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Abstract

In this work a new multiscale simulation technique, i.e. Adaptive configuration fields method (ACFM), has been
proposed for complex flow simulation of state-of-the-art reptation-based models for entangled polymeric systems.
Specifically, this technique combines the essential aspects of the previously introduced Brownian configuration
fields and the deformation fields methods [J. Non-Newtonian Fluid Mech. 70 (1997) 79; J. Non-Newtonian Fluid
Mech. 89 (2000) 209] to allow simulation of advanced reptation models with a stochastic strain measure and local
variations of life span distribution. In order to examine the fidelity and robustness of our new simulation technique,
we have performed simulations in a number of different fixed kinematics flows using the single segment reptation
model of Ottinger [J. Rheol. 44 (2000) 1293], which possesses the essential features required for quantitatively
describing the non-linear rheology of polymer melts, but cannot be implemented in a complex flow using the
available state-of-the-art Eulerian multiscale simulation techniques, namely, the Brownian configuration fields or
the deformation fields. In turn, the simulation results in unidirectional flows are compared with pure Brownian
dynamics simulations and it is shown that the results are in excellent agreement, thus verifying the accuracy of the
adaptive configuration fields method.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Theories based on the concept of reptation proposed by de Gdhiese emerged as a primary tool
for describing the rheology for entangled polymers. Doi and Edwigrds] were the first investigators

* Paper presented at the XlIth International workshop on numerical methods in viscoelastic flows, Monetery Bay, CA, July
15-17, 2002. Dedicated to the memory of Piyush G. Gigras.

* Corresponding author. Fax1-314-935-7211.
E-mail addressbam@poly1.che.wustl.edu (B. Khomami).

0377-0257/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0377-0257(02)00126-X



100 P.G. Gigras, B. Khomami/J. Non-Newtonian Fluid Mech. 108 (2002) 99-122

to use the concept of reptation to develop a theory for rheology of entangled polymers. The original
reptation-based model by Doi and Edwafds5] has deficiencies such as excessive shear thinning in
fast shearing flows, however, most of the deficiencies of this model can be traced back to a number of
assumptions such as instantaneous and complete chain retraction, “independent alignment” of differen
parts of the chain, single relaxation mechanism and no chain stretch that were used to arrive at a close
form constitutive equatiof®,7].

Recent advances in the reptation theories have largely resolved long-standing deficiencies in the
Doi—Edwards (DE) model’s ability to describe the non-linear rheology of entangled linear polymers.
Specifically, “double reptation (DR)8,9] and “convective constraint release (CCIR)0,11]have been
shown to play an important role in the relaxation mechanism. Moreover, chain stretch has been shown
[12] to greatly influence the non-linear rheology of entangled polymeric systems. Various theories that
include these effects, while avoiding the “independent alignment” assumption have been proposed. These
theories can be broadly classified in two categories distinguished by their segment connectivity concepts
Under the first category, come those models which have been developed within the scope of a single
segment description. The recently introduced models of Marucci—-Greco—lanniruberto (MG IDt-
tinger[7,14] and the “simplified” model of Mead—Larson—-Doi (MLIP}5] fall in this category. Under
the second category are those models which rely heavily on the segment connectivity concept. The mode
of Hua—Schieber—Vener{§,16,17] and the “contour variable” MLD mod¢15] which give a full chain
description in conjunction with constraint release mechanisms, come under this category. Since in these
models the motion of each segment in the chain is considered, they can be used to understand how vari
ous mechanisms, e.g. convective constraint release, chain stretching, etc. influence the flow properties ¢
entangled polymeric systems.

Although, the full chain models perform exceptionally well in describing the subtle details of shear
rheology of entangled polymers, they are highly computationally intensive. Hence, flow simulations of
entangled polymeric systems to date have been limited to single segment theories. In particular, van der
Brule and coworkerfl8,19]have used the Brownian configuration fields (BCH)] and the deformation
fields (DF) method$21] for simulating flow of reptation-based models in complex geometries. Specifi-
cally, they have considered flow of the DE model as well as more advanced reptation models such as the
“simplified” MLD model. Similarly, Wapperom and Keuninf®?] have used the DF method to simulate
the MGI model. However, these techniques cannot be used to simulate flow of reptation-based models
with a stochastic strain measure and local variations of life span distribution such as the Ottinger model.
Since the Ottinger model makes very similar predictions as the full chain model of Schieber and coworkers
[6,16,17]at a dramatic computational savings, a methodology for simulating this single segment reptation
model is highly desirable. Considering the fact that the traditional techniques (i.e. BCF and DF) cannot
be used, one must either resort to Lagrangian methods such as CONNFHES|SVariance reduced
CONNFFESSIT24] or Lagrangian particle metho@@5—-27]or devise a new Eulerian-based technique
that overcomes the limitations of the BCF and DF techniques. Since Eulerian-based methods are ideally
suited for implementation within a finite element context and circumvent the use of CPU intensive particle
tracking methods, we have focused our attention on developing a new Eulerian simulation method that
allows for a stochastic strain measure and local variations of life span distribution.

The paper is organized as followBection 2gives a brief description of the Ottinger’s single segment
reptation model. The shortcomings of the BCF and DF methods in simulating advanced reptation models
with a stochastic strain measure and local variations of life span distribution are discuSsetiam 31n
Section 4we describe our new simulation algorithm, namely, the “adaptive configuration fields method”.
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In order to demonstrate the accuracy of our simulation technique, computations in several unidirectional
flows are performed isection 5and the results are compared with the Brownian dynamics simulation
results. Finally, conclusions are presente&action 6

2. Ottinger’s single segment reptation model

As mentioned earlier, Ottinger and coworkers have recently developed a single segment reptation model
that describes the non-linear rheology of entangled polymers. In this work, we have chosen the most recent
version of the moddl7] that assumes uniform monomer density and isotropic tube cross-section. For this
model the time evolution equation of the chain stretch variable is given by

DA . .
E = Aconv+ )Mdissip (2-1)
where,
. . 1c(h) 3Zx2 (A +1)
Aconv = AT Adissin= ———(A — 1), c(A) = —2a "~ (2.2)
conv issip Ts 37 )‘()‘rznax — kz)

and, the Fokker Planck Equation, describing the distribution of the polymer configurations, supplemented
with the boundary conditions of random orientation at the chain ends, is given by
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In the above set of equationisis the stretch parameter that denotes the ratio of chain contour length to the
equilibrium contour Iengtmconvandidissipare the convective and dissipative contributions to the evolution
of the stretch parameter respectivdlis the configuration distribution functiom, the normalized unit
vector describing the orientation of a tube segment witH0,1] being the position label of the segment,

k the transpose of the velocity gradient tengoke= (uu) the second moment orientation tensothe
number of entanglements per chain,the characteristic stretching time(A) the spring coefficient,
which models the elastic nature of the polymer moleculgg, the maximum possible stretching ratio

of the chain contour lengthy, the drift velocity fors, D the orientational diffusion coefficient due to the
constraint release mechanissands, are the parameters representing double reptation and convective
constraint release mechanisms, respectieglis the reptation time ani is the heaviside step function.
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The polymeric stresg;(t), in this model, is evaluated using the following Kramers type expression,
which includes the original Doi—Edwards part and the added contribution due to the fact that the chain
can be stretched:

_ 1
T(t) = 3ZnokgT [1 + COMMIAE) 1)] / fuuf(u, s) du ds 2.7)
0 Ju

3Z

where,n, is the number density of polymerls; is the Boltzmann’s constant aridis the temperature.

Eq. (2.1)throughEg. (2.7)can be used to determine the polymeric stress. The corresponding equivalent
(without considering the creation/destruction term in the Fokker Planck Equation) stochastic differential
equations (SDES) are given by

du, — [(5 _ %) U — ZDu,i| dr + /2D (5 - r‘f”f) -dw, (2.8)
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whereu, ands are the stochastic processes equivalent @nds, respectively and¥, and W, are
independent Wiener processes. The stre@3, can equivalently be obtained by performing Brownian
dynamics simulations with the above SDEs #prands;, in combination withEq. (2.1)

(1) _ 1 B
]~ [ [ dus = ) (2.10)

3Znoks T [1 +
For details we refer the reader to the original paper by Fang gt]al.

3. Limitations of the BCF and DF techniques for simulation of reptation models with a
stochastic strain measure and local variations of life span distribution

3.1. The Brownian configuration fields method

Inthe BCF method, the polymer configuration distribution is represented by a collection of configuration
fields, each of which evolves according to the material counter part of the SDE governing individual
members of the ensemble. The stress at any point in the flow domain is obtained by the second momen
of the fields evaluated at that point. Van Heel et[48] have used this technique to perform complex
flow simulations of the DE model. The essential idea is to introddogector fields,u;(x, t) (k =
1,2, 3,..., N), todescribe the tube segmental orientation, wherspecifies the spatial position within
the flow domain, along with individual random walke&,(k = 1,2, 3, ..., N) associated with each
vector field. The fields and random walkers evolve according to the SDE equivalent of the DE model

U:u;

du, = [(5 - W) -lc-u,i| dt (3.1)

1 /2
ds, = = | —dWw, (3.2)
T\ Td
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Note that, unlike the Ottinger's model, the evolution of the tube is purely deterministic. Also, the evolution
of the primitive chain is purely stochastic and spatially uniform. The combination of these facts allow the
use of concept of BCF for simulation of the original DE model. Specifically, the BCF representation of
the SDE for the configuration fields is given by:

9
Euk(x, 1) +v(x, 1) Vur(x,t)

_ (3 B u(x, Hui(x, 1)

|uk(x l)|2 )-K(x,t)-Uk(x,l), k=1,2’3"“’N (33)

wherew is the velocity field. The simulation is started by assigning individual random unit vectors to
each of the configuration fields along with individual random numb¢@,1] to each of the random
walkersS;. This implies that initially each field is spatially uniform. As the simulation proceeds in time,
the fields evolve according tqg. (3.3)changing with the local velocity gradient. At the same time, the
random walkers perform Brownian motion and get updated accordiag.t(8.2) Each time the random
walker gets reflectedy reaches the boundary at 0 or 1), the entire field, to which the random walker
had been assigned to, is replaced by a new spatially uniform field. The simplicity of this method lies in
the fact that not only is the tube equation purely determinstic, which keeps the fields highly correlated
during the course of a simulation and hence reduces the statistical error, but even the individual random
walkers are easy to simulate since they are purely stochastic and not a function of position. In turn,
stress at any point in the flow domain is evaluated by taking an avémage, t)u,(x, t)) over all the

fields.

Inwhat follows, we will briefly describe why the BCF method is not suitable for performing simulations
with the Ottinger model. First, this model has an additional variable associated with chain stretching, i.e.
M. However, the chain stretch variablenly appears as a function of position in the SDE, hence one can
define a stretch field variablg(x, t), that is continuous over the entire domain of interest. The evolution
equation for the stretch field is given by
%A(x, H4v(x,t) - Vi(x,t) = Ax, De(x,t) i t(x, 1) — %w&(x, -1 (3.4)

S

Ax,t=0)=1 (3.5)

Clearly, the presence of the stretch variable does not limit the usefulness of the BCF method. However,
if we now define configuration fields,(x,t) (k = 1,2, 3, ..., N), for the tube segmental orientations
along with individual random walker§ (k = 1, 2, 3, ..., N), the corresponding SDEs for the Ottinger
model become

9
Euk(x, 1) +v(x, 1) Vur(x,t)

— (3 _ M) k(. 1) - up(x. 1) — 2D(x, Dug(x. 1)
lug(x, 1)|?
(e, D (x, t)) _dw,

lug (x, 1)|? dr

+/2D(x, 1) (5 (3.6)
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1 17 1 c(A(x, 1)) 1 [2dw/
=G [Sk(x, 1) — E] T e e by (3.7)

A close examination of the above equations clearly shows the inadequacy of the BCF method for
simulating the Ottinger model. Unlike the original DE model, the local velocity gradient now has an
influence (through the stretch variabléx, t)) on the evolution of the variable&,. This is a serious
drawback, since reflections B are dependent on both time and space. This would mean that it is not
possible to replace the entire field upon the reflection ofSheariable at a certain location, because it
is highly unlikely that the tube completes its life span at the same time for all the locations in the flow
domain. In other words, the fact that the tube survival probability is different at different locations in the
flow domain is the reason why the BCF method cannot be used in simulating Ottinger’'s model. However,
it should be noted that the evolution of the fiel&s|( (3.6) can still be easily performed using the BCF
method. In fact, in our new approach we will Usg. (3.6)to simulate the evolution of the configuration
fields associated with the tube segmental orientation.

3.2. The deformation fields method

In the DF method, the stress is obtained from an equation similar to the following time—strain separa-
ble integral constitutive equation, which represents the tracking of the deformation experienced by the
molecules as a function of time and calculating the stress from it

r(x,t):f M(t —t)g[By(x, )] dt’ (3.8)

In the above equatior (r — t) is the memory function and[ B, (x, r)] is a tensorial function which
provides the strain measure. Application of the deformation fields method in simulating reptation models
has been discussed at length by van Heel ef18l] and Peters et a[19]. The essential idea in the

DF method is to introduce and propagate “deformation fields'(x, ¢), each labeled by their time of
creation’, and then weigh the contribution of various individual deformation fields with the help of the
memory functionM (t — '), so as to finally calculate the total stres§y, t), utilizing Eq. (3.8) The

fields, as in the BCF method, are again thought of as a continuous variable in the Eulerian sense, anc
therefore evolve according to the following equation:

%B,/(x, 1) +vx, 1) VBy(x,1) =k(x,1) - By(x, 1) + By(x,1) - k" (x,1) (3.9)

where,t" denotes the time in the past from whidh (x, r) contains the deformation history of flow.

The DF method is more efficient than the BCF method because it avoids the requirement of recording
individual tube deformations, which is an integral part of the BCF metihdx, ) contains all the
information regarding the deformation of those tubes which were born at thisttjiraad therefore the
orientations of such tubes at the present titmean be easily found from their initial orientation and their
deformation thereafteB, (x, t).
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The DE model can be easily written in the formkx. (3.8)
t 1 3K 1, /’
T, 1) = 3ankBTf U <M> ds] (w(x, Dulx, 1)), dt’ (3.10)
0

- ar'

where K(x,t, 1, s) is the probability that a tube segment which was created at or befor¢ sitileexists
at the present time The term inside the angular brackets represents the orientation of those tubes, which
were born at or before tim, at the present time. This is the orientation tensor, that provides the strain
measure. Utilizing the independence between the proséasad ‘s one can determine both the memory
function and the strain measure for the DE model by integrating the diffusion equation for the probability
distribution function of the DE model and subsequently solving the resulting differential equation for the
K(x,t,t,s) and u’ [4,28]. Following this procedure, the memory function and the strain measure for the
DE model (i.e. apart from an overall multiplicative factor @k T) are given by
o
M@t —1)= ZiZe‘(z”‘l)z("”/’d (3.11)
T°Tq 1

(3.12)

g[B,/(x, Z)] _ <Bg-,/2(x, t) - u(f/)B},/z(x’ ) - ll(l‘/)>

1B %(x, 1) - u(1)[?

"
where,u(t') is the initial tube orientation of an ensemble member. Given the initial tube orientation,
u(t'), and the deformation it experiences thereaﬂigll/,z(x, t), the strain measure[ B, (x, t)], can be

easily evaluated from the above equation by taking an ensemble average. The polymeric stress at any
timet can thus be calculated froEq. (3.10)usingEgs. (3.11) and (3.12Hence, the DE model can be

easily simulated using the DF method. Following the same strategy, in what follows we will attempt to
determine the memory function and the strain measure for the Ottinger's model. If we succeed, we shall
be able to utilize the DF method for complex flow simulations of the Ottinger's model. For this model,
one can write down the stress equation in a similar fashidfgag3.10)

T, ) [ e =D [ [H (K11 s) /
3ZrpkeT [H 3z ]/Oo [/0 (T) dS} (wx, Hu(x,n)y di’  (3.13)

Again, the tube survival probabilit(x, t, t', S), can be determinefd 4] as a marginal distribution of
the configuration distribution functiofi,by utilizing the independence property between the proegss
and the process" Specifically, integratindeq. (2.3)with respect to the process’yields

DK 1 3%K a . ).\dissip

=T~ (510K) — K 3.14
Dt w274 3s2  Os (StorK) ( )
Kx,t,t',s)=1 t=1¢ (3.15)
K(x,t,t',00) =K(x,t,t/,1) =0, ¢t>0 (3.16)

The memory function in the expression for the polymeric strigégs(3.13) can be easily determined
once the above PDE for the tube survival probabiliix, t,t', s) has been solved. The details of how this
PDE is solved are discussed in the next section.

To obtain the strain measure, the tube segmental orientation portion of the diffusion equation (i.e.
Eq. (2.3) must be solved. However, for the Ottinger’s model this contains both, a deterministic part and
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a stochastic part that arises due to the DR and CCR mechanisms

D”=[(a_ﬂ).x.u_zpu]+@( "”)-dw (3.17)

== s ).
Dt |u|? lu|? dt

This equation cannot be solved analytically. Thus, the fundiigm, t,t")u(x, t,t')) that represents the
strain measure, cannot be expressed explicitly in terms of the finger strain tBpgeyy), because of
the stochastic contributions due to DR and CCR. Hence, the DF method cannot be used to simulate the
Ottinger's model.

However, it should be noted that in reptation models such as the “simplified” MLD model or the
newly proposed MGI model, the effect of convective constraint release instead of being added as a
stochastic contribution to the tube evolution equation, is taken into consideration by adding a deterministic
contribution, which depends on the velocity gradient, to the reptation time sgalderefore, the time
evolution of the tube is totally deterministic. It is therefore straightforward to extend the DF method to
such models. In fact, Peters et |HI9] and Wapperom and Keuning@2] have used the DF method to
simulate complex flows of the MLD and MGI models respectively.

4. The adaptive configuration fields method

In the above summary, we have clearly shown the inadequacy of both the BCF and DF methods to
simulate Ottinger’s single segment reptation-based model. Specifically, the BCF method has deficiencies
in dealing with the § variable which destroys the spatial correlation within a given field while the
DF method has difficulties with the:' variable, which arises from the fact that the strain measure is
stochastic. In fact the problem encountered by DF method arises in many kinetic theory-based models
(e.g. rigid dumbbell modgR8], Curtiss—Bird mod€]28]) which have diffusion effects/Brownian motion
in the part governing the orientation of the kinetic species. As in the Ottinger’s model, it is not possible to
get a closed form solution to these equations unless perturbation methods are used and the stress equati
is formulated in the form of a retarded motion expansion. Although retarded motion expansions are a
powerful tool in producing the linear viscoelastic properties and viscometric functions at low Weissenberg
numbers, they cannot be extended to flows with O(1) Weissenberg numbers. Hence, in order to simulate
flow of this class of models in complex geometries and O(1) Weissenberg numbers, one needs to explore
new strategies. In what follows we will describe a new technique, namely, “the adaptive configuration
fields method” that allows simulation of this class of models in complex kinematics flows.

The stress equation for the Ottinger model is giverBoy (3.13) To obtain the stress, one needs to
determiner(x,t), K(x,t,t',s) andu(x,t). The treatment of the stretch variable is discusseskiction 3
Specifically, the evolution of the chain stretch is determined by solkiqg(3.4)along with the initial
condition,Eqg. (3.5) The determination of the tube survival probabilkyx,t,t’, s), requires the solution
to the PDEEQ. (3.14) along with the initial conditiorcqg. (3.15)and the boundary conditioti. (3.16)

In general, one cannot obtain a closed form solution to this equation. However, if one invokes a pseudo
steady-state approximation (i.e. the variablis assumed to be constant and equal to the present value
of the chain stretchy, = A(¢)), one can easily obtain a closed form solution to the above PDE in a self
consistent manner by the method of eigen function expansigEendix A outlines the derivation of

the solution using this approximation. The use of the concept of a pseudo steady-state approximation in
transient simulations requires justification. However, it should be noted that the error associated with this
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Table 1
“Simplified” Mead—Larson-Doj15] equation set
Stretch L Uk
ot s [A+1]
. . dl" t dtr/
Orientation tensor T= fﬁ exp[—/ } g[B:y ()]
o0 .L.(I/) 1, t//
BY2(t) -u(t)BY?(t) - u(t'
Strain measure g[B:] ={(— ® 172( )B, @) -u(®)
|B,/“(t) - u(t)|? "

o 1 1 1f2G-1
Relaxation time = 3Z|=
T Mg Alts(A+1D)

Stress 7 =5G%2%1, GY = plateau modulus

approximation is very small, due to the exponential nature of solution of the tube survival probability,
K(s t,t). To prove that this error is indeed very small, we have performed simulations with the “simplified”
MLD model [15]. The equation set for this model is listedTiable 1 Invoking the pseudo steady-state
approximation, for the memory function for this model results in the following modified form of the
orientation tensor expression:

t /
T = i/ dt’exp[—(t _! )] 2[B.(1)] 4.1)
(1) J - (1)

Figs. 1 and 2show the transient shear and uniaxial elongational flow simulation results for the
“simplified” MLD using the above orientation tensor expression. Also shown in these figures are the
simulation results with the exact orientation tensor expression as givembie 1 The difference be-
tween these transient simulation results<i8.01% for the startup of steady shear antl0% for the
startup of steady uniaxial elongational flow. Clearly, this proves the validity of the pseudo steady-state

100

10} PSSA —— i

0.1
Y

Fig. 1. Comparison of the simulation results for startup of steady shear flow using the memory function employing pseudo
steady-state assumption (PSSA) with the results using the EXACT memory function, for the “simplified” Mead—Larson—Doi
model.r)jy = (rxy(t)/G?v), y = yt is the shear strain and,/ts) = 50.
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Fig. 2. Comparison of the simulation results for the startup of steady uniaxial elongational flow using the memory function
employing pseudo steady-state assumption (PSSA) with the results using the EXACT memory function, for the “simplified”
Mead-Larson—Doi modet;}, — z, = (7,At) — rxx(t)/G?v), ¢ = &t is the elongational strain an@dy/ts) = 50.

approximation employed. Later we arrive at the same conclusion for the Ottinger’'s model as well thus
verifying the generic applicability of this approach.

Using the above strategies we can determine bathdK(s, t, t'), hence, once the orientatian(x, t), is
determined the polymeric stress can be computed. Since the tube segmental orientation is not deterministi
and perturbation solutions for the SDE governing the segmental orientation is limited to small Weissenberg
numbers, itis not possible to relate the initial and the final tube orientation with an explicit equation and one
has to track the tube evolution. However, as mentioneskiction 3the BCF method can be effectively
used to track the tube evolution by usifg. (3.6) Hence, we will solve this SDE using Brownian
dynamics to obtain the tube evolution and the strain measure at the present8pexifically, the strain
required in the stress expressid@y. (3.13) is computed by propagatingl* configuration fields, as in
the BCF method, each of which is governed byHue (3.6)with the initial condition being that each field
at the time of its birth is a spatially uniform random unit vector chosen from the isotropic distribution
on the surface of a unit sphere. Thd tonfiguration fields are segregated inM' ‘parts, each carrying
‘N/M’ fields individually. These M’ parts are the representation of the ensembles which were born at
different timed’ in the past. TheN/M’ fields within each ensemble are referred to as sub-ensembles and
it is actually the simulation of these sub-ensembles that is being performed when one evolés the
configuration fields.

The ‘N’ configuration fields that we use however, have important differences from the ones used in
the BCF method. The first and perhaps the most important difference is that unlike the BCF method, the
configuration fields used in our approach, have a fixed lifetime, and it is only during their lifetime that
we make use of them in calculating the strain measure. This procedure is very similar to the DF method,
where the deformation gradient fieldB, (x, r), have a fixed lifetime. Therefore, as shown in the DF
method, keeping very old fields is a waste of resources and here too we would adaptively create and
destroy fields according to our need.

The second important difference between the BCF method and the “adaptive configuration fields” is
that random walkers are not attached to the fields. The important thing to realize at this stage is that, the
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purpose of the random walker is to decide the age of the tube, but in our approach, the age is decided
by explicitly solving for the tube survival probabilit¢(x, t,t’, s) in the same way as in the DF method.
Note that this probability is a function of the stretch field, t), and therefore the life of the tube varies
spatially.

In what follows, we briefly discuss the algorithm for the computer implementation of the adaptive
configuration fields method.

4.1. Governing equations/computational methodology
The temporal discretization of the stretch field evolution equatin,(3.4) is obtained through a

forward Euler scheme which results in the following update of the stretch field fromztiren Ar to
timet,. 1 = (n + D) Ar:

AT 1) 4 (" (e, 1) - VAT, )AL = 1M 1) A+ (i (X, 1) + A, 1) At (4.2)
where,

}‘gonv(xv[) =AM, K" (x, 1) 1T (x, 1) (4.3)

: 1 c(M(x,

Adissip(Xs 1) = —;%(A” (x,1) — 1) (4.4)

The configuration fields evolution equation, . (3.6) is discretized using a forward Euler scheme,
which preserves the unit norm property of the tube orientation vector

u(x, 1)+ " (x, 1) - Vup(x, 0))At = ui(x,t) + k" (x, 1) - up(x, 1) At +/2D"(x, 1) AW (4.5)

/
+1 u(x,1)
u, (x,t) =

= k0 4.6
|y (x,1)] (4.6)

Next, in order to obtain the strain measuex, t)u(x, 1)), we make use of the algorithm developed
in the original DF method21]. Specifically, sampling of the orientation of tubes is performed at a
finite number of the timesM’, in the history and the strain measure is obtained by a continuous linear
interpolation between these sampled values Fsge3),

M-1

(u(x,Nu(x, 1)y = Z(u(x, Dux, 1))y et (4.7)

k=0

where ¢, (t') are the piece-wise linear top hat shape functions, which have life only over the time interval
[t._1 ti,1] @ndz are the timesin the history at which one carries out the sampling. In the above formulation

a cutoff time,z, is also needed to restrict the reference timetor; < ¢’ < t. This limits the number

of intervals to M’ and hence the strain measure is easily calculated as a finiteEyn@.7) The ‘M’
ensembles carrying thdl* fields introduced earlier, are attached individually with the time intervals.
Moreover, each of these intervals is further divided into a number of equidistant steps each equal to the
simulation time step size d&ft. The sub-intervals formed serve as position levels for the ensembles during
their lifetime, so that at every time step the ensembles ag&tland their position gets updated to the

next lower sub-interval.
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Fig. 3. A typical memory function for the Ottinger's model and its discretization using linear interpolation shape functions.

Since the memory function for the Ottinger model typically decreases exponentially with increasing
time, sampling is performed with unequal time steps, as showging, in such a way that at selected
time instances the interval length gets doubled, so that finally a fine time mesh partitioning results
near the present time,= 1), where the memory function changes rapidly and an increasingly coarse
discretization is obtained, as one proceeds into the history of the flow, where the memory function varies
slowly. Specifically, the following discretization, suggestedifl], is used: starting with the present
time, we use 25 intervals aft, followed by 25 intervals of Zt, 10 intervals of 4\t, 10 intervals of &t,

10 intervals of 16\, 10 intervals of 3At, 10 intervals of 64At, 10 intervals of 124t, 10 intervals of
256At, 10 intervals of 51At and finally 10 intervals of 1024t. With this memory discretization the total
number of ensembles to be usedds= 140 and with aAr = 0.00017%z4 (a typical value used in our
simulations), the cutoff timeg, comes out to be of a sufficiently large value of approximatehy 2t

is possible to change the cutoff time, by varying theAt and/or by changing the number of ensembles
(and hence the number of time intervals). Thus with this description, the sub-ensemblbl$i#etHe
number of ensembles\’, and the time stepAt, constitutive the parameters of the simulations. These
issues will be discussed in the next section.

The above approach thus limits the amount of information to be processed such that the propagation
of only M ensembles, which store the information on the strain measure at finite discrete reference
times,t,, is sufficient for calculating the strain measupe(x, r)u(x, 1)), at ‘all’ the reference timeg,

For a more detailed discussion on this subject we refer the reader to the original paper by Peters et al
[21].

Substitution oEq. (4.7)intoEq. (3.13Yyesults inreplacement of the time integral in the stress expression,

Eq. (3.13) with a finite sum

T(x, 1) (A, DA, D(A(x, 1) — 1) ] =
3ZnoksT [H 37 } ;Wkw(x,t)u(x,t))t; (4.8)
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where the weight3),, are given by

t 1 ’
Wk:/ [/ (M) ds]d)k(t’)dt’, k=012 .. M—1 4.9)
— 0

. o’

A typical simulation starts withN’ spatially uniform unit vector fieldsyy o, chosen from the isotropic
distribution on the surface of a unit sphere. Thifields, as discussed earlier, are segregated o *
ensembles and these ensembles are assignedkd'tivaé intervals of the memory integral discretization.

The simulation proceeds using the forward Euler scheme with time stefps bf accordance with the
original DF algorithm[21] where the deformation fields are evolved and later destroyed at a certain age,

at every time step, the ‘ensembles’ are evolved, assigned the right age, and then selectively destroyed at ¢
certain age. At the same time, to keep the number of ensembles fixd{ atiew ensemble, witiN/M’

spatially uniform fields, is introduced in the simulation which takes the place of the discarded ensemble.
Such a procedure ensures that the aged ensembles, which contribute negligibly to the overall stress at
the present timet”, are not unnecessarily evolved in the simulation and at the same time the ensembles
born recently, which have large contributions to the stress, are easily incorporated in the fixed limited
memory available. The remaininty~(N/M)’ fields in the rest of the undiscarded ensembles get updated
every time step according tegs. (4.5) and (4.6)Also, the stretch fieldy(x, t), is updated according

to Egs. (4.2)—(4.4)Finally, the weights required in the stress expression are computed using the tube
survival probability,K(x,t,t', s) in the weight expressiorq. (4.9) The weights depend on the stretch
variablei(x, t) and so here unlike in the Doi-Edwards model, they are a function of both time and space.
Therefore, one needs to compute these weights at every time step and every spatial location. Assembling
this information together with the velocity gradient tensor, one can easily calculate the polymeric stress
usingEg. (4.8) This procedure is demonstrated in the next section.

5. Results and discussion

In order to fully examine the fidelity and robustness of our new simulation technique, we have simulated
the Ottinger's model in a number of different fixed kinematics flows. For such flows the velocity gradient
tensor has no spatial variations and is known explicitly. Hence, pure Brownian dynamics simulations can
be easily performed to obtain the polymeric stress. In turn, these results can be used for validation of our
newly proposed ACFM method. Motivated by earlier theoretical and experimental studies, for all of our
simulations we take the following parameter val{@§,15t Z = 7, Amax = 21,81 = 8> = 1/A and
talts = 3Z.

For pure Brownian dynamics simulations, we use the simulation algorithm suggested by Fang et al.
[7]. Specifically, a large numbeN{mpid Of trajectories are propagated for the stochastic processes,
ands;, which are governed by the SDESs. (2.8) and (2.9)At the same time the stretch variablgjs
evolved by utilizingegs. (2.1) and (2.2Jinally, to achieve a full equivalence with the diffusion equation,

Eq. (2.3) the creation/destruction term“ssipf/A, which is absentin the SDEs, is taken into consideration

in a probabilistic manner after observing the net flux of configurations in and out of the interval [0,1].
Using this procedure, the simulation proceeds with a forward Euler scheme in time steparaf the

stress at any time, is easily evaluated by taking an ensemble average over the trajeckmi€2.(L0). To

ensure convergence, in all of our simulations we have chosen (after several trial and error procedures with
different ensemble sizes and time steps) a sufficiently large ensemble sizgk = 100,000 and a
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Table 2
Sample lookup-table. The memory integral discretization is as explain&gdtion 4.1and the sub-interval size i&r =
0.00017 274

A Wo W, W, W; W,
1.0000 0.015062 0.012447 0.008114 0.006561 0.005664
1.0156 0.014907 0.012142 0.007815 0.006267 0.005373
1.0312 0.014880 0.011737 0.007537 0.005994 0.005104
1.0625 0.014609 0.011215 0.007033 0.005503 0.004624
1.1250 0.014145 0.010337 0.006202 0.004706 0.003854
1.2500 0.013482 0.009019 0.005036 0.003619 0.002829
1.5000 0.012638 0.007505 0.003758 0.002485 0.001807

small enough time step size af = 0.00017%74. As a further step in performing efficient calculations, we
make use of the improved higher order (i.e D)) scheme of Ottingg29], which takes into account the
unobserved reflections (i.e. the cause of lower order (i(@/&)) convergence of the conventional Euler
scheme) through a conditional probability of their occurrence. Finally, in order to compute the statistical
errors for the results, we have performed 10 independent simulations. For all the pure Brownian dynamics
results which we use for comparison purposes later, the statistical errors are les9th#n

The ACFM calculations are performed using the computational methodology outlined in the previous
section (sed(qs. (4.2) through (4.9)1t should be noted that since we have performed simulations for
unidirectional fully developed flows, the material convection terms in the ACFM equations conveniently
drop out. A use of this fact becomes immediately obvious when it is observed that th&eBDEB,14)
governing tube survival probabiliti(t, t’, s), under the assumption of pseudo steady state, has only a
single parametet,, which itself is restricted t0. < Amax. Therefore, the solution of this PDE (and
hence of the resulting costly eigen value problems) could thus be easily obtained beforehand for all
values ofA < Amax and the weightsW,. Hence, one can obtain the stress expresdton,(4.8)from
the simulations. We use this strategy as an efficient way of performing our ACFM time integration
simulations. Before the actual simulation starts, the PDE is solved spanning thewylakmeter space
in discrete values differing byal = 0.001, and the weights are computed using this solution in order
to generate ‘lookup-tables’ for these discrete values. A sample lookup-table containing the first few
weights for some discrete values of the stretch variabjas( presented a$able 2 During the course
of the simulations, depending upon the actual stretch variable value, the required weights are obtainec
by interpolating between those values from the ‘lookup-tables’ which were obtained for the immediate
lower (1)) and upperX,) discrete values of (4} < A < Ay). Such an approach thus significantly affects
the computational efficiency of the simulations. Typically a 100% reductions in CPU time are observed
with the use of lookup-tables.

As a step further in increasing the computational efficiency of our technique, we have examined the
sub-ensemble generation process. Isotropically distributed sub-ensembles are required both at the sta
of the simulation and during the course of simulation at the time of replacement of an old ensemble
with a new one. As shown by van Heel et HI8], a small sized ensemble having evenly distributed
sub-ensemble vectors can easily outperform the results obtained by calculations with a relatively large
sized ensemble having randomly distributed sub-ensembles. This is due to the fact that an isotropic evel
distribution constitutes an unbiased initial tube configuration space and is thus able to accurately capture
the deformation experienced by the ensemble later. Hence, for all our simulations we have used ensemble
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with homogeneously distributed sub-ensemble unit vectors. Such a choice not only gives better results
with fewer degrees of freedom, but even offers an additional advantage of further CPU time reduction,
since now each subsequent ensemble generation is easily achieved by a single random rotation of the very
first ensemble, hence avoiding the excessive use of costly random number generation processes which ar
an integral part of the conventional randomly distributed ensemble generation algorithms. The random
numbers which are still needed for the generation of Wiener processes and for the random rotations,
are obtained by using highly efficient routines based on Lagged Fibonacci Seq{&bjcd$e above
procedure typically results in an additional 20% relative reduction in CPU time.

Next, one needs to determine the optimum sub-ensemble b, the number of ensemblesyr’,
and the time step size\t, which is done by performing numerical experiments. In accordance with
the theoretical predictions, the error bars are seen to be inversely proportional to the square-root of the
sub-ensemble size. The exact convergence criterion with respect to the number of ensembles and the
time step size is however not easy to establish since a combination of both parameters determines how
well one can capture the initial steep behavior of the memory function as well as the final cutoff time. It
therefore becomes difficult to vary either the number of ensembles or the time step size independent of
the other and still extract the information on how well the memory function is approximated. However,
due to the stochastic nature of the equations being integrated, the error vaxj&s: aand typically
a time step size oi\r = 0.00017r%z4 was found to be appropriate for converged results. Hence, we
have used this value for all of our ACFM simulations. Similarly, appropriate values for the number of
ensembles M’, and the sub-ensemble siz&l/M’, were obtained. For example, in the startup of steady
shear flow, at a dimensionless shear rat¢ @f = 10, (M = 130) ensembles with a sub-ensemble size
of (N/M = 40) were observed to be sufficient, so that the total number of configuration fields needed for
this simulation wasV = 130 x 40 = 5200.Figs. 4 and Show the convergence results for these trial
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Fig. 4. The convergence characteristics of the adaptive configuration fields method (ACFM) in terms of the number of ensembles,
M, used.ytg = 10 andnt = (51yy(1)/3ZNoke T (y 74)) IS the transient viscosity in the startup of the steady shear flow.
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Fig. 5. The convergence characteristics of the adaptive configuration fields method (ACFM) in terms of the sub-ensemble size,
N/M, used in each of thil ensemblesy tq = 10 andn™ = (51yy(t)/3Znks T (¥ 14)) is the transient viscosity in the startup of

the steady shear flow. The inset has the log—log plot of the statistical error versus the sub-ensemble size. Also shown in the inse
is the fit of the error to a linear function ¢1//N/M).

simulations using transient viscosity as the measured variableWT&€110 case highlights the fact that
the resulting cutoff timed; ~ 2.6ty) is clearly not enough. In other words, the weight associated with
the last ensemble, in this case, is still considerably large to be neglected. However,MbetHe30 and
150 case, the resulting. is approximately 10 and 44Q, respectively which is more than sufficient. The
inset of Fig. 5 shows the inverse square-root dependence on the sub-ensemble size. These figures are
representation of the fact that convergence can be obtained using a reasonable finite number of ensemble
and sub-ensembles. In general, as the dimensionless shear rate increases, larger number of ensemb
with increased sub-ensemble size are needed.

Again, as in the pure Brownian dynamics simulations, the statistical error bars for the computed results
are obtained by performing 10 independent simulations. For all the simulation results which we present
in this paper, the errors are less thad.1%.

5.1. Startup of steady shear flow

The first test problem considered was that of startup of steady shearHlgsv.6 and 7show our
simulation results for the dimensionless transient viscosity and the dimensionless transient first normal
stress coefficient respectively for various values of the dimensionless sheagrrgateor purpose of
comparison, these figures also include the corresponding data from pure Brownian dynamics simulations
Clearly our newly proposed adaptive configuration fields method fully captures the intricate non-linear
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Fig. 6. Comparison of the Brownian dynamics simulation (BDS) results with adaptive configuration fields method (ACFM)
results using transient viscosity! = (5t4,(1)/3Znuks T (y 7)) in the startup of the steady shear flow as the measured variable.
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Fig. 7. Comparison of the Brownian dynamics simulation (BDS) results with adaptive configuration fields method (ACFM)
results using transient first normal stress coefficigrt,= (5(tu(t) — 7yy(1))/3Zpks T (¥ 74)?) in the startup of steady shear
flow as the measured variable.
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Fig. 8. Comparison of the Brownian dynamics simulation (BDS) results with adaptive configuration fields method (ACFM) results
using transient viscosity,~ = (514,(1)/3Zn.ks T (y 19)) in the cessation of the steady shear flow as the measured variable.

shear rheology of the entangled polymers and a very good agreement is obtained with the pure Browniar
dynamics simulation results.

5.2. Cessation of steady shear flow

The next problem considered was that of cessation of steady shedfifisw8 and $how the relaxation
of stresses after the flow is switched off. Specificadhig. 8 shows the transient dimensionless viscosity
andFig. 9shows the transient dimensionless first normal stress coefficient. As expected, the stress shows
a steady exponential decrease with time. Again, the results from the two simulations are very close to
each other. However, a close examination of the ACFM results reveals periodical jumps. These jumps
can be easily associated with the temporal discretization involved. Note that such jumps follow a trend (a
geometric progression) which is closely related to the memory integral discretizatiorSeszit( 4.).
In other words, since the ensemble that disappears at any instan,be quite young and since the new
ensemble that takes its place has a zero contribution to the stress at that instant, a significant portion o
the stress is lost at such instances. This phenomenon is thus an integral part of the temporal discretizatio
employed and gets clearly highlighted in slow flows such as cessation or startups at low shear rates a:
opposed to fast flows where the combimemlvcontribution from the other ensembles is large enough to
maintain the continuity that is being compromised from the zero contribution of the new ensemble.

5.3. Uniaxial extensional flow

As a final verification of our technique, the uniaxial extensional flow problem was simukited.0
shows the transient uniaxial viscosity observed during the simulation of startup of uniaxial extensional
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Fig. 9. Comparison of the Brownian dynamics simulation (BDS) results with adaptive configuration fields method (ACFM)
results using transient first normal stress coefficiént,= (5(tu(t) — ryy(t))/3Zr\)kBT()}rd)2) in the cessation of the steady
shear flow as the measured variable.
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Fig. 10. Comparison of the Brownian dynamics simulation (BDS) results with adaptive configuration fields method (ACFM)
results using transient viscosity! = (5(t.At) — tx(t))/3Znoks T (€74)) in the startup of the steady uniaxial extensional flow
as the measured variable.
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flow. The flow has been simulated for various values of dimensionless extensioargat€learly, the
ACFM simulations can accurately capture the relevant dynamics.

6. Conclusions

Inrecent years, a number of sophisticated models based on the concept of reptation have been develope
for describing the non-linear rheology of entangled polymeric sys{ért8,15] In order to incorporate
these models in complex flow simulations, new efficient simulation strategies are required. We have
developed a new multiscale Eulerian technique, i.e. the adaptive configuration fields method, that allows
complex flow simulation of advanced reptation models with stochastic strain measures and local variations
of life span distribution. This technique is a new hybrid method that carefully avoids the drawbacks of the
state-of-the-art Eulerian techniques for multiscale simulation of entangled polymeric systems, namely,
the Brownian configuration fieldR0] and the deformation field®1] methods. To demonstrate the
fidelity and robustness of our method, we have simulated the Ottinger’s single segment reptation model
in a number of fixed kinematics flows and obtained a one-to-one correspondence with the pure Brownian
dynamics simulations, thus verifying the accuracy of our method.

A comparison of the CPU times between ACFM and pure Brownian dynamics BD has also been
performed and it was found that the ACFM simulations are typically more CPU intensive than the BD
simulations. This is because in the ACFM calculations the total number of configuration spdcies (
required is more than the total number of trajectordsfpd needed in BD simulations. For example,
at a dimensionless shear rateyafy = 10, if one requires the statistical error for the simulation to be
less thant-0.03%, the total number of configuration fields needed in the ACFM calculations is about
N = 300,000 (with 150 ensembles of sub-ensemble size equal to 2000), whereas in BD simulations
the total number of trajectories required is abdidimpie = 100,000, which makes the BD simulations
in this case approximately three times faster than the ACFM simulations. However, it has to be noted
that in the current implementation of the ACFM technique discussed here, a fixed sub-ensemble size is
assigned to each ensemble member irrespective of its age, which implies that even the younger ensemble
which have a larger contribution to the instantaneous stress, are calculated within the same statistica
accuracy as the older ensembles which contribute in a small proportion to the instantaneous stress
Hence, in order to obtain a lower overall statistical error, the total number of trajectories to be employed
is sufficiently high. On the other hand, this problem doesn't exist for the BD simulations where such a
sorting procedure is never required since the age of the kinetic species (trajectories) is decided implicitly
by the ‘reflection’ procedure, and hence, a smaller trajectory size is sufficient for reasonable accuracy.
However, it should also be noted that the use of Brownian dynamics in complex flow simulations requires
a coupling with particle tracking Lagrangian techniques which makes the overall simulation strategy
more computationally intensive as compared to the Eulerian ACFM technique.

Nonetheless, one can also improve the efficiency of the ACFM technique per se by adaptively decreasing
the sub-ensemble size assigned to the older ensembles. We have modified the ACFM implementatior
suggested here to include an algorithm that appropriately fixes the sub-ensemble size for the ensemble
present. Starting with a sufficiently high value, sub-ensemble size for the following ensembles is adaptively
decreased in accordance with the weights. Using such a procedure further reduction in the simulation
CPU time has been proved to be possible, both in fixed kinematics and in complex flows and one
obtains similar computational efficiency as the Brownian dynamics for the case of fixed kinematics flows
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Table 3
Comparison of the simulation CPU time (in minutes) of pure Brownian dynamics (BDS) with the adaptive sub-ensemble size
ACFM method

Nyzy = 101,200 Nz = 121,000 Nizj = 140,800 Nizj = 160,600
BDS 4.16 4.97 6.01 6.66
ACFM 4.22 5.01 6.09 6.73

All computations have been performed for the case of startup of steady shear flaw-at10, on a 667 MHz Alpha system
with 2GB memory. With a time step size oft = 0.0001r 24, 2000 time steps are required to reach the steady dtafés the
total number of trajectories used.

(seeTable 3). We have also tried to use higher order shape functions to approximate the memory function
in our ACFM method. However, we have found that such refinements increase the computational cost
tremendously without producing significant changes in terms of accuracy or efficiency of the method.
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Appendix A. Analytical expression for tube survival probability

For the fixed kinematics flow problems considered in this work, the material derivative.i(8.14)
can be equivalently replaced by the partial derivative,
0K 1 9°K a . }\dissip
— = — — —(§tK) — —2K
ot w2ty 0s2  Os (S10tK) A
As a first step towards the solution Bfy. (A.1) with the Egs. (3.15) and (3.16)we introduce the

following convenient change of variables to reduce the PDE, along with its initial condition and boundary
conditions, to a standard form

1 [ Ehgissi + A dissi
L= E‘/gnzm, x=(2s— 1)L, y = [%’} (t —1) (A.2)

0K  9°K 3K
_ = — :l: X —
dy 0x? 0x
where,K = K(y, X) € [0, 1], x € [-L, L], andy > 0. The negative sign is used in scaling when 1
and the positive sign when < 1. Also the initial condition and the boundary conditions are now given
by

(A1)

(A.3)

K(y,—-L)=K(y,L)=0, y=>0 (A.5)
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The resulting PDEEQ. (A.3) is now solved using the method of eigen function expansions. Solution
to K(y, X) is assumed to be separable and of the following form:

> 2n—Dmx
K(y,x) = ;An ) cos[T} (A.6)
Using the above expression in the PDE results in
=, n—Drx] [ (2n—1)272 (2n — Dmx
;Anm cos[T] = Zl [‘T] An() cos[T}
2k—1 . 2k—1
+ Z [ ( )m} Ar(y) sin [%] (A7)

We use another eigen function expansion to expres&k — 1) x /2L)] sin[((2k — 1)z x /2L)], in terms
of the cosines

2k —Drx]| . [2k—Drx] (2n — Dmx B
[_—ZL ] sin [—ZL ] = ;Cn,k COS[T] , k=123, ...,00 (A8

Finally, using the above expressidfy. (A.8), in Eg. (A.7)and comparing term by term, we get

2n — 1)°n? -
ALy) = — [%} 4,00 £ Y CAi(y), n=12.3..., 00 (A.9)
k=1

The coefficient, ; are found by utilizing the orthogonality property of cosines. Therefore,

1P ((@k—Drx\ . ((2k—Dmx (2n — Dmx
Conk = ‘z/_L [(T) S'”(T) C°S<T)] ol

nk=1223,...,00 (A.10)
Hence,
Cn,k =—%, ifn==k
— D2k —12n —1) . (A.11)
Cn,k:( ) ( )(2n )’ it 1 k

2(k —n)(k +n — 1)

The function\, (y) form a closed set of linear autonomous system of equations giveqg.gA.9), which

can be solved very easily using conventional methods. Due to the exponential nature of solution, the first
few terms of this eigen function expansidy. (A.6), are typically sufficient for reasonable accuracy and
hence for all of our simulations the number of terms were restricted to 20. The initial condition required
to solve the system of Equatiorisg. (A.9) is obtained fronEq. (A.4) and (A.6)again by utilizing the
orthogonality property of cosines:

_ PN (2n — Drx _A-pt
A’LO = An(y = 0) = Z/LCOS[T] dX = m (A12)
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It should be noted that use of the above technigue of eigen function expansions, in solving for the
tube survival probability, is also applicable for flows other than the fixed kinematics flows. However, the
coefficients functionsd,,, in that case would need to be solved in an Eulerian finite element sense.
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