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To obtain numerical estimates for the properties of a model for polymers in dilute theta solutions in
its long-chain limit we follow a stochastic approach to polymer kinetic theory. The model takes into
account configuration-dependent hydrodynamic interacfidh) and simplifies to the Zimm
bead-spring chain model in the case of preaveraged HlI, for which parameter-free “universal ratios”
such as the ratio between radius of gyration and hydrodynamic radius are known. The Chebyshev
polynomial method and a variance reduction simulation technique are used to implement an efficient
Brownian dynamics simulation. We resolve the full dependence of several characteristic ratios
versus both chain length and hydrodynamic interaction parameter, we extrapolate their values to
determine universal behaviors, and compare with analytical and experimental resul2)009
American Institute of Physic§S0021-96060)51035-9

I. INTRODUCTION with the hydrodynamicA interaction matridH;; =H(r;;)
As pointed out by Kirkwood and Risemarthe pertur- = 911 ¢Q(rjj). In the lto approach, the stochastic differ-
bation of the solvent flow field induced by suspended spheri€ntial (Langevin equations of motions for bead positions
cal particles“beads”) leads to an additional interaction be- i(t) (i=1,2,..N) equivalent to the Fokker—Planck equation
tween beads, the so called hydrodynamic interaction(l) are
Incorporation of this effect into the classical Rouse mbdel N
for di_Iute polyme_r_solutions makes_th_e resu_lting quel dr,= v(ri)+22 Hii-Fy | dt+ /2|(—BTdS,, @)
equations—containing a hydrodynamic interaction matrix— {9 b 4
nonlinear. Predictions for some material properties were
found to become much more realistic when hydrodynamiovhere dS=%B;;-dW(t); W denotes a Wiener process
interaction is accounted for* (Gaussian white noise vecioB is related to the HI matrix
In the usual discussion of HI, one linearizes the Navier—through the fluctuation-dissipation theorédty = ={'B; - B,
Stokes equatioiNSE) and assumes that the propagation ofand F; denotes the sum dfother than hydrodynamic, i.e.,
solvent flow perturbations is infinitely fastf the beads are spring forces on beagl Equation(2) is the starting point for
point particles one obtains for the perturbation of the flow at2 Brownian dynamics computer simulation, the only tool
position r: Av(r)=Q(r—r’)-F(r"), where F(r’) is the available for treating chains with hydrodynamic interactions
force exerted by a bead at poirit on the solvent, an@(r) rigorously.
is the Green’s function of the time-dependent linearized There are two possibilities for restoring a positive-
NSE, known as Oseen—Burgers tenfone has to require semidefinite diffusion term when the assumption of point
©(0)=0 in order to avoid hydrodynamic self-interaction ~ particles fails (one implicitly introduces a bead radius
The diffusion equation, sometimes referred to asthrough Stokes monomer friction coefficiefjt one can pre-
Fokker—Planck equation, for the configurational distributionvent the beads from overlapping, or one can modify the hy-
function p(t,ry,r,,..,ry) for a chain with N beads then drodynamic Oseen—Burgers interaction tensor. In this work
read§* we use the regularization proposed by Rotne, Prager and
Yamakawd, i.e.,
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a2 2a2\ . lengths comparable to real conditiofesg., 300 persistence
C(r,a)=| 1+ ; I+ 1= —|rr lengthg are now coming within reach of simulatioffs.
r r
for a/r<1/2 (bead radiug) and Il ALGORITHM
2
C(r.a)= (8 3r 14 r—F? The decomposition of the diffusion matrix to obtain a
’ 2a\3 4a 8a? representation foB (e.g., Cholesky decompositipfor long

A . chains is expensive and scales with. A highly efficient
for a/r>1/2 withr=r/|r|. As the ratioa/r —0, one recov- method® is based on an approximation of the square root
ers the Oseen—Burgers tensor. For the case of a homoggiction in Chebyshe\tensoj polynomialsT, of the first
neous macroscopic flow, the velocity field §r)=k-r  king, following the notation in Ref. 27,
= yr.eﬁ( (usual Cartesian base vectog,,) with k . )
=(Vv)'. The Langevin equatioi2) can not be solved in
closed form. In order to obtain a tractable form, Zifhre- B= \/ﬁ%gl CicTi-2(H) = 2% ®)
placed the random variable;@rij by their equilibrium(iso-

tropic) averages, i.eH;;—H;;1 with the NXN matrix H;; where the recursive formula

= &;+h*(1— ;) V2/i—j| and a hydrodynamic interaction Tie1(H)=2H-T(H)—T,_1(H) (6)
parameter together withTo(H)=1 and T,(H)=H defines these poly-
l H nomials. For a fixed, Eq. (5) is a polynomial inH which
h*= 7.\ mkaT (4 approximates in the interval—1,1] (concerning the eigen-

values ofH), where all the zeros of are located. The sum

as introduced by Thurston and Peteflim Eq. (4), H de-  can be truncated in a very graceful way, one that does yield
notes the harmonic bead-spring coefficient. The parametehe “most accurate” approximation of degrée(in a sense
h* can be expressed as*=a,/(7kgT/H)*? which is  which can be made precis@he orderl of the series affects
roughly the bead radiua, over the root-mean-square dis- the accuracy in the resulsee also next sectipn
tance between two beads connected by a spring at equilib- The convergence of the Chebyshev polynomial approxi-
rium, hence 8<h* <1/2. For analytical and experimental es- mation requires that the eigenvalues of the matfixare
timates ofh* see Refs. 6,10,3. For the Zimm mod&!  within the interval[—1,1]. Actually, this is not the case, and
=1/4 minimizes the effect of chain length and the veryone introduces shift coefficients, andh, in order to apply
short- and long-chain limits can be elaborated analytically. the recursion formula to the “shifted” matrisd’'=hH

For several reasons, the long-chain limit is important. It+ h,1 whose eigenvalues should be within the desired range.
is independent of the details of the mechanical model, andhis requirement is fulfilled forh,=2/(Ay—Agy), 2hy
hence is a general consequence of the presence of HI and—h (A, +A,), whereA, and A, denote the minimum
equilibrium averaged Hl for the Zimm mod®iyespectively. and maximum eigenvalues of the original HI matkix re-
For long chains it should be observed th&toccurs only in  spectively. The coefficients of the series are readily obtained
the combinations/h* in all material properties. Therefore, by standard method&:?”
the parameteh* has no observable effect on the material L
properties of long chains. Power law dependencies of various -1 L _
material properties on molecular weightsN with univer- ¢=t kz’l a; F(a.+a-coqm(k=1/2/L]) @)
fsal exponents are expectiee Sec. 8'.2'2'1 of Ref. )12nq, with the scalar functionF(x)=x, coefficientsa,=(h,
rom the prefactors, one can form universal rafide uni- o o /
versal exponents and prefactors are ideally suited for a Mo)/2, a-=(h,~ha)/2, and the abbreviation ay;

i . =2 cogm(j—1)(k—1/2)/L].
parameter-free test of the model by means of experimentar Instead of calculating the square root matrix first, thus

data for high molecular weight polymer solutions. In thisim lvina several time consuming matrix by matrix products
work, we obtain estimates by extrapolation from extensiv Plying 9 y P

efor the evaluation of the polynomials of the series, and after-

and efficient simulation. A coarse-grained molecular mode . ) |
represents the polymer molecules: the bead-spring chaivr\{ard its product with the randoW vector, the desired vec-

model, i.e.,N identical beads joined bj— 1 springs with tor is obtained c_JllrectIy as a result of a series of d|ffergnt
. - . . vectorsV, recursively calculated only through less expensive
spring coefficientdd. The solvent is modeled as an incom-

pressible, isothermal Newtonian homogeneous fluid characgamx (:) by vector () products, i.e., one replaceS in
terized by its viscosityps. The solution is considered to be a.(2) by

infinitely diluted, and the problem is limited to the behavior 1

of one single molecule. Authors of previous works either did ~ dS= ( > Tyea(H) - €| -dW;(t)

not use the efficient decomposition method proposed by K

Fixmart® or performed simulations without using a variance L _ c;

reduction method and therefore did not simulate sufficiently =2 cdVj_,— Ede : (8
long chains. There is an increasing interest in using iterative K .

schemes to decompose the HI matrix, e.g., Refs. 14-25. Ifihe recursion formula fodV, =T, (H')-dW; is immedi-
combination with the variance reduction scheme, chairately obtained from Eq(6). Its evaluation requires an effort

L
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«N? for every k=1,2,..L.. The overall computational de- increasing shear rate the spectrum of eigenvalues is slightly
mand of the method we use scales WithL «N®“ per time  shifted toward larger values, and merely unchanged for the
step, as will be seen below. low shear rates investigated. The Chebyshev series was taken

In addition to this decomposition method a variance re-up to the ordel= (A, /Ao)¥?+ 1, whereL takes the cor-
duction simulation technique has been implemented to rerespondingtruncated integer value, in order to obtain 0.01
duce the statistical error batsee Ref. 4, p. 1797 For this  error. This finding is in agreement with Table | of Ref. 13.
purpose two simulations are run in parallel, one at equilib-To summarize, and to ensure the full reproducibility of our
rium, and another undergoing steady shear flow but using thgssuits, we usé\ o= (1—1.71h*)/2, Ay=2(1+7NYh*),
same sequence of random numbers. After a certain time if]:=(AM IAg)¥?+ 1, and the relaxation time for the variance
terval to be specified below, the desired magnitudes argaduction methoch;=1.22N%%(h* 2) (in reduced units
sampled, and the chain simulated under steady shear flow e total CPU time required for a single time step therefore
(penodlcall_)) reset to the state of .the f:haln in (_aqumbnum. scales with CPUN2x LN, the one for a single run

.In parncular, the monomer diffusion coefﬁue@t and_ scales With)\?mmx CPUstepochSMv sincel varies with N
radius of gyrationRy are sampled from bead trajectories

iri(t); according to D2:”mtﬂ“(ziN:,l[ri(t)_ri(o)]z)/ Chebyshev approximation is best far,Ay=1, i.e, forh*
(6N1) and Ry=2i[ri—r]%/N, respectively, where. de-  550"t5 7ero and 1/2, respectively. Finally, we have chosen
notes the center of mass of the molecule. The 5|mulat|o%e simulated chain lengths such that they are equidistant on

reveals that the power law regime for monomer diffusion a 1A/N scale, i.e., for the current simulations we chobse

will be obtained earlier th_an the one for the more _global —4,5,6,8,10,13,18,26,41,73,16@lus a maximum feasible
Ry. By analogy to classical results for the diffusion of achain length ofN=254) in view of the expected depen-
sphere embedded in a Newtonian liquid the hydrodynamic 9 P P

radius (of the corresponding sphérds defined by R, dences of universal numbers versus chain lefgée Figs.

through Eq.(9). On the other hand, the convergence of the

1(a-1(d)].
=kgT D). . .
eT/(67 D) The only simulation parameters are hedtandh*, all
A. Choice of parameters other parameters are fixed according to the above procedure.

In order to reproduce the results to be reported in thef @n approximation favoring the accuracy of either global or
subsequent section we first present a choice of parameters f§cal motions is wanted, this can be achieved by further
the particular system under study. It will be outlined how toOverestimating\, or underestimating\, , respectively.
confirm the validity of the approximations; a price one has to ~ ©One should notice, that the given bounds for the eigen-
pay when using the efficient series expansion method. ~ value range are specific for the problem under study. In gen-

Simulation runs were performed for a series of Chainera|, one has to ensure that the degree of violation of the
lengthsN and hydrodynamic interaction parametats For  fluctuation-dissipation theorertwith respect to an elegible
all results shown, which were averaged over three indepermatrix norm is small enough to obtain exact moments of the
dent runs, the total simulation time divided by the longestdistribution function with a desired accuracy, e.g., along the
relaxation timex 2™ of the Zimm model is 60.000 for every lines indicated in Ref. 14 in order to prevent a direct calcu-
run, where the approximate expression)\f‘mm lation of eigenvalues. At least concerning our study, the el-
~1.22,N¥%(h* 7% (Ref. 4 has been used for conve- egant computational method used by Fixifaproved to
nience, withx y,={¢/(4H). In the course of the variance re- serve as a basis to obtain “efficient” bound& {,A ) for
duction method positions were reset periodicall;t/é\tfimm eigenvalues. Our expressions for bounds are found to be
=5,10,15,.. . The shear rate chosen for the purpose of thisomparable to those obtained with his method, for the par-
work has to be small compared to the inverse maximunticular shear rates studied. His estimate of the range of the
relaxation time but as large as possible, we ys&™™  eigenvalues of is also furnished by a simple physical ar-
=1/4. Few runs have been performed at smaller rates, thgument and does not require diagonalization or averaging of
results agree with the presented data within the availabl®l. If two nearby beads experience a force in the same direc-
precision. An integration time step dft=\,, serves to ob- tion the induced perturbations of the velocity field will have
tain results for all chain lengths with the desired accuracya large degree of coherence and thus add up to a larger per-
The eigenvalued, and Ay have been estimated during the turbation. If on the other hand the forces are in opposite
course of the simulation, at every 100th integration time stepgirections the induced perturbations will cancel out to a large
We found that 2> Ag™" and Ay <2A{™" serve as “ef-  extent. Since beads which are neighbors along the chain are
ficient” (see discussion beloviower and upper bounds for jikely to be also closed neighbors in space an estimate for the
the eigenvalue spectrum, where the quantities indexed byrgest and smallest eigenvalues is obtained by using a force
“Zimm™ denote the exact results obtained from the equilib- yecior which equal absolute forces for all beads as a test-
rium averaged HI matrix. _ o vectorF;=p'F (i=1,N) with an arbitraryF to form a Ray-
cor ,fAIso, we ol;)talned an approximate expregs(@pthln leigh quotien%9'302i’jFiT- Hij - /EkFI' F., which serves as

o for M=5, h*=<0.5) for the exact result, which is a measure for the lowerpe—1) and upper [i=+1)
Agimmml_ljjh*, Aﬁmm%lJr aNY2h* (9) bognds, respectively. To compensate for deviations of these
estimates from the true values of the largest and smallest
By using these approximations we avoid calculating the eieigenvalues oH one take$’ a somewhat larger interval for
genvalues of the HI matrix during production runs. With the shifted Chebyshev polynomigfsFor the same reason a
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FIG. 1. The ratioga) Ugp, (b) U,r, (¢) Uy, and(d) U, as defined in Eq(10) vs the inverse square root of chain length for different values of the HI
interaction parametdr*. As a reference, results for the Zimm model are also sh@nmall dot$. By extrapolation td\— o the universal ratio is obtained
(see Table)L Apparently,Uxp depends linearly on yN.

factor 2 had been introduced above between Zimm eigenvaEurich we get 86 MFlops foN=230, 156 forN=128, and
ues and simulation parameters. 184 forN= 254, which is very close to the theoretical maxi-
In the context of this study, the terminus “efficient” mum. This indicates nearly optimal use of the vector archi-
implies that the bounds are not strict, since overlap of partecture for our algorithm.
ticles may occur. The degree of overlap, in turn, can be re-
duced by increasing the shear rate. For our setting, wh|cnI RESULTS AND DISCUSSION
exhibits a rather moderate choice for the number of tdrms
i.e., the polynomial degree of the approximation Es, it The most interesting theoretical predictions for experi-
has been observed, that the violation of the fluctuation dissimentally accessible quantities are those independent of any
pation theorem is wedk and that the overall convergence physical parameters.
and reproducibility of extracted averages is gowdiepen- In the limit of infinitely long chains the Zimm model
dentof the values for chain length and hydrodynamic inter-predicts a diffusion coefficieri?;,, radius of gyratiorRy and
action parameter. It has to be regarded as a compromise, @. spectrum of relaxation times™" (j={1,2,. }) 4,32
Ref. 27. Results which we obtained by using Rayleigh quodimy_,..Dp=ch*kgT/({YN), I|mNHm (NKkg T/2H)1/2
tients (plus the factor of agree with those to be presented and I|m\,_m)\z'mm—c (N/])2’3§/(4h*HTr§) with ¢;=1.22
in the following section(within 3% erroy. andc;= 277]/(277] 1) for j>1.%
On a 500 MHz alpha processor our code needs ca? 10 Having established these relationships for the Zimm
seconds per step fof=20. The performance increases regu-model one can construct and define a number of universal
larly with the value ofN. On the Cray SV1 of the ETH ratios for experimentally accessible quantities:
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TABLE I. Previous analytical, experimental, numerical, as well as novel results for universal ratios in the zero
shear rate limit. E.g., Fixman estimatébk,=1.42 (Ref. 41 but could not estimaté),r due to the slow
convergence of rheological properties (and alsoW; ;). The asterisk marks results obtaineking into
accountexcluded volume. The estimates of de la Tateal. and Bernaket al. were obtained by extrapolation
from their results foth* =1/4 Ref. 45. The following abbreviations for computational methods are used: BD
(Brownian dynamics MD (Molecular dynamics MC (Monte Carlg.

Urb U,r Uy, Uy U Uys
Theory
Rouse(Ref. 2 N~ 12 «N*¥2 08 0 1.645 N
Zimm (Ref. 8 147934 166425 0413865 0 2.39 20.1128
Gaussian approxRef. 35 — 1.2133) 0.5603) —0.02265) 1.8351) 14.441)
Twofold normal Zimm(Ref. 39 — 1.2103) 0.561%3) —0.02321) 1.8351) 14.421)
Ottinger (Ref. 10 — 1.3711) 0.60961) —0.013Q1) — 20.291)
Oonoet al* (Ref. 36 1.5611) — — — — —
Ottinger* (Ref. 37 — — 0.62881) — — 10.461)
Experiment
Schmidtet al. (Ref. 3§ 1.276) — — — — —
Miyaki et al. (Ref. 39 — 1.496) — — — —
Bossartet al. (Ref. 40 — — 0.64(9) — — —
Bossartet al* (Ref. 40 — — 0.53540) — — —
Simulation
Fixman (Ref. 41 (BD) 1.428) — — — — —
de la Torreet al. (Ref. 42 (BD) 1.2811) 1.4715) — — 2.0 —
Rubio et al. (Ref. 43 (MC) — >1.3605) — — — —
Garcia Bernakt al* (Ref. 449 (BD) 1.4815 1.11(10) — — —
Aust et al* (Ref. 46 (MD) 1.41(6) — — — — —
This work (BD) 1.334) 1.556) 0.457) 0.054) — 192)
Ry 6m7DhnRy of two other characteristic ratios. From these ratios one can,
Urp= R_hE kB—T' for example, eliminate the unspecified proportionality coef-
ficients in the “blob” theory of polymer statistic¥.
" Zmm g U _, D.\ZMM The universal ratios predicted by the Zimm model in its
T p A= hiM1 S .
U,r=Ilim 47R3 2 U R long-chain limit are collected in Table I. These numbers
c—0C75(4mRy/3) RD™g serve as reference values for the exact result without preav-
eraging procedure. Our estimates for the exact long-chain
. CckgTV, . A
Ug.=lim—————— limit are extrapolated from the data shown in Fig$a)+
Y 2 o .
c—0 7 1(d). The polymer contribution to the stress tensor and radius
" (10 of gyration needed to analyze universal ratios listed in Table
UW,E—Z, | have been calculated directly from bead trajectories. An
vy independent discussion about relaxation times for this sys-
Zimm 5/ tem, needed to determir¢,, can be found in Ref. 42. As
7 N 2N T . ! .
U,,=lim——— S/ Sl e , for the Zimm model, our simulation results reveal that the
L oCkeTAy N M 4A[T(3/4)]%¢, radius of gyration converges more fast to its long-chain limit
than the hydrodynamic radius. A sample time series for ac-
U o kgTW — Uy, U2 (47/3)2 cumulated data is shown in Fig. 2. The results are basically
Vs UgRS V=R ' summarized in Table I, together with theoretical, experimen-

) ) . ] ] tal and earlier findings. Sample simulation parameters are
The quantityUgp is the ratio between radius of gyration and |isted in Table II.

hydrodynamic radius, the latter quantity can be actually mea- | Ref. 6 the leading corrections to the limit of infinitely
sured experimentally in a dynamic experiment, €.g., by 0bjong chains have been estimated in the framework of a gen-

serving the relaxation time of the dynamic scattering funC-gralized zimm model for dilute polymer solutions. They are
tion S(q,t) for small momentum transferq Ry<1. The  qf the following form:

quantityU, r is a measure for the specific polymer contribu-

tion 7, to the reduced shear viscosity,,, gives the ratio o [ 1 1
between first viscometric function and squared polymer con-  y,(h* N)=U,+ —| — — _) (11)
tribution to the shear viscosity)y is the ratio between the JNIhF  h*

second and first viscometric functiob),,, reflects the pro-

portionality betweerny, and the longest relaxation time. For for i e {RD,7R,etc}. A careful analysis of the simulation
the Zimm model one infert) ,, from 5,/ckgT=3%;\;. Fi-  data yielded the following results for the coefficients defined
nally, Uy s is introduced for convenience. It is a combination through Eq.(11):
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50— . . . . IV. CONCLUSIONS

We have investigated the universal behavior of linear
polymers in dilute theta solutions at small shear rates by
Brownian dynamics simulations. Hydrodynamic interactions
are treated with an efficient algorithm proposed by Fixman,
for which the increase of computing time with chain length
is governed by the exponent 9/4. With modern computers
and variance reduction techniques, chain lengths up to
=254 have been reached and, with careful extrapolation
techniques, the universal predictions for the diffusion coeffi-
cient and the viscosity with error bars of less than 3% and
; 4%, respectively, have been obtained. The results for the

! normal-stress coefficients are much less reliable: The error
bar for the first normal-stress coefficient is some 30%, the
;‘ . . . . sign for the much smaller second normal-stress coefficient is
0e+00 16407 20+07 3e+07 46+07 56+07 inconclusive.

t/?\,H

FIG. 2. Sample time series of accumulated averages for the tatigsU,r ~ ACKNOWLEDGMENTS
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