cloizeaux model,73 (b) the

Pattamaprom et al. model,23 and (c) the Leygue et al.21 model.

For the purpose of the comparison with the pure reptation
ut for the trans-PB melts.

Soft Matter, 2011, 7, 380–395 | 389

http://dx.doi.org/10.1039/C0SM00327A


Fig. 6 Relaxation curves for three different polymer melts (PE-400, PB-cis800 and PB-trans600) characterized though by the similar average number of

entanglements Z per chain (5.33� 1.15, 5.04� 0.93, and 5.56� 1.07, respectively). (a) The segment survival probability function j(s,t), (b) The average

tube survival probability function J(t) h
Ð

1
0j(s,t)ds, and (c) The end-segment survival probability function j(s ¼ 0,t) (or j(s ¼ 1,t)).
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theory, we have also considered the original Doi–Edwards model

addressing chain relaxation in a static (fixed) network of obsta-

cles. In the Appendix, we give a brief account of the four models.

In order to objectively assess the predictive capabilities of each

model, the model parameters were determined directly based on

the atomistic simulation data without introducing any empirical

fitting, as follows: for the comparison of our PP simulation data

with the original Doi–Edwards model for the PE500 melt, we

used sd ¼ 1042 � 46 ns as determined from the atomistic msd49

(see Table 1); for the comparison with the des Cloizeaux and

Pattamaprom et al. models, we used sR ¼ 125 � 20 ns as esti-

mated via the scaling sR�N2 based on the data of sR for a variety

of shorter unentangled PE melts;30,33,74 for the comparison with

the Leygue et al. model, we used X¼ 0.6 and a¼ 1.0, as proposed

by these authors21 based on a comparison with experimental

data. All differential models were solved numerically with a

Crank–Nicholson finite difference method,75 by employing

a segment (space) step Ds in the interval [0,1] equal to 10�3 and

a time step D~t (in units of ~t ¼ t/(p2sd)) equal to 10�7.

In Fig. 7, the four models are compared against the computed

results from the direct PP analysis on the basis of their predic-

tions for the j(s,t) function at three different times (an early, an

intermediate, and a late one on the order of the disentanglement

time for the simulated system). According to the figure graphs:

(a) The original Doi–Edwards model systematically over-

estimates j(s,t) for all times; as expected, this is due to the fact

that this model does not account for CLF or CR effects. (b) At

relatively early times (e.g., for t ¼ 0.01sd in the figure), the pre-

dicted j(s,t) from the three other models are below the computed
390 | Soft Matter, 2011, 7, 380–395
data from the direct PP analysis; this is an indication that Doi’s

formula for CLF effects14 (common in all of them) overestimates

their contribution to the relaxation dynamics for the PE500 melt.

(c) At progressively longer times (e.g., for t¼ 0.1sd), the effects of

chain reptation and CR become more and more significant and

this is captured rather well by the three models (the des Cloi-

zeaux, Pattamaprom et al., and Leygue et al. models). The Pat-

tamaprom et al. and Leygue et al. models, in particular, give

results that compare quite favourably (more favourable than the

des Cloizeaux model) with the direct PP simulation data. (d) At

even longer times (comparable to the disentanglement time for

the system under study; e.g., for t ¼ 0.35sd), the three models are

seen to underestimate the overall relaxation dynamics, with the

best agreement with the simulation data provided by the Patta-

maprom et al. set of equations. Despite the inherent difficulties in

theoretical approaches to the j(s,t) function due to the multitude

of relaxation phenomena present in an entangled polymer melt

(especially, if it is weakly entangled), the comparison presented in

Fig. 7 between the three models considered here and the

computed PP curves is quite satisfactory, considering that no

adjustment parameters were used.

Fig. 8 extends the comparison between the considered tube

models and the direct PP analysis to the level of the overall tube

survival probability function J(t). At early-to-intermediate time

scales, the curves from the three models are below that from the

direct PP analysis, emphasizing once more the overestimation of

CLF and CR effects. Deviations between the three sets data and

the PP analysis persist even at later times where we further

observe that the curves corresponding to the des Cloizeaux and
This journal is ª The Royal Society of Chemistry 2011
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Fig. 7 Comparison of the computed curves of the segment survival probability function j(s,t) for the PE-500 system with the predictions of four tube

models: the original Doi–Edwards model,2 the Leygue et al. model,21 the Pattamaprom et al. model,23 and the des Cloizeaux model.73 Data are shown at

three different times: (a) an early, (b) an intermediate, and (c) a late.

Fig. 8 Same as with Fig. 7, but for the overall tube survival probability

function J(t).

Fig. 9 Same as with Fig. 7, but for: (a) the sto

This journal is ª The Royal Society of Chemistry 2011
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Leygue et al. models cross over the curve obtained from the PP

analysis. Again, the best overall agreement with the computed PP

data is offered by the Pattamaprom et al. model.

By Fourier transforming the computed J(t) data one can get

predictions for the storage and loss moduli of the system under

study. Thus, in Fig. 9 we present how the computed G
0
(u) and

G
0 0
(u) spectra for the simulated PE500 melt from the direct PP

analysis compare with the theoretical predictions. The largest

deviations from the simulation results are exhibited by the

original Doi–Edwards model due to the fact that CLF and CR

effects are neglected in this model. The situation improves

substantially with the modifications introduced in the new

models correcting for both of these effects. More specifically, the

Leygue et al. and des Cloizeaux models over-predict G
0
(u) at low

frequencies and slightly under-predict it at intermediate

frequencies; this result is consistent with the predictions of the

two models for J(t) discussed in Fig. 8. In contrast, the Patta-

maprom et al. model under-predicts G
0
(u) at both low and
rage G
0
(u), and (b) the loss modulus G

0 0
(u).

Soft Matter, 2011, 7, 380–395 | 391
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intermediate frequencies, indicating that, overall, this model

overestimates the combined CLF and CR effect. We can make

similar comments by looking at the model predictions for G
0 0
(u).

In the main, however, and considering the lack of any adjustable

parameters as well as the different ways with which the three

analytical models correct for CR and CLF effects, the agreement

between theoretical predictions and simulation data, although

not perfect, seems quite promising.
5. Concluding remarks

Since the 1970s when de Gennes and Doi–Edwards introduced

the first version of the tube model as a conceptual abstraction for

capturing topological constraints for the dynamics of entangled

polymers, the idea has been extensively explored, thereby

resulting in the development of significant extensions capable of

accounting for additional (to reptation) relaxation mechanisms

present in the real system, such as contour length fluctuation and

constraint release. In fact, as more experimental data has become

available in recent years, new models have been subjected to

numerous tests, which have demonstrated their ability to fit

rheological data quite well in most cases, but discrepancies still

exist. To aid in the development of even more accurate tube

models we presented here a methodology capable of providing

a molecular understanding of polymer melt dynamics by

computing the most fundamental quantity of these models, the

segment survival probability j(s,t), which is extremely difficult

(impossible at the moment) to measure experimentally. We have

presented detailed results from such an approach for a variety of

model PE and PB melts referring to a variety of issues. For

example, we saw that:

- the value of the PP step length as(¼ hR2i/hLi) is approxi-

mately 15–40% larger than the value of the tube diameter dt.

- both j(s¼ 0,t) and hu(s ¼ 0,t)$u(s ¼ 0,0)i turn out to be non-

zero for a finite time scale comparable to the characteristic chain

entanglement time se.

- the simulation data are consistent with Doi’s formula for

CLFs (that DL/hLi ¼ XZ�1/2) with 0.5 # X # 0.7 as suggested by

des Cloizeaux63 and Needs.64

- the simulation results for the time auto-correlation function

of the PP contour length L and the chain-end-to-end vector R are

described better by a stretched-exponential or KWW function

than by the weighted sum of an infinite series of exponential

functions as predicted by the reptation theory; the correlation

times of the auto-correlation functions of L are about 30–50%

smaller than the corresponding chain Rouse times for the PE and

the cis-PB melts, and twice as large for the trans-PB systems.

The most appealing feature of our work is that the computed

j(s,t) curves can serve to test tube models at a more fundamental

level than the one provided by the simple comparison against

measured LVE data. We have demonstrated this here for four

tube models: the original Doi–Edwards,2,3 the des Cloizeaux,73

the Leygue et al.,21 and the Pattamaprom et al.23 Such a test can:

(a) evaluate the accuracy of expressions used to account for CLF

and CR effects in the diffusion equation and suggest more

accurate ones, (b) help investigate the range of conditions (e.g.,

chain length and degree of polydispersity) over which these

expressions are valid, and (c) elucidate the molecular origin of the
392 | Soft Matter, 2011, 7, 380–395
proposed relaxation mechanisms (and even reveal new ones in

certain cases).

We close this work by mentioning that the problem of chain

dynamics in entangled polymer melts has been approached so far

from two levels: theoretical (based on mesoscopic and continuum

mechanics approaches) and experimental. Here, we have

proposed approaching the problem from a third level, compu-

tational (molecular), which makes no unnecessary assumptions

about the underlying relaxation mechanisms and avoids

conceptual problems usually arising in theoretical treatments.

We have described how one can extract the central quantity of

the tube models and we have made an extensive comparison to

four of them. We consider this as offering a more complete and

detailed picture of the problem since we start from the molecular

framework and project it onto the mesoscopic framework

(primitive paths) on which phenomenological theories and

approximate analytical expressions are based. Further extensions

to systems such as polydisperse (e.g., bidisperse) melts, branched

polymers, and polymers under flowing conditions,76 would be

valuable. Work is currently under way along these directions.
Appendix: a brief account of the four models employed
in comparison to the PP analysis

In this appendix we summarize the four tube models (by Doi–

Edwards, des Cloizeaux, Pattamaprom et al., and Leygue et al.)

that are used in comparison with the results from the PP analysis

(Figs 7–9).
The Doi–Edwards model

In the original Doi–Edwards model,2 the function j(s,t) obeys

the diffusion equation:

vjðx; tÞ
vt

¼ Dc

v2jðx; tÞ
vx2

(A1a)

subject to the following set of initial and boundary conditions

jðx; t ¼ 0Þ ¼ 1

jðx ¼ 0; tÞ ¼ jðx ¼ L; tÞ ¼ 0
(A1b)

with x ˛ [0,L]. The boundary conditions reflect the idea that

chain ends relax instantaneously, something that contradicts the

findings of our PP analysis (see, e.g., Figs. 4(a) and 5(a)). As we

discussed above, the same assumption accompanies the majority

of existing tube models (most probably for reasons of mathe-

matical simplicity), but the recent work of Ruymbeke et al.71

demonstrated that the effect of a finite relaxation time for chain

ends can make an important difference in the comparison with

experimental data. The above equations can be simplified by

writing them in the form:

vjðs; ~t Þ
v~t

¼ v2jðs; ~t Þ
vs2

(A1c)

with initial and boundary conditions that:

jðs; ~t ¼ 0Þ ¼ 1
jðs ¼ 0; ~t Þ ¼ jðs ¼ 1; ~t Þ ¼ 0

(A1d)
This journal is ª The Royal Society of Chemistry 2011
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by using the following dimensionless variables: ~t ¼ t/(p2sd) with

sd ¼ L2/(p2Dc), and s ¼ x/L. Eqns (A1c and d) admit the

following analytical solution:

jðs; tÞ ¼
X
p;odd

4

pp
sinð ppsÞ exp

�
� p2t

sd

�
(A1e)

implying also that:

JðtÞ ¼
ð1

0

dsjðs; tÞ ¼
X
p;odd

8

ð ppÞ2
exp

�
� p2t

sd

�
(A1f)

The des Cloizeaux model

The des Cloizeaux model73 incorporates a time-dependent

diffusion coefficient into the diffusion equation by considering

the early-time (e.g., t < sR) Rouse dynamics of the primitive chain

segments. Although, in the original treatment, des Cloizeaux

used in the diffusion equation for simplicity not Dc(x,t) itself but

its average over x, i.e., Dc(t), in the present work we have directly

employed Dc(x,t); thus the corresponding diffusion equation

reads:

vj00ðs; tÞ
vt

¼ 1

L2

v

vs

�
Dcðs; tÞ

vj00ðs; tÞ
vs

�
(A2a)

with

Dcðs; tÞ ¼ Dc

"
1þ 2

XN
p¼1

cos2ð ppsÞexp
�
� tp2=sR

�#
(A2b)

subject to the same initial and boundary conditions as the Doi–

Edwards model, eqn (A1b) or (A1d) above. After solving for

j00(s,t) from eqns (A2a) and (A2b), the segment survival proba-

bility function is obtained by making use of the notion of double

reptation,26 that is, as:

jðs; tÞ ¼ j00ðs; tÞ
ð1

0

ds j00ðs; tÞ (A2c)

Thus leading to the double reptation model:

JðtÞ ¼
�ð1

0

dsj00ðs; tÞ
�2

; GðtÞ ¼ G 0
N JðtÞ (A2d)

The Pattamaprom et al. model

The Pattamaprom et al. model23 (also called the dual constraint

model) solves the diffusion equation in two stages. In the first

stage, the diffusion equation incorporates only chain reptation

and CLF effects but omits CR (i.e., it initially considers chain

motion in a fixed tube):

v

vt
j*ðs; tÞ ¼ Dc

L2

v2

vs2
j*ðs; tÞ � 1

s*ðsÞj
*ðs; tÞ (A3a)

where

searlyðsÞ ¼
9

16
p3sR

c4
Z2ð1� csÞ4

s*
lateðsÞ ¼

sR

c2
exp
	
U*ðsÞ



U*ðsÞ ¼ 3

2
Zð1� csÞ2

(A3b)
This journal is ª The Royal Society of Chemistry 2011
subject to the usual initial and boundary conditions, eqn (A1b)

or eqn (A1d) above. Here c is equal to 2 for a linear chain. The

expressions for the early- and late-time CLF effects have been

taken from the works of Doi14 and Milner–McLeish,77 respec-

tively. s*(s), on the other hand, is given by

s*ðsÞ ¼

searlyðsÞ for ð1� csÞ\C*
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

searlyðsÞs*
lateðsÞ

p
for C*

1\ð1� csÞ\C*
2

s*
lateðsÞ for ð1� csÞ\C*

2

8>><
>>: (A3c)

where C*
1 denotes the segment position close to the chain ends,

corresponding to the first crossover of searly to s*
late (i.e., (1� cs)¼

0) and C*
2 the segment position for the second crossover of searly

to s*
late deeper inside the tube. The overall tube survival proba-

bility is obtained by integrating j*(s,t) over s, i.e., as f*(t) ¼Ð
1
0dsj*(s,t), and we compute the average probability F*(t) as:

F*ðtÞ ¼
�

f*ðtÞ if f*ðtÞ.f*
RðtÞ

f*
RðtÞ if f*ðtÞ\f*

RðtÞ
(A3d)

after we compare f*(t) with the following approximate Rouse

process

f*
RðtÞ ¼ f*ðt0Þ

�
t

t0

��1=2

(A3e)

where t0 is the time when f*(t) starts to decrease faster than t�1/2.

In the second stage, the computed F*(t) function is employed

in the expression for the activation energy U(s) for chain

retraction in deep fluctuations, slate(s), to account for the CR

effect. The equations corresponding to (A3a) and (A3b) are then

v

vt
jðs; tÞ ¼ Dc

L2

v2

vs2
jðs; tÞ � 1

sðsÞjðs; tÞ (A3f)

with

searlyðsÞ ¼
9

16
p3sR

c4
Z2ð1� csÞ4

slateðsÞ ¼ sR

c2 exp½UðsÞ�

UðsÞ ¼ 3

2
ZF*ðtÞð1� csÞ2

(A3g)

respectively. We see that searly is given by the same equation as

eqn (A3b) above. s(s), on the other hand, is obtained in a way

that is analogous to that in the first stage, i.e., as

sðsÞ ¼

searlyðsÞ for ð1� csÞ\C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
searlyðsÞslateðsÞ

p
for C1\ð1� csÞ\C2

slateðsÞ for ð1� csÞ\C2

8>><
>>: (A3h)

with the parameters C1 and C2 denoting again the crossover

points; however, since now F*(t) is included in slate, their values

are time-dependent. Solving for j(s,t) allows one to compute first

the overall probability f(t) ¼
Ð

1
0dsj(s,t) and then the average

probability F(t) as:

FðtÞ ¼
�

fðtÞ if fðtÞ.fRðtÞ
fRðtÞ if fðtÞ\fRðtÞ

(A3i)

by comparing again f(t) with the approximate Rouse process

fRðtÞ ¼ fðt0Þ
�

t

t0

��1=2

(A3j)
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where t0 is the time when f(t) starts to decrease faster than t�1/2.

Adopting the concept of double reptation,26 the overall tube

survival probability J(t) which enters the calculation of the

relaxation modulus through G(t)¼G0
NJ(t) is eventually given by:

J(t) ¼ F(t)f(t) (A3k)

The Leygue et al. model

The Leygue et al. model21 is represented by the following

modified diffusion equation:

vjðs; tÞ
vt

¼ 1

L2

v

vs

�
DcðsÞ

vjðs; tÞ
vs

�
þ bðt; aÞjðs; tÞ (A4a)

with

bðt; aÞ ¼ a

1

p2sd

Ð 1

0
ds

v

vs

 
DcðsÞ

vjðs; tÞ
vs

!
Ð 1

0
jðs; tÞds

(A4b)

subject to the same initial and boundary conditions as eqn (A1b)

or eqn (A1d) above. Eqn (A4a) with the form for b(t;a)

prescribed by eqn (A4b) leads to a solution for j(s,t) of the form:

j(s,t) ¼ j
0
(s,t)(

Ð
1
0dsj

0
(s,t))a; G(t) ¼ G0

NJ(t) (A4c)

with j0(s,t) being the solution of the following diffusion equation

without CR effects:

vj0ðs; tÞ
vt

¼ 1

L2

v

vs

�
DcðsÞ

vj0ðs; tÞ
vs

�
(A4d)

In eqn (A4c), the choice a¼ 1 corresponds to double reptation.26

The expression for the curvilinear diffusion coefficient Dc(s)

employed in the model is that proposed by Doi:14

DcðsÞ ¼

X 2

Zs2
for s\

Xffiffiffiffi
Z
p

X 2

Zð1� sÞ2
for s . 1� Xffiffiffiffi

Z
p

1 otherwise

8>>>>>>>>><
>>>>>>>>>:

(A4e)

with X and a undetermined numerical (i.e., fitting) parameters.
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