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Abstract

The efficiency and robustness of various numerical schemes have been evaluated by performing Brownian dynam-
ics simulations of bead-rod and three popular nonlinear bead-spring chain models in uniaxial extension and simple
shear flow. The bead-spring models include finitely extensible nonlinear elastic (FENE) springs, worm-like chain
(WLC) springs, and Pade approximation to the inverse Langevin function (ILC) springs. For the bead-spring chains
two new predictor–corrector algorithms are proposed, which are much superior to commonly used explicit and other
fully implicit schemes. In the case of bead-rod chain models, the mid-point algorithm of Liu [J. Chem. Phys. 90
(1989) 5826] is found to be computationally more efficient than a fully implicit Newton’s method. Furthermore,
the accuracy and computational efficiency of two different stress expressions for the bead-rod chains, namely the
Kramers–Kirkwood and the modified Giesekus have been evaluated under both transient and steady conditions. It
is demonstrated that the Kramers–Kirkwood with stochastic filtering is the preferred choice for transient flow while
the Giesekus expression is better suited for steady state calculations. The issue of coarse graining from a bead-rod
chain to a bead-spring chain has also been investigated. Though bead-spring chains are shown to capture only
semi-quantitatively the response of the bead-rod chains in transient flows, a systematic coarse-graining procedure
that provides the best description of bead-rod chains via bead-spring chains is presented.
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1. Introduction

Quantitative predictions of the velocity and stress distributions in complex flows of polymeric solutions
is a challenging goal, but offers the promise of more rational design of polymer processing operations.
The conventional approach to modeling the flow of dilute polymeric solutions is based on solving the
equations of conservation of mass, momentum and energy in conjunction with a closed-form constitutive
equation for the polymeric stress (e.g.[1–3]). To date, the most commonly used closed-form constitutive
equations for dilute polymeric solutions have been obtained by approximating models based on kinetic
theory. However, such approximations commonly referred to as ‘closure approximations’ often distort
the predictions of the original kinetic theory based model[4].

In recent years, continuum level discretization techniques have been successfully merged with Brow-
nian dynamics (BD) techniques to allow direct use of micro-structural models for polymer dynamics in
flow simulations, thus by-passing the need for closed-form constitutive equations[5–8]. Algorithms for
efficient continuum/mesoscopic simulation have advanced at a rapid rate since their first introduction in
the early 90s. However, even with the most efficient multi-scale algorithms, complex flow simulations
have been limited to include only very simple micro-structural models for the polymeric molecule, such
as the elastic dumbbell model. This is due to the fact that this class of simulations is very CPU inten-
sive primarily due to the large ensemble required to obtain accurate polymeric stresses from Brownian
dynamic simulations. Hence, use of more complex micro-structural models such as bead-rod chains in
complex flow simulations is beyond the reach of the current computing power.

In order to improve the efficiency and predictive capability of combined mesoscopic/continuum sim-
ulation techniques, two issues need to be addressed. First, more CPU efficient BD algorithms need to be
developed. Secondly, accurate coarse-graining procedures from a molecular level (i.e. atomistic) to meso-
scopic level (e.g. bead-rod and bead-spring chains) need to be developed. In what follows, we will briefly
describe the basic approach in coarse graining from an atomistic to a mesoscopic level of description.

The coarse graining from an atomistic level to the bead-rod description is based on sound statistical
mechanic principles. Specifically, atomic vibrations are neglected leading to ‘freely rotating bonds’.
Moreover, the distance between the adjacent beads, i.e. the ‘Kuhn step’ can be determined based on the
fact that pair-wise inter-atomic potential interactions can be neglected beyond a certain distance. Further
coarse graining from a bead-rod to a bead-spring chain relies on the assumption of local equilibrated
motion of many Kuhn steps. Hence, a number of Kuhn steps are replaced by a ‘phantom entropic spring’.
It should be noted that depending on the flow strength, the number of Kuhn steps that can be equivalently
replaced by an entropic spring is different; hence systematic coarse-graining procedures from the bead-rod
to the bead-spring chains are rarely available. Finally, in the most coarse-grained approximation, one can
neglect the internal structure of the molecule and represent the whole molecule as a single dumbbell with
an entropic spring. However, an alternative procedure has been suggested by Ghosh et al.[9] who have
recently proposed a coarse-graining procedure based on an adaptive length scale principle, where the
properties of the entropic spring are adjusted based on the flow strength.

As mentioned earlier, flow simulations of dilute polymeric solutions with micromechanical models
containing sufficient molecular level information to describe the nonlinear rheology of polymeric solu-
tions, require fast BD algorithms as well as the need for accurate coarse-graining procedures. Hence, we
have focused our attention on the development of CPU efficient BD simulation algorithms for bead-rod
and bead-spring chains as well as the development of a rational coarse-graining procedure to repre-
sent a bead-rod chain by a smaller bead-spring chain. Specifically, we have compared the performance
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of a fully implicit Newton’s method against the commonly used two-step mid-point technique for BD
simulation of bead-rod chains. In addition, the accuracy and CPU efficiency of thestochastically fil-
tered Kramers–Kirkwood and the modified Giesekus expressions for evaluating the polymeric stress in
bead-rod simulations have been compared.

Similarly, for the bead-spring models the performance of conventional explicit techniques with a fully
implicit technique based on Newton’s method have been examined. In addition, two new predictor–
corrector based techniques are introduced. Continued iteration of these methods results in fully self-
consistent methods and their performance relative to the other two techniques is discussed. Finally,
coarse graining from a bead-rod to a bead-spring chain is examined. The aim is to find the number
of Kuhn steps that can be replaced by an equivalent nonlinear entropic spring such that the polymeric
stress computed from both micro-structural models are equivalent over a wide range of flow types and
Weissenberg numbers.

The manuscript is organized as follows. The governing equations and the expressions for the stress
tensor for various nonlinear bead-spring chains and the Kramers chains are introduced inSection 2.
Following this, the various numerical methods used to solve the governing equations for both bead-rod
and bead-spring models are discussed. The two new algorithms for flow simulation of the three different
bead-spring chains are introduced in this section. The relative performance of the various numerical
techniques discussed inSection 2is also examined inSection 3. Specifically, the accuracy of the solution
and the computational efficiencies of the various techniques are examined. This is followed by the
discussion of the scaling relationships and coarse-graining procedures inSection 4. We conclude by
highlighting the best simulation algorithms.

2. Governing equations

In the following, a brief description of the governing equations for the two micro-structural models,
namely the bead-rod chain and the bead-spring chain necessary to evaluate the chain dynamics under
flow will be discussed.

The bead-rod chain consists ofNk beads connected byNk −1 rigid rods of lengtha (Fig. 1). The beads
serve as interaction points with the solvent and the massless rods act as rigid constraints in the chain that
keep every bead at a constant distancea away from its neighboring beads.

Fig. 1. The freely jointed bead-rod chain (Kramers chain) model for a polymer chain.



230 M. Somasi et al. / J. Non-Newtonian Fluid Mech. 108 (2002) 227–255

The governing equations for the dynamics of the chain are obtained by summing the external forces
acting on the beads,

F H
i + F C

i + F B
i = 0, i = 1,2, . . . , Nk (1)

where the subscripti refers to the bead number andF H, F C, F B are the hydrodynamic drag force, the
constraint force and the Brownian force, respectively. The hydrodynamic force is the Stokes drag acting
on the beads in the absence of hydrodynamic interaction and fluid inertia and is simply given by,

F H
i = −ζ(ṙ i − u∞

i ) (2)

whereζ is the drag coefficient (i.e. the drag tensor has been assumed to be isotropic),ṙ i the velocity of the
bead andu∞

i is the solvent velocity at beadi. The constraint force is the force that keeps two neighboring
beads at a constant distancea away from each other, and can be written in terms of the tensionsTi in the
rods as follows,

F C
i = Tiui − Ti−1ui−1 (3)

whereui = (r i+1 − r i)/a is the orientation of rodi connecting beadsi andi + 1 with position vectorsr i

andr i+1, respectively. The Brownian force is used to represent the frequent collisions between the bead
and the solvent molecules and is mathematically represented as a quantity with zero mean (because of the
isotropic nature of the collisions) and a second moment that balances the dissipative forces (also known
as the fluctuation–dissipation theorem of the second kind[11]). Therefore,F B is chosen such that

〈F B
i (t)〉 = 0 (4)

〈F B
i (t)F

B
j (t + �t)〉 = 2kTζ δijδ(�t) ≈ 2kTζ δij

�t
(5)

wherek is the Boltzmann’s constant,T the absolute temperature,δij the Dirac delta andδ is the unit
tensor. In the above equations,〈· · · 〉 represents an ensemble average.

After substitution of different forces acting on the beads intoEq. (1)and rearranging, one can obtain
the following set of equations governing the evolution of the position vectors of the beads:

dr i =
[
u∞
i + F C

i

ζ

]
dt +

√
2kT

ζ
dW i , i = 1,2, . . . , Nk (6)

where dW i is a Wiener process mathematically represented by a Gaussian random number with a mean
of zero and variance dt. The above set of equations have to be solved subject to the constraints that the
distance of separation between any two adjacent beads at any instant of time is fixed ata, or

(r i+1 − r i) · (r i+1 − r i) − a2 = φ2, i = 1,2, . . . , Nk − 1 (7)

whereφ2 is a specified tolerance (typically 10−6 to 10−8).Eqs. (6) and (7)result in 2Nk−1 equations forNk

position variablesr i andNk −1 tensionsTi , which can be solved in a number of ways. In the next section,
two numerical schemes, namely the Newton’s method and the method of Lagrange multipliers will be
discussed. To facilitate comparison with the bead-spring results, we have chosen to non-dimensionalize
the above equations as follows. The distance between adjacent beadsa serves as the length scale of the
problem, the bead diffusion time,ζa2/kT serves as the characteristic time scale and the forces are made
dimensionless withkT/a.



M. Somasi et al. / J. Non-Newtonian Fluid Mech. 108 (2002) 227–255 231

Once the position vectors of all the beads have been determined, the polymer contribution to the total
stress,τ p can be obtained using the Kramers–Kirkwood expression (neglecting the isotropic contribution)
as,

τp =
Nk∑
i=1

〈RiF
H
i 〉 (8)

whereRi is the position of beadi relative to the center of mass of the chain, i.e.,

Ri = r i − rc (9)

where

rc = 1

Nk

Nk∑
i=1

r i . (10)

In Eq. (8)the polymer stressτ p has been non-dimensionalized usingnpkT, with np being the number
density of the polymers in solution. Furthermore, in order to obtain smooth averages, we have followed the
noise reduction technique proposed by Doyle et al.[10]. In addition to the Kramers–Kirkwood expression
discussed above, the polymer stress can also be obtained using the modified Giesekus expression as given
by [11,12]

τp = −1

2

[
Nk∑
i=1

〈RiRi〉
](1)

(11)

where the superscript (1) denotes the upper convected derivative,

X(1) = ∂X

∂t
− Pe(κ† · X + X · κ) (12)

wherePe = γ̇ (ζa2/kT) is the bead Peclet number, which can be interpreted as the ratio of the bead
diffusion time to the characteristic flow time.

Although the modified Giesekus expression for the polymer stress is more useful in evaluating the
polymeric stress under steady state conditions, we have chosen to evaluate its usefulness in transient
flows as well, since it is simpler to evaluate than the Kramers–Kirkwood expression with the noise
reduction technique of Doyle et al.[10].

2.1. Simulation procedure

The initial conditions for the positions vectors of each bead in a chain are obtained by simulating a
random walk, i.e. each successiver i+1 − r i is obtained by invoking a random unit vector on a surface of
a sphere. The first bead is assumed to be at the origin, which thus specifies the remaining position vectors
uniquely. However, since it is known that, at equilibrium, a Kramers chain does not exactly follow a random
walk structure[12], the correct initial distribution is obtained by allowing all the chains to equilibrate for
a significant time period (typically 106–107 time steps, which corresponds to around 1000 times the bead
diffusion time). Once the correct equilibrium distribution has been obtained, the chains are subject to flow
at timet = 0, after which,Eq. (6) is integrated in time subject to the constraints and any macroscopic



232 M. Somasi et al. / J. Non-Newtonian Fluid Mech. 108 (2002) 227–255

properties such as the stress are obtained via appropriate averages. Typically, 1000–4000 chains are used
in every transient simulation, with time steps of 10−3 to 10−5 depending on the flow strength.

2.2. Bead-spring chains

A bead-spring chain consists ofM beads connected byNs = M − 1 entropic springs. While the beads
serve as interaction points with the solvent, the springs represent entropic effects due to the internal
degrees of freedom which have been lost in the process of coarse graining. The governing equations are
obtained as before by summing the external forces acting on the beads

F H
i + F E

i + F B
i = 0, i = 1,2, . . . ,M (13)

where the subscripti refers to the bead number andF H, F E, F B are the hydrodynamic drag force, the
effective spring force and the Brownian force, respectively.

The expressions for the hydrodynamic force (i.e.Eq. (2)) and the Brownian force (Eqs. (4) and (5)) are
identical to the corresponding bead-rod chain expressions. The effective spring force on beadi is given
as

F E
i =




F s
1 if i = 1

F s
i − F s

i−1 if 1 < i < M

F s
M−1 if i = M

(14)

whereF s
i is the spring force associated with springi. Depending on the force law used for the springs, one

can arrive at different models. In this work, we shall make use of three widely used nonlinear spring force
laws to model the springs, i.e. the finitely extensible nonlinear elastic (FENE) force law, the worm-like
chain (WLC) force law[13] and a Pade approximation to the inverse Langevin force law (ILC)[14]. The
force laws are summarized below for comparison:

F FENE
i = HsQi

1 − Q2/Q2
0

(15)

F WLC
i = kT

bK

[
1

2

1

(1 − (Q/Q0))2
− 1

2
+ 2Q

Q0

]
Qi

Q0
(16)

F ILC
i = kT

bK

Qi

Q0

[
3 − (Q/Q0)

2

1 − (Q/Q0)2

]
(17)

whereQi = r i+1 − r i is the connector vector of theith spring,Hs the spring constant,Q the magnitude
of Qi andQ0 is the maximum extensibility of each spring. InEq. (16)we have used the fact that the
Kuhn lengthbK is twice the persistence lengthlp, i.e.bK = 2lp. Lastly, we note that all spring force laws
in Eqs. (15)–(17)follow the Hookean spring force law in the small deformation limit.

Eq. (13)can be rearranged to obtain the stochastic differential equation (SDE) governing the evolution
of the position vectors of the beads of the bead-spring chain as

dr i =
[
u∞
i + F E

i

ζ

]
dt +

√
2kT

ζ
dW i , i = 1,2, . . . ,M (18)
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Furthermore, the polymer stress,τ p, is given by the Kramers expression as follows

τp =
Ns∑
i=1

〈QiF
s
i〉 (19)

To begin the simulations, typically 1000–10,000 chains are chosen which satisfy the equilibrium dis-
tribution function of a bead-spring chain comprised of Hookean springs. As in our bead-rod simulations,
these chains are allowed to equilibrate for 104–106 steps such that the correct distribution for a given
force law is obtained. The flow field is then introduced and the evolution of the chains is monitored.
Furthermore, macroscopic properties such as the viscosity and its first normal stress coefficient are ob-
tained at any time through appropriate averaging. In order to facilitate comparisons with the bead-rod
simulations, it is important to introduce the characteristic scales for non-dimensionalization. The average
equilibrium length of a Hookean dumbbell,

√
kT/Hs, has been chosen as the length scale in the simula-

tions. Time is made dimensionless byζ /4Hs (i.e. the relaxation time of a Hookean dumbbell), and stress is
non-dimensionalized withnpkT as before. We define the Weissenberg number as the product of the longest
relaxation time (λ) and the shear rate (γ̇ ). For bead-rod chains,We = λγ̇ = 0.0142N2

k γ̇ (ξka
2/kT). Sim-

ilarly for bead-spring chains,We = λdγ̇ = λdγ̇ (ξ/4Hs). The detail of how the longest relaxation times
for both bead-rod and bead-spring chains are calculated from the simulation is outlined inSection 4.3.
For both chains,We is the product of the dimensionless longest relaxation time andPe. The dimensionless
form of the equations and the numerical techniques used to solve them are introduced in the next section.

3. Numerical techniques

To compare the accuracy and CPU efficiency of various techniques, simulations have been performed
in two homogeneous flows, namely the start-up of steady shear and uniaxial extensional flow. In the case
of steady shear flow, the velocity field is given as

vx = γ̇ y; vy = vz = 0 (20)

and for uniaxial extensional flow, the velocity field takes the form

vx = ε̇x; vy = −1
2 ε̇y; vz = −1

2 ε̇z (21)

whereγ̇ andε̇ are the shear rate and elongation rate, respectively.

3.1. Bead-rod simulations

In the following, the integration scheme and subsequently, the solvers used for the bead-rod simulations
are described. We have used the iterative technique originally proposed by Liu[15] to solve the SDEs
describing the evolution of the bead position vectorsr i , which, when written in the dimensionless form
are as follows

dr i = [Pe(κ · r i) + F C
i ]dt +

√
2 dW i , i = 1,2, . . . , Nk (22)

subject to the constraint

(r i+1 − r i) · (r i+1 − r i) − 1 = φ2, i = 1,2, . . . , Nk − 1 (23)
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whereκ = ∇v† is the transpose of the velocity gradient tensor. Since the above equations have been
rendered dimensionless,κ has the form

κ =




0 1 0

0 0 0

0 0 0


 ; κ =




1 0 0

0 −1
2 0

0 0 −1
2


 (24)

in simple shear and extensional flow, respectively.
In Liu’s [15] approach, givenr i(t), r i(t +δt) is obtained utilizing a predictor–corrector type algorithm.

The predictor step consists of an ‘unconstrained’ move (i.e.F C
i = 0) such that,

r∗
i = r i(t) + Peκ(t) · r i(t)dt +

√
2 dW i , i = 1,2, . . . , Nk (25)

Following this,r i(t + δt) is obtained as

r i(t + δt) = r∗
i + F C

i δt (26)

CombiningEqs. (23) and (26), along with the expression for the constraint forceF C
i from Eq. (3)gives

Nk − 1 nonlinear equations for the tensionsTi ,

(2δt)bi · (Ti−1ui−1 − 2Tiui + Ti+1ui+1) + (Ti−1ui−1 − 2Tiui + Ti+1ui+1)
2(δt)2

= φ2 + 1 − (|bi |)2, i = 1,2, . . . , Nk (27)

wherebi = r∗
i+1 − r∗

1. The above set of nonlinear equations can be solved using a number of different
approaches, and in this study we shall examine a few methods. The first method is a Picard’s method,
which is identical to that used by Liu[15]. The nonlinear terms in tensions (second term on the left-hand
side) appearing in the above equation are assumed to be small in comparison to the linear terms. Therefore,
the set of equations is rewritten in terms of a linear set of equations and solved iteratively by evaluating the
nonlinear part from the previous iteration. This results in a tridiagonal system of equations for theNk −1
tensions. Alternatively, Newton’s method can be used to solve the set of discrete equations. Utilizing
Newton’s method,Eq. (27)can be rewritten as,

F i(x)≡ (2δt)bi · (Ti−1ui−1 − 2Tiui + Ti+1ui+1) + (Ti−1ui−1 − 2Tiui + Ti+1ui+1)
2(δt)2 − φ2 − 1

+ (|bi |)2 = 0, i = 1,2, . . . , Nk − 1 (28)

whereF i is theith equation and we definex = {T1, T2, . . . , TNk−1}† as the vector of the tension variables.
To implement this technique we note that given the value ofx = xold at any instant, the value ofx = xnew

at the next iteration can be obtained according to Newton’s method as

xnew = xold − J−1(xold) · F (xold) (29)

whereJ−1 is the inverse of the Jacobian matrixJ defined as

J = ∂F

∂x
(30)

whereF = {F1, F2, . . . , FNk−1}†. The process is repeated until|xnew − xold| < tolerance, where the
tolerance is typically 10−6 to 10−8.
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Both the methods outlined above need an initial condition forx. Usually, the solution at the previous
time step is taken to be the starting guess for the iterative process at the present time. It should be noted
that, while the convergence rate of the Newton’s method is quadratic, as opposed to the linear convergence
of the Picard’s method, Newton’s method involves evaluating the Jacobian atevery iteration, while the
resulting tridiagonal matrix of the linear Picard’s method is constant for all iterations at any particular
time step. The relative performance of both these methods for different chain lengths and for various flow
strengths will be discussed below.

3.2. Bead-spring simulations

In this section we illustrate all algorithms only for the case of FENE chains realizing that extensions to
other nonlinear bead-spring cases can be similarly accomplished. Since the spring forces can be written
in terms of the inter-bead displacements, it will be useful to write the SDEs describing the bead-spring
chain dynamics in terms of the connector vectorsQi rather than the bead positionsr i

dQi = [Pe(κ · Qi) + 1
4(F

s
i−1 − 2F s

i + F s
i+1)]δt +

√
1
2(dW i+1 − dW i) (31)

for i = 1,2, . . . , Ns. The above equation has been written in the dimensionless form utilizing the scales
introduced inSection 2. For example, the dimensionless spring forceF s

i for a FENE dumbbell has the
form

F s
i = Qi

1 − Q2
i /b

(32)

whereb = HsQ
2
0/kT is the dimensionless extensibility parameter. The other spring force laws inEqs. (16)

and (17)can be made dimensionless using the same scalings outlined inSection 2.2.
Eq. (31)can again be integrated utilizing various techniques. The simplest procedure involves march-

ing forward in time using an explicit forward Euler integration scheme. The next improvement to this
technique is the Picard’s method, in which the explicit solution procedure is iterated at every time step
until the residual of the solution falls below a pre-specified tolerance. However, when using these explicit
techniques, care should be taken that the length of the connector vectorQ does not exceed the maxi-
mum permissible value

√
b, because this would result in aphysical spring forces. This can be avoided

by following the rejection algorithm proposed by Öttinger[11], i.e. a move that results in an aphysical
spring force law is rejected. Alternately, one can use Newton’s method to solve the set of nonlinear
equations iteratively at every time step until convergence is achieved. Furthermore, the resulting set of
linear equations at every iteration in the Newton’s method within a time step can be either solved using
a direct solver, or an iterative solver.

In this work, we shall compare both the explicit methods and the fully implicit Newton’s method to
two new semi-implicit predictor–corrector methods that we have developed to integrate the above set of
equations. These methods, which have been motivated by the two-step semi-implicit method proposed
by Öttinger (to integrate a FENE dumbbell)[11] are given below. Note that in each of these methods
we can and do continue the predictor–corrector iteration to convergence. Thus these techniques can be
considered to bealternative fully implicit solution techniques as they produce self-consistent solutions at
each time step.

In the first algorithm, given the solutionQn
i at timet = nδt , the solutionQn+1

i at the next time step
t = (n + 1)δt , is obtained as follows:
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Step 1. In the predictor step,Qi(tn) is explicitly updated to obtainQ∗
i (tn) as

Q∗
i = Qn

i + [Pe(κ · Qn
i ) + 1

4(F
s,n
i−1 − 2F

s,n
i + F

s,n
i+1)]δt +

√
1
2(dW n

i+1 − dW n
i ) (33)

whereF
s,n
i is the spring force for theith segment at timet = nδt .

Step 2. In the first corrector step, the spring forces for segmentsi andi − 1 are treated implicitly when
solving forQ̄i such that

Q̄i + 1
2(δt)F̄

s
i = Qn

i + [ 1
2Pe(κ · Qn

i + κ · Q∗
i ) + 1

4(F̄
s
i−1 + F

s,n
i+1)]δt +

√
1
2(dW n

i+1 − dW n
i ) (34)

which, upon rearrangement, results in the following cubic equation for the magnitude ofQ̄i for eachith
spring in the chain

|Q̄i |3 − R|Q̄i |2 − b(1 + 1
2(δt))|Q̄i | + b × R = 0 (35)

whereR is the magnitude of the right-hand side vector ofEq. (34)andb is the dimensionless extensibility
parameter. This equation has one unique root between 0 and

√
b, and thus by choosing this root, we can

ensure that|Q̄i | is never greater than
√
b.

Step 3. In the final corrector step, once again the spring forces for segmentsi and i − 1 are treated
implicitly, while the spring force for segmenti + 1 is obtained from Step 2.

Qn+1
i + 1

2(δt)F
s,n+1
i = Qn

i + [ 1
2Pe(κ · Qn

i + κ · Q̄i) + 1
4(F

s,n+1
i−1 + F s

i+1)]δt

+
√

1
2(dW n

i+1 − dW n
i ) (36)

The above equation also results in a cubic equation similar toEq. (35), which can be solved to obtain
a root for|Qi | that lies between 0 and

√
b. Once everyQn+1

i is known, the residualε is calculated as the

difference between the solutions̄Qi andQ̄
n+1
i .

ε =
√√√√ Ns∑

i=1

(Qn+1
i − Q̄i)

2 (37)

If this residual is greater than a specified tolerance (e.g. 10−6), Qn+1
i is copied ontoQ̄i and Step 3 is

repeated until convergence. This results in a self-consistent semi-implicit method. Basically, the premise
of the new method lies in the fact that, the force law,F̄

s
i for any spring in the chain, is either written

explicitly (from the previous time step or from a previous step in the present time step, where the length
of the connector is guaranteed to be within the bounds) or solved implicitly through the cubic equation.
This ensures that no Brownian step is rejected at any time during the entire simulation.

For the WLC and inverse Langevin chain, we obtain a different cubic equation thanEq. (35)above. As
in the FENE case, we are still guaranteed a unique real root between 0 and

√
b.

We have also investigated a second slightly different algorithm which treats the spring force term using
a trapezoidal rule instead of the backward Euler scheme as inEqs. (34) and (36). In this case the overall
algorithm becomes second order accurate because the trapezoidal rule is a higher order scheme. However,
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in actuality, there is no improvement in accuracy due to the discontinuities in the Brownian forcing term
[16]. For this algorithm the corrector steps corresponding toEqs. (34) and (36)are given by

Q̄i + 1
4(δt)F̄

s
i = Qn

i + [ 1
2Pe(κ · Qn

i + κ · Q∗
i ) + 1

8(F̄
s
i−1 + F

s,n
i+1) + 1

8(F
s,n
i−1 − 2F

s,n
i + F

s,n
i+1)]δt

+
√

1
2(dW n

i+1 − dW n
i ) (38)

Qn+1
i + 1

4(δt)F
s,n+1
i = Qn

i + [ 1
2Pe(κ · Qn

i + κ · Q̄i) + 1
8(F

s,n+1
i−1 + F̄

s
i+1)

+ 1
8(F

s,n
i−1 − 2F

s,n
i−1 + F

s,n
i+1)]δt +

√
1
2(dW n

i+1 − dW n
i ) (39)

Similarly we have the following cubic equation for the FENE in the trapezoidal algorithm,

|Q̄i |3 − R|Q̄i |2 − b(1 + 1
4(δt))|Q̄i | + b × R = 0 (40)

We have found that the performance of these two algorithms is nearly identical. For shear flow, the
trapezoidal algorithm performs better than backward Euler scheme at a very large time step (i.e.�t = 0.1),
while for extensional flow the backward Euler scheme outperforms the trapezoidal scheme. For typical
time steps these two algorithms give identical results, thus in what follows we shall only directly compare
the backward Euler scheme to the explicit and Newton’s implicit schemes.

3.3. Cubic equation iteration schemes

We have also investigated various iteration schemes to solveEqs. (34), (36), (38) and (39). In the context
of a linear matrix equationAx = b, the matrixA can be split into three matricesA = D +L+U , where
D, L andU are the diagonal, lower triangular, and upper triangular matrices, respectively. The simplest
iteration scheme known asJacobi method is obtained by retaining the diagonal matrix on the left side of
the equation while moving the rest of the matrices to the other side resulting inDx = −(L+U)x+b. This
is motivated by the fact that inverting a diagonal matrix is much more CPU efficient than inverting a more
general matrix. Therefore the iteration scheme isxn+1 = D−1(−(L+U)xn +b). The convergence of the
iteration scheme depends on the eigenvalues of the matrix−(L + U ). For Gauss–Seidel (GS), we retain
(D + L) on the left side of the equation and the iteration scheme becomesxn+1 − (D + L)−1(Uxn + b).
Similarly for successive over-relaxation (SOR), we havexn+1(−(1/ωD+L)−1((1−1/ω)D+U)xn+b).
The choice of different methods of splitting the matrixA is motivated by a search for the iteration technique
with the highest convergence rate. For linear matrix problems, with a special choice ofω, SOR can reduce
the spectral radius of the iteration matrix and a faster convergence is obtained over Jacobi and GS iterations
[17].

A similar approach is followed when solving nonlinear problems. The simplest scheme is Jacobi-like
iteration, wherēF

s
i−1 in Eqs. (34) and (38)are evaluated in the previous iteration step asF̄

s,n
i−1, andF̄

s,n+1
i−1

in Eqs. (36) and (39)are evaluated as̄F
s
i−1. Alternatively, one can divide the equations into two groups

based on bead number, oddi’s and eveni’s, and iteratively calculate |Q| in Eqs. (34) and (38)alternating
with even and oddi values. Since each spring is connected only to its nearest neighbors, the equations
are completely decoupled. This is known as ablack-and-white or two-color GS iteration[17]. Since this
is equivalent to using the most updated values of |Q|s, it is easy to understand why GS converges faster
than Jacobi iteration. The iteration scheme we presented inEqs. (34), (36), (38) and (39)are identical to
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the two-color GS method with the bead numbers merely renumbered in a different order. Similarly we
can try a variant of the SOR method in which a fraction of the non-coupling force term is moved to the
other side in addition to the terms moved by the GS method. In the nonlinear problem, we find SOR is
even slower than Jacobi iteration and we find that the GS iteration scheme is about 30–100% faster than
Jacobi iteration method. Therefore we have presented results based on the fastest iteration scheme (i.e.
the two-color GS as shown inEqs. (34), (36), (38) and (39)).

4. Results and discussions

4.1. Bead-rod chains

Fig. 2shows the comparison of the CPU time ratio between the Newton’s and the Picard’s method for
calculation in uniaxial extensional flow atWe = 1 and 10. We observe that the Picard’s method is always
at least 10% faster than the Newton’s method for any given chain size. We have also found this to be
generally true regardless of flow strength and type.

Furthermore, we have tested the relative performance of the two stress expressions, namely the modified
Giesekus, i.e.Eq. (11)and the Kramers–Kirkwood given byEq. (8)plus the noise reduction technique
proposed by Doyle et al.[10]. Fig. 3 shows a typical result for start-up of an extensional flow for 1000
chains using both stress expressions. As seen from the figure, both the expressions for stress give almost
identical results both in the transient and the steady state regions. Moreover, the CPU time associated
with evaluation of the stress using both approaches are very similar. However, if one just observes
the steady part of the curve (Fig. 3(b)), it is obvious that the Giesekus expression outperforms the
Kramers–Kirkwood expression, especially in regards to the statistical noise associated with the stochastic
simulations. In addition, the Giesekus expression is much simpler to evaluate than the Kramers–Kirkwood

Fig. 2. The ratio of the CPU time for the Newton’s method to the Picard’s iterative method for a 50 bead Kramers chain for
We = 1 and 10.
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Fig. 3. Comparison between the Giesekus and Kramers–Kirkwood stress expressions for Kramers chains (Nk = 50,We = 11.4):
evolution ofτ xx with time: (a) transient region and (b) steady state region.

expression (with noise reduction technique of Doyle et al.[10]. However, it should be noted that in transient
simulations, the Giesekus stress expression involves evaluating time derivatives, which is not a trivial
exercise because of the rapidly fluctuating results. Hence, the derivatives need to besmoothed. To obtain
the results inFig. 3, the smoothing of the derivatives has been performed based on using a number of
previous variable values instead of employing just the immediate previous value. The effect of increasing
the number of previous variable values in calculating the time derivative on the overall quality of the
solution is shown inFig. 4, where the evolution of the stressτ xx has been plotted as a function of time.
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Fig. 4. Comparison between the Giesekus and Kramers–Kirkwood stress expressions for Kramers chains withNp = 200
(Nk = 50,We = 11.4): (a) transient and (b) blow-up of initial transient.

Specifically, the time derivative of any quantityX is evaluated as follows

dX(t)

dt
= X(t) − X(t − Np �t)

Np �t
(41)

We have used different values ofNp, the number of past values, ranging from 2 to 200 in our derivative
calculations. The results shown inFig. 3correspond to a value of 200. Clearly, by choosing an appropriate
size of past values (in this particular case, around 200 past values), we can see that the solution during
the transient region of the simulation also improves considerably. Furthermore, we have also observed
that as far as the statistical error is concerned, the Giesekus expression with a smoothed derivative
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over 20 past values is very similar to that calculated from the Kramers–Kirkwood expression. Values
below 10 result in very large statistical noise when evaluating the stress utilizing the modified Giesekus
expression. Although increase inNp does smooth out the stochastic noise in the derivative calculations,
it also introduces a numerical error, proportional to�t, because of the backward difference involved.
Therefore, there will always be some value ofNp, beyond which the numerical error more than offsets
the effects of smoothing out the stochastic noise in the calculations. However, since the�t used in the
bead-rod simulations are typically very small, the value ofNp = 20 suggested here should work well
for most calculations. Moreover, it should be pointed out that use of the modified Giesekus expression
with smoothing of the derivative could be very memory intensive in a complex flow situation where
one might need to store the values of all stress components at every node for 20 time steps. Therefore a
combination of both techniques might be an optimal method that one could use in complex flow situations,
i.e. Kramers–Kirkwood with noise reduction procedure of Doyle et al.[10] during strong transients and
modified Giesekus for steady and nearly steady flows.

4.2. Bead-spring chains

Fig. 5 depicts the CPU time ratio between the explicit method and either of semi-implicit predictor–
corrector techniques proposed in this study for different FENE chain lengths. The test flow is start-up of
simple shear flow atWe = 10 and we iterate the predictor–corrector method to full convergence. From the
figure, one can observe that the explicit scheme is at least four times faster than the predictor–corrector
method. This can be explained based on the fact that there are at least three sub-steps at each time
for the new method. In addition, except for the predictor step, the remaining steps in the new algo-
rithm are semi-implicit steps which are more computationally intensive than an explicit step. Finally, the
new scheme also involves iterations at each time step to ensure convergence, which requires additional
CPU time.

Fig. 5. CPU time ratio for the predictor–corrector and the explicit for FENE chain simulations of different sizes in shear flow at
We = 10.
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Fig. 6. Comparison of the predictor–corrector and explicit methods for four segment FENE chains in extensional flow atWe = 10:
evolution ofτ xx with time. Bottom figure shows comparison after steady state has been achieved.

Fig. 6 shows the comparison (in terms of the solution accuracy) between the explicit and either
semi-implicit method for a four segment chain in start-up of uniaxial extensional flow atWe = 10
for two different time steps, namely dt = 0.0001 and 0.001. It can be observed that, for the smaller
time step, both the explicit and the predictor–corrector method give identical results.Table 1shows the
relative CPU times corresponding toFig. 6. One can clearly observe that the explicit scheme is almost
four times faster than the predictor–corrector method at any given time step. However, when the time step
is increased to 0.001, we observe that only the predictor–corrector scheme gives the correct transients

Table 1
CPU times (s) for the solutions obtained using the predictor–corrector and explicit schemes as shown inFig. 6

�t Predictor–corrector Explicit

0.0001 8077 2255
0.001 1112 224
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and steady value for the stresses. In addition, it can be further observed that the predictor–corrector tech-
niques are generally two to three times faster than the explicit method for a given solution accuracy. The
inaccuracy associated with the explicit technique with relatively large time steps is due to the rejection of
moves that lead to aphysical spring force laws. Hence, over the course of the simulation, these rejections
could significantly alter the true evolution of the chain dynamics. Although one can use an adaptive
time step to make sure no rejections take place during the simulation, this would increase the number of
computations performed at each time step. Hence, the advantages of a single step explicit method that
is highly CPU efficient would be lost. More importantly, in self-consistent complex flow simulations,
where the deformation rate could rapidly vary from position to position in the flow domain, the use of
the predictor–corrector methods is essential as they do not lead to rejections and they can be used with
much larger time steps. This in turn, minimizes the number of times that the macoscopic conservation
laws have to be solved resulting in even more CPU and memory savings.

The explicit method combined with the Picard iterations ensures self-consistent solutions at each time
step. Hence, larger time steps could be used in the simulations. However, the rejections could still alter
the chain dynamics.Fig. 7 depicts the results obtained using the predictor–corrector method with full
convergence and the explicit/Picard method for a six-segment FENE chain in the start-up of shear flow.
Once again, an order of magnitude smaller time step is required for the explicit/Picard method in order
to reproduce the same accuracy in the results as the predictor–corrector technique. Hence, generally
speaking, to produce the same quality results the combined explicit/Picard’s method is approximately
three to four times slower than the predictor–corrector method.

To this point, the superiority of the newly proposed predictor–corrector methods relative to explicit
methods has been demonstrated. Next, we shall focus on the performance of the fully implicit Newton’s
method. Two different variations of the method have been examined. The first is the Newton’s method with
a direct solver, wherein the Jacobian matrix is inverted using a direct banded solver at every iteration. The
second is an iterative solver, where the resulting linear system of equations is iteratively solvedwithin

Fig. 7. Comparison of the solution obtained using the predictor–corrector method and the implicit Picard’s iterative method for
six segment FENE chain in shear flow (dimensionlessWe = 10).
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Fig. 8. The ratio of the CPU run time for Newton’s method using direct and iterative solvers for various FENE chain sizes.

every iteration.Fig. 8 shows the CPU efficiency of the Newton’s method with a direct solver and an
iterative solver. Clearly, over the range of chain sizes considered, iterative solvers are much slower as
compared to direct solvers. This is due to the fact that the Jacobian matrix for the nonlinear bead-spring
chains considered is quite small and hence it is more efficient to invert the matrix in one step rather than
iteratively solving the linear system. However, if a very large number of segments are used (i.e.<100) it is
possible that the iterative solver could be more efficient. However, it should be borne in mind that the whole
idea behind coarse graining is to reduce the degrees of freedom in the problem. Hence, for all practical
chain sizes, the iterative solver is not competitive.Fig. 9 shows the relative CPU times between the
Newton’s method (with a direct solver at every iteration) and either of our predictor–corrector algorithms
with iteration to convergence for different chain sizes. It can be seen that the predictor–corrector methods
are at least twice as fast as the Newton’s method for small chain sizes and in fact, the predictor–corrector
technique becomes much more CPU efficient for larger chain sizes. This is expected, because as the
chain size increases, the Jacobian matrix is more expensive to compute, and furthermore inverting the
large matrix also becomes more time consuming. Thus Newton’s method becomes less competitive as
the chain size becomes larger.

In order to make the newly proposed predictor–corrector methods even more CPU efficient, we have
incorporated the idea of a ‘look-up’ table in the algorithm. This idea follows from the fact that, in both
Steps 2 and 3 of our algorithms (i.e.Eqs. (34) and (36), or (38) and (39)) we have to solve a cubic equation
for the length of the connector vector (seeEqs. (35) and (40)). Closer inspection of either cubic equation
reveals that, while the coefficient of the linear term is a constant throughout the simulations, the other
two coefficients (quadratic and constant) are functions of only the magnitudeR of the right-hand side
vector ofEq. (34)or (38). Therefore, one can solve this cubic equation at the beginning of the simulation
just once for different values ofR and store the roots in a look-up table. During the simulation, the root
can be extracted by performing a linear interpolation from the values in the look-up table.Fig. 10shows
a typical plot of the cubic root plotted against the parameterR for a maximum extensibility ofb = 900
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Fig. 9. The ratio of the CPU run time for Newton’s method (with a direct solver) and predictor–corrector method for various
FENE chain sizes.

from Eq. (35). From the figure, it is obvious that the linear interpolation should work well, since the
root is a very smooth function of the parameterR. In Fig. 11, the CPU time ratio with and without the
look-up table formulation for the predictor–corrector technique defined byEqs. (36) and (39)is plotted
as a function of the chain size forWe = 1.0 and maximum extensibility (of every individual spring in
the chain) of 900. It can be observed that incorporating the look-up table into the algorithm more than

Fig. 10. The cube root for a dimensionless extensibility of 900 as a function of the parameterR, which is the magnitude of the
right-hand side ofEq. (35).
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Fig. 11. The CPU ratio for runs without and with the use of look-up table for different FENE chain sizes.

doubles the computational efficiency of the BD simulations of the bead-spring chains, and this effect is
virtually independent of the chain size. Since stochastic simulations are usually the most expensive part
of all complex micro–macro computations, any improvement in making these simulations faster helps
make the complex flow problem more tractable.

4.3. Comparison of bead-rod and bead-spring chain models

It is well known that a Kramers chain can both qualitatively and quantitatively capture the behavior
of polymer chains in simple flows[4,10,12]. More recently, a Kramers chain matching the molecu-
lar parameters of aλ-DNA molecule has shown excellent agreement with single-molecule microscopy
experiment[18–21]. However, since it is impossible to perform self-consistent simulations with this
micro-structural model in complex flows with present day computing power, it becomes imperative that
one has a coarse-graining recipe to reproduce the predictions of Kramers chains using structurally simpler
models. The models often chosen for this purpose are the bead-spring chains. In order to compare results
between bead-rod and bead-spring models, it is worthwhile first to point out the relationship between
the parameters of the two models. The length of a fully stretched Kramers chain is given by (Nk − 1)a.
Therefore the maximum extensibility of every spring in the correspondingNs segment bead-spring chain
is such that

Ns × Q0 = (Nk − 1)a (42)

Correspondingly, the spring constantHs of an individual spring in the bead-spring chain model is
related to the bead-rod parameters as[12]

Hs = 3kT

(Nk − 1)a2
Ns (43)
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Sinceb = HsQ
2
0/kT, this implies thatb can be written in terms of the bead-rod parameters as

bs = 3(Nk − 1)

Ns
(44)

Since the length scales in the two models have been fixed, we now turn our attention to the time scales
involved in the coarse-graining procedure. We denote the time scale of the FENE chains to bet∗s = ζ/4Hs,
and the time scale for bead-rod chains to bet∗k = ζka

2/kT, whereζk is the bead drag coefficient for a bead
in the bead-rod chain. We have explored various possibilities for determining the scaling relationship
betweent∗s and t∗k . For example, one can relate the two by fixing the longest relaxation time for the
two chains to be the same, i.e. we choose the parameters such that the longest relaxation time becomes
independent of the chain length. This is done as follows. The longest relaxation time of the bead-rod chain
has been determined by Doyle et al.[10] for different chain lengths. Specifically, they have determined
the longest relaxation time by examining the long time relaxation of the stress and/or the birefringence
of an ensemble of chains starting with initial configuration in which every chain is fully stretched in the
z-direction. This is analogous to studying the relaxation after subjecting the chains to uniaxial extensional
flow with Weissenberg numberWe → ∞. By performing the above mentioned analysis, they have given
the following best fit relation between the longest relaxation timeλ and the chain sizeNk

λ = 0.0142N2
k

(
ζka

2

kT

)
= 0.0142N2

k t
∗
k (45)

We have followed an analogous procedure with the FENE springs. We start with FENE chains almost
fully stretched in thez-direction and follow the time evolution of the stress by letting the chains relax
to equilibrium. Thedimensionless longest relaxation timeλd can then be obtained as−1/slope from the
semi-log plot of stress versus time. Subsequently,t∗s can be related tot∗k by equating the longest relaxation
time, i.e.,

t∗s =
(

0.0142N2
k

λd

)
t∗k (46)

A second approach to relate the two time scales is by equating the time scale characterized by the
zero-shear material functions of the bead-spring chains to that of the bead-rod chains. The characteristic
time scaleλ0 is defined as the ratio of zero-shear first normal stress coefficient and zero-shear viscosity
(λ0 = Ψ1,0/2ηp

0) and it is given by the following equations for bead-rod and FENE chains, respectively
[12,22]

λKramers
0 = 10N3

k − 12N2
k + 35Nk − 12

900Nk

(47)

λFENE
0 = 1

60

(
bs

bs + 5

) [
2N2

s + 7 − 12
N2

s + 1

Ns(bs + 7)

]
. (48)

The performance of these time scales have been examined by performing a number of simulations.
Overall, we find, for extensional flow, bead-spring chains, with either time scales, fail to quantitatively
capture the transient behavior of the corresponding bead-rod chains (seeFigs. 12 and 13). However, it
should be noted that the scaling based on the longest relaxation time performs better than the zero-shear
time scale for all flow strengths considered. Good agreement between bead-spring and bead-rod can be
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Fig. 12. Comparison between FENE chain predictions with 50 bead Kramers chain predictions for different time scaling rela-
tionships in extensional flow atWe = 1.

obtained if the stress is normalized by its steady state value except for low values of We as shown in
Fig. 12(b). This fact has been demonstrated elsewhere[19] in simulating the rheology of DNA solutions.
Similarly only near-quantitative agreement between bead-rod chains and bead-spring chains is obtained
for shear flow. Specifically, at low shear rate the zero-shear time scale is better in terms of capturing
the transient behavior of the bead-rod as shown inFigs. 14 and 15, while at high shear rates the longest
relaxation time scale outperforms the zero-shear time scale. Again good quantitative agreement can be
obtained if the shear stress is rescaled by its steady value. For both shear and extensional flow, we find
better agreement in stress response between the bead-rod chain and the corresponding bead-spring chain
as the number of springs were increased up to the upper limit given byEq. (49). The effect of the chain
sizeNk on transient response of shear stress is discussed elsewhere[21].

Though we have just shown that bead-spring chains mimic the bead-rod chains only semi-quantitatively,
a consistent coarse-graining of bead-spring chains that gives the optimal agreement with bead-rod chains
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Fig. 13. Comparison between FENE chain predictions with 50 bead Kramers chain predictions for different time scaling rela-
tionships in extensional flow atWe = 50.

can be developed. In the next section we discuss the number of springs in the bead-spring chains needed
to best describe bead-rod chains under flow.

4.4. Coarse-graining procedure

Previously Doyle and Shaqfeh[23] compared the bead-rod chain with the FENE-PM and FENE chain
in linear flows. They have used the same coarse-graining procedure as ours except that they used the
Rouse time for their nonlinear bead-spring models instead of the longest relaxation time. As will be
shown below, the nonlinear spring force law changes the relaxation time from the linear Rouse time about
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Fig. 14. Comparison between FENE chain predictions with 50 bead Kramers chain predictions for different time scaling rela-
tionships in shear flow atWe = 10.

30–50% depending on the degree of discretization. Apart from their underestimation ofWe, we find our
multi-spring FENE results qualitatively consistent with their FENE-PM result. Recently Ghosh et al.[24]
proposed similar coarse-graining as ours except they rescaled their relaxation time for the bead-spring
chain in order to get the same steady state extensional stress as the bead-rod chain. Therefore it is not
surprising that their bead-spring chain result is in better agreement with the bead-rod chain in extensional
flow than the results presented based on the two scalings used in this study. However in shear flow, we
have found the agreement is poor if their scaling is used. Since in a complex flow, the kinematics is neither
pure shear nor pure extensional, their procedure cannot be effectively used in complex flow simulations.

Fig. 15. Comparison between FENE chain predictions with 50 bead Kramers chain predictions for different time scaling rela-
tionships in shear flow atWe = 60.
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Table 2
The longest relaxation time of the worm-like chain with varying number of springs forb = 450

M (number of modes) b = 450

5 1.369
10 4.189
15 8.749
20 14.12
30 27.01
40 44.58

In order to accurately simulate a polymer chain using the proposed numerical scheme in this paper, we
need systematic criteria for the extent of coarse-graining. In other words, given a number of Kuhn steps
(NK) we want to find the minimum number of springs to best capture the behavior of a polymer chain.
Previously Doyle et al.[10] found that only Kramers chains consisting of more than 10 rods follow the
analytic inverse Langevin force law. Thus we have the upper bound limit as

Ns ≤ NK

10
. (49)

Yet a quantitative criterion for the lower bound on the number of springs is not available. Qualitatively,
we have to include as many internal modes as needed to accurately describe the details of the dynamics.
Before discussing the coarse-graining procedure, we point out the fact that when a single-spring chain is
discretized into a multi-spring chain, the force on the chain segments becomes stiffer resulting in higher
force than the single-spring force law. To accommodate this, Hur et al. artificially increased the Kuhn
length size by 45% for their worm-like chain model forλ-DNA [19]. But since the deviation of the force
is a nonlinear function of the chain extensions, a satisfactory rescaling of the force cannot be obtained by
simply adjusting the Kuhn length alone. Also the amount by which the Kuhn length should be increased
cannot be determined unambiguously. Our decision not to rescale the Kuhn length is also based on the
reasoning that at small chain extensions, the spring force law should reduce to the Hookean limit with
the correct molecular constants with no adjustable parameters.

First we calculate the longest relaxation time of the worm-like chain discretized into anNs spring
chain. The relaxation times obtained from birefringence decay are used. We chooseb = 450 which
is the molecular parameter for aλ-DNA molecule[19] andb = 2000 for comparison. The individual
extensibility parametersbs are chosen according toEq. (44). The longest relaxation times of the worm-like
chain with varyingNs are summarized inTables 2 and 3. AsNs increases, each spring represents a shorter
fragment of the molecule, resulting in a stiffer spring. As shown inFig. 16, as we discretize the worm-like
chain into a finer grained chain with more springs at a fixed number of Kuhn steps, the deviation of

Table 3
The longest relaxation time of the worm-like chain with varying number of springs forb = 2000

M (number of modes) b = 2000

5 1.529
20 17.138
40 60.79
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Fig. 16. The longest relaxation time of the worm-like chain with varying number of springs.

the longest relaxation time from the Rouse relaxation time at the same number of modes (Ns) increases.
Moreover, the deviation is more pronounced for smallerbs. We would expect the longest relaxation
times of the worm-like chain to approach the Rouse limit forbs � 1, however, for smallbs, the longest
relaxation time is considerably different as mentioned in the beginning of this section and should be
carefully simulated as discussed inSection 4.3.

To test the convergence of the rheological properties as well as the microscopic properties of chains
with varying numbers of springs, we have performed simulations of aλ-DNA molecule in shear flow. In
Fig. 17, we have plotted the polymer shear viscosity versus strain in the start-up shear flow forNs = 5,
10, 15 and 40 atWe = 60. A qualitative and quantitative difference is observed forM > 15 orM < 5.

Fig. 17. The transient shear viscosity of the worm-like chain with varying number of springs atWe = 60.
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Fig. 18. The transient normal stress difference (τ11 − τ22) of the worm-like chain with varying number of springs in shear flow
at We = 60.

Based onEq. (49)a worm-like chain of 15 springs would be an adequate coarse-grained model for a
λ-DNA molecule and the prediction is in agreement with the simulation result shown inFig. 17. The
normal stress difference in the start-up of shear flow is shown for varying number of springs inFig. 18
and again we see a significant deviation for chains with more than 15 springs.

Based on these results, we conclude thatNs = 15 is the number of springs necessary to mimic the
behavior of aλ-DNA molecule. Though we have based our discussion of coarse-graining on a particular
spring model (worm-like chain), the same procedure applies to other spring laws such as FENE chain
and inverse Langevin chain.

5. Conclusions

In this study, we have considered two issues related to molecular simulations of viscoelastic flows
with prescribed kinematics employing bead-rod and bead-spring chain models. First, various numerical
schemes used to simulate such models have been investigated in terms of their solution accuracy and CPU
times. Secondly, the issue of coarse graining from the expensive bead-rod chains to simpler bead-spring
chains has been examined.

Specifically, the relative performance of two methods, namely the Picard’s method and the Newton’s
method has been evaluated for different chain sizes and different flow strengths for the Kramers chain
(bead-rod chain). It has been demonstrated that the Picard’s iterative technique is almost 50% faster than
the Newton’s method, while both providing identical results for polymer stress and configuration. Fur-
thermore, the modified Giesekus and the Kramers–Kirkwood expressions for the stress tensor have been
compared both under transient and steady state conditions. In steady flows, it has been shown that numer-
ical implementation of the Giesekus stress expression out-performs the Kramers–Kirkwood expression.
However, the Giesekus expression involves calculating time derivatives of stochastic equations, which
hinder the quality of the solution during initial transients of a simulation. For simple flow conditions,
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we have developed a technique, which overcomes this drawback and makes the Giesekus expression’s
performance similar to that of the Kramers–Kirkwood expression with the noise filtering suggested by
Doyle et al.[10]. However, this technique cannot be extended to complex flow situations because of the
additional cost of storage of large amounts of data.

Similarly for the bead-spring chains, various different numerical methods such as; the explicit Euler
method, the Picard’s method, the Newton’s method (with direct and iterative solvers) and two new
iterative predictor–corrector techniques have been examined. As expected, for a fixed time step the
explicit technique is much faster than the other techniques. However, the explicit technique does not
guarantee that the extensibility of the springs is less than the maximum permissible extensibility. In order
to overcome this, the Euler’s method is modified by including the rejection algorithm as suggested by
Öttinger. Although the rejection algorithm minimizes violation of spring law, the explicit technique is
not able to perform favorably against the new predictor–corrector techniques. It has also been shown that
the new predictor–corrector techniques are superior to Newton’s method (with either solver) for all chain
sizes.

The issue of coarse graining from a bead-rod to a bead-spring chain has also been investigated. The
length scales of the two models are chosen such that the maximum extensibilities for both models are
equal. However, for the relative time scales, two different relationships have been examined: equating
the longest relaxation time and equating the zero-shear characteristic time. It has been demonstrated that
either scaling is successful in providing only a semi-quantitative description of the transient response of
bead-rod chains in flow. We have continued however and presented a coarse-graining procedure necessary
to determine the optimal number of springs needed to best represent the corresponding bead-rod chain.
Since quantitatively accurate representation of the bead-rod chains by bead-spring chains would be
important when studying a complex flow problem, this issue of accurate coarse-graining procedures
should remain an active area for future research. In this study we have found that for a short chain such as
λ-DNA (Nk = 150), the maximum number of permissible springs given byEq. (49)should be used. For
much larger chains such as high molecular weight polymers, we expect much smaller number of springs
than that specified byEq. (49)can do an adequate job of describing the dynamics well. But since this
upper limit is still too large (on the order of thousands) even for bead-spring models, further research is
needed to mimic the high molecular weight chain dynamics with a small number of springs.
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