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Variance reduced Brownian simulation of a bead-spring chain under steady
shear flow considering hydrodynamic interaction effects
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To obtain numerical estimates for the properties of a model for polymers in dilute theta solutions in
its long-chain limit we follow a stochastic approach to polymer kinetic theory. The model takes into
account configuration-dependent hydrodynamic interaction~HI! and simplifies to the Zimm
bead-spring chain model in the case of preaveraged HI, for which parameter-free ‘‘universal ratios’’
such as the ratio between radius of gyration and hydrodynamic radius are known. The Chebyshev
polynomial method and a variance reduction simulation technique are used to implement an efficient
Brownian dynamics simulation. We resolve the full dependence of several characteristic ratios
versus both chain length and hydrodynamic interaction parameter, we extrapolate their values to
determine universal behaviors, and compare with analytical and experimental results. ©2000
American Institute of Physics.@S0021-9606~00!51035-6#
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I. INTRODUCTION

As pointed out by Kirkwood and Riseman,1 the pertur-
bation of the solvent flow field induced by suspended sph
cal particles~‘‘beads’’! leads to an additional interaction be
tween beads, the so called hydrodynamic interact
Incorporation of this effect into the classical Rouse mod2

for dilute polymer solutions makes the resulting mod
equations—containing a hydrodynamic interaction matrix
nonlinear. Predictions for some material properties w
found to become much more realistic when hydrodynam
interaction is accounted for.3,4

In the usual discussion of HI, one linearizes the Navie
Stokes equation~NSE! and assumes that the propagation
solvent flow perturbations is infinitely fast.5 If the beads are
point particles one obtains for the perturbation of the flow
position r : nv(r )5V(r2r 8)•F(r 8), where F(r 8) is the
force exerted by a bead at pointr 8 on the solvent, andV(r )
is the Green’s function of the time-dependent lineariz
NSE, known as Oseen–Burgers tensor@one has to require
V(0)50 in order to avoid hydrodynamic self-interaction#.

The diffusion equation, sometimes referred to
Fokker–Planck equation, for the configurational distributi
function p(t,r1 ,r2 ,..,rN) for a chain with N beads then
reads6,4
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with the hydrodynamic interaction matrixH i j [H(r i j )
5d i j 11zV(r i j ). In the Itô approach, the stochastic differ
ential ~Langevin! equations of motions for bead position
r i(t) ( i 51,2,..,N) equivalent to the Fokker–Planck equatio
~1! are

dr i5S v~r i !1
1

z (
j

N

H i j •Fj D dt1A2kBT

z
dSi , ~2!

where dSi[( jBi j •dW j (t); W denotes a Wiener proces
~Gaussian white noise vector!; B is related to the HI matrix
through the fluctuation-dissipation theoremH i j 5(k

NBik•Bjk
T

and Fj denotes the sum of~other than hydrodynamic, i.e.
spring! forces on beadj. Equation~2! is the starting point for
a Brownian dynamics computer simulation, the only to
available for treating chains with hydrodynamic interactio
rigorously.

There are two possibilities for restoring a positiv
semidefinite diffusion term when the assumption of po
particles fails ~one implicitly introduces a bead radiu
through Stokes monomer friction coefficientz): one can pre-
vent the beads from overlapping, or one can modify the
drodynamic Oseen–Burgers interaction tensor. In this w
we use the regularization proposed by Rotne, Prager
Yamakawa,7 i.e.,

V~r !5
1

8prhs
C~r ,a! ~3!

with
7 © 2000 American Institute of Physics
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C~r ,a!5S 11
2a2

3r 2 D 11S 12
2a2

r 2 D r̂ r̂

for a/r<1/2 ~bead radiusa) and

C~r ,a!5
r

2a S 8

3
2

3r

4aD11
r 2

8a2
r̂ r̂

for a/r .1/2 with r̂[r /ur u. As the ratioa/r→0, one recov-
ers the Oseen–Burgers tensor. For the case of a hom
neous macroscopic flow, the velocity field isv(r )5k•r
5gr•eyex ~usual Cartesian base vectorsex,y,z) with k
5(¹v)†. The Langevin equation~2! can not be solved in
closed form. In order to obtain a tractable form, Zimm8 re-
placed the random variablesVr i j

by their equilibrium~iso-
tropic! averages, i.e.,H i j →Hi j 1 with the N3N matrix Hi j

5d i j 1h* (12d i j )A2/u i 2 j u and a hydrodynamic interactio
parameter

h* [
z

6phs
A H

pkBT
, ~4!

as introduced by Thurston and Peterlin.9 In Eq. ~4!, H de-
notes the harmonic bead-spring coefficient. The param
h* can be expressed ash* 5ab /(pkBT/H)1/2 which is
roughly the bead radiusab over the root-mean-square di
tance between two beads connected by a spring at equ
rium, hence 0,h* ,1/2. For analytical and experimental e
timates of h* see Refs. 6,10,3. For the Zimm modelh*
51/4 minimizes the effect of chain length and the ve
short- and long-chain limits can be elaborated analyticall

For several reasons, the long-chain limit is important
is independent of the details of the mechanical model,
hence is a general consequence of the presence of HI
equilibrium averaged HI for the Zimm model,11 respectively.
For long chains it should be observed thath* occurs only in
the combinationz/h* in all material properties. Therefore
the parameterh* has no observable effect on the mater
properties of long chains. Power law dependencies of var
material properties on molecular weightM}N with univer-
sal exponents are expected~see Sec. 8.2.2.1 of Ref. 12! and,
from the prefactors, one can form universal ratios.4 The uni-
versal exponents and prefactors are ideally suited fo
parameter-free test of the model by means of experime
data for high molecular weight polymer solutions. In th
work, we obtain estimates by extrapolation from extens
and efficient simulation. A coarse-grained molecular mo
represents the polymer molecules: the bead-spring c
model, i.e.,N identical beads joined byN21 springs with
spring coefficientsH. The solvent is modeled as an incom
pressible, isothermal Newtonian homogeneous fluid cha
terized by its viscosityhs. The solution is considered to b
infinitely diluted, and the problem is limited to the behavi
of one single molecule. Authors of previous works either d
not use the efficient decomposition method proposed
Fixman13 or performed simulations without using a varian
reduction method and therefore did not simulate sufficien
long chains. There is an increasing interest in using itera
schemes to decompose the HI matrix, e.g., Refs. 14–25
combination with the variance reduction scheme, ch
Downloaded 23 Aug 2004 to 128.200.91.177. Redistribution subject to AI
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lengths comparable to real conditions~e.g., 300 persistence
lengths! are now coming within reach of simulations.26

II. ALGORITHM

The decomposition of the diffusion matrixH to obtain a
representation forB ~e.g., Cholesky decomposition! for long
chains is expensive and scales withN3. A highly efficient
method13 is based on an approximation of the square r
function in Chebyshev~tensor! polynomialsTk of the first
kind, following the notation in Ref. 27,

B5AH'(
k51

L

ckTk21~H!2
1

2
c1 , ~5!

where the recursive formula

Tk11~H!52 H•Tk~H!2Tk21~H! ~6!

together withT0(H)51 and T1(H)5H defines these poly-
nomials. For a fixedL, Eq. ~5! is a polynomial inH which
approximatesB in the interval@21,1# ~concerning the eigen
values ofH), where all the zeros ofTk are located. The sum
can be truncated in a very graceful way, one that does y
the ‘‘most accurate’’ approximation of degreeL ~in a sense
which can be made precise!. The orderL of the series affects
the accuracy in the result~see also next section!.

The convergence of the Chebyshev polynomial appro
mation requires that the eigenvalues of the matrixH are
within the interval@21,1#. Actually, this is not the case, an
one introduces shift coefficients,ha andhb in order to apply
the recursion formula to the ‘‘shifted’’ matrixH8[haH
1hb1 whose eigenvalues should be within the desired ran
This requirement is fulfilled forha52/(LM2L0), 2 hb

52ha(LM1L0), whereL0 and LM denote the minimum
and maximum eigenvalues of the original HI matrixH, re-
spectively. The coefficients of the series are readily obtai
by standard methods:28,27

cj5L21(
k51

L

ak j
L F~a11a2cos@p~k21/2!/L# ! ~7!

with the scalar functionF(x)5Ax, coefficientsa1[(ha

1hb)/2, a2[(hb2ha)/2, and the abbreviation ak j
L

[2 cos@p(j21)(k21/2)/L#.
Instead of calculating the square root matrix first, th

implying several time consuming matrix by matrix produc
for the evaluation of the polynomials of the series, and aft
ward its product with the randomW vector, the desired vec
tor is obtained directly as a result of a series of differe
vectorsV, recursively calculated only through less expens
matrix (H) by vector (V) products, i.e., one replacesdSi in
Eq. ~2! by

dSi5S (
k

L

ckTk21~H8!2
1

2
c1D •dW j~ t !

5(
k

L

ck dVk21
i 2

c1

2
dW j . ~8!

The recursion formula fordVk
i [Tk(H8)•dW i is immedi-

ately obtained from Eq.~6!. Its evaluation requires an effor
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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}N2 for every k51,2,..,L. The overall computational de
mand of the method we use scales withN2L}N9/4 per time
step, as will be seen below.

In addition to this decomposition method a variance
duction simulation technique has been implemented to
duce the statistical error bars~see Ref. 4, p. 177!. For this
purpose two simulations are run in parallel, one at equi
rium, and another undergoing steady shear flow but using
same sequence of random numbers. After a certain time
terval to be specified below, the desired magnitudes
sampled, and the chain simulated under steady shear flo
~periodically! reset to the state of the chain in equilibrium

In particular, the monomer diffusion coefficientD and
radius of gyrationRg are sampled from bead trajectorie
$r i(t)% according to D5 limt→`(( i 51

N @r i(t)2r i(0)#2)/
(6 N t) and Rg

25( i@r i2r c#
2/N, respectively, wherer c de-

notes the center of mass of the molecule. The simula
reveals that the power law regime for monomer diffusionD
will be obtained earlier than the one for the more ‘‘globa
Rg . By analogy to classical results for the diffusion of
sphere embedded in a Newtonian liquid the hydrodyna
radius ~of the corresponding sphere! is defined by Rh

5kBT/(6phsD).

A. Choice of parameters

In order to reproduce the results to be reported in
subsequent section we first present a choice of parameter
the particular system under study. It will be outlined how
confirm the validity of the approximations; a price one has
pay when using the efficient series expansion method.

Simulation runs were performed for a series of ch
lengthsN and hydrodynamic interaction parametersh* . For
all results shown, which were averaged over three indep
dent runs, the total simulation time divided by the long
relaxation timel1

Zimm of the Zimm model is 60.000 for ever
run, where the approximate expressionl1

Zimm

'1.22lHN3/2/(h* p2) ~Ref. 4! has been used for conve
nience, withlH[z/(4H). In the course of the variance re
duction method positions were reset periodically att/l1

Zimm

55,10,15,.. . The shear rate chosen for the purpose of
work has to be small compared to the inverse maxim
relaxation time but as large as possible, we usegl1

Zimm

51/4. Few runs have been performed at smaller rates,
results agree with the presented data within the availa
precision. An integration time step ofnt5lH serves to ob-
tain results for all chain lengths with the desired accura
The eigenvaluesL0 andLM have been estimated during th
course of the simulation, at every 100th integration time s
We found that 2L0.L0

Zimm andLM,2LM
Zimm serve as ‘‘ef-

ficient’’ ~see discussion below! lower and upper bounds fo
the eigenvalue spectrum, where the quantities indexed
‘‘Zimm’’ denote the exact results obtained from the equili
rium averaged HI matrix.

Also, we obtained an approximate expression~within
5% for M>5, h* <0.5) for the exact result, which is

L0
Zimm'121.71h* , LM

Zimm'11pN1/2h* . ~9!

By using these approximations we avoid calculating the
genvalues of the HI matrix during production runs. Wi
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increasing shear rate the spectrum of eigenvalues is slig
shifted toward larger values, and merely unchanged for
low shear rates investigated. The Chebyshev series was t
up to the orderL5(LM /L0)1/211, whereL takes the cor-
responding~truncated! integer value, in order to obtain 0.0
error. This finding is in agreement with Table I of Ref. 1
To summarize, and to ensure the full reproducibility of o
results, we useL05(121.71h* )/2, LM52(11pN1/2h* ),
L5(LM /L0)1/211, and the relaxation time for the varianc
reduction methodl151.22N3/2/(h* p2) ~in reduced units!.
The total CPU time required for a single time step theref
scales with CPUstep}N23L}N9/4, the one for a single run
scales withl1

Zimm3 CPUstep}N15/4, sinceL varies with N
through Eq.~9!. On the other hand, the convergence of t
Chebyshev approximation is best forLML051, i.e, for h*
close to zero and 1/2, respectively. Finally, we have cho
the simulated chain lengths such that they are equidistan
a 1/AN scale, i.e., for the current simulations we chooseN
54,5,6,8,10,13,18,26,41,73,169~plus a maximum feasible
chain length ofN5254) in view of the expected depen
dences of universal numbers versus chain length@see Figs.
1~a!–1~d!#.

The only simulation parameters are henceN andh* , all
other parameters are fixed according to the above proced
If an approximation favoring the accuracy of either global
local motions is wanted, this can be achieved by furth
overestimatingL0 or underestimatingLM , respectively.

One should notice, that the given bounds for the eig
value range are specific for the problem under study. In g
eral, one has to ensure that the degree of violation of
fluctuation-dissipation theorem~with respect to an elegible
matrix norm! is small enough to obtain exact moments of t
distribution function with a desired accuracy, e.g., along
lines indicated in Ref. 14 in order to prevent a direct calc
lation of eigenvalues. At least concerning our study, the
egant computational method used by Fixman13 proved to
serve as a basis to obtain ‘‘efficient’’ bounds (L0 ,LM) for
eigenvalues. Our expressions for bounds are found to
comparable to those obtained with his method, for the p
ticular shear rates studied. His estimate of the range of
eigenvalues ofH is also furnished by a simple physical a
gument and does not require diagonalization or averagin
H. If two nearby beads experience a force in the same di
tion the induced perturbations of the velocity field will hav
a large degree of coherence and thus add up to a larger
turbation. If on the other hand the forces are in oppos
directions the induced perturbations will cancel out to a la
extent. Since beads which are neighbors along the chain
likely to be also closed neighbors in space an estimate for
largest and smallest eigenvalues is obtained by using a f
vector which equal absolute forces for all beads as a t
vectorFi5piF ( i 51,N) with an arbitraryF to form a Ray-
leigh quotient29,30 ( i , jFi

T
•H i j •Fj /(kFk

T
•Fk , which serves as

a measure for the lower (p521) and upper (p511)
bounds, respectively. To compensate for deviations of th
estimates from the true values of the largest and sma
eigenvalues ofH one takes13 a somewhat larger interval fo
the shifted Chebyshev polynomials.30 For the same reason
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. The ratios~a! URD , ~b! UhR , ~c! UCh and ~d! Ucc as defined in Eq.~10! vs the inverse square root of chain length for different values of the
interaction parameterh* . As a reference, results for the Zimm model are also shown~small dots!. By extrapolation toN→` the universal ratio is obtained
~see Table I!. Apparently,URD depends linearly on 1/AN.
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factor 2 had been introduced above between Zimm eigen
ues and simulation parameters.

In the context of this study, the terminus ‘‘efficient
implies that the bounds are not strict, since overlap of p
ticles may occur. The degree of overlap, in turn, can be
duced by increasing the shear rate. For our setting, wh
exhibits a rather moderate choice for the number of termL,
i.e., the polynomial degree of the approximation Eq.~5!, it
has been observed, that the violation of the fluctuation di
pation theorem is weak31 and that the overall convergenc
and reproducibility of extracted averages is good,indepen-
dentof the values for chain length and hydrodynamic int
action parameter. It has to be regarded as a compromise
Ref. 27. Results which we obtained by using Rayleigh q
tients ~plus the factor of 2! agree with those to be presente
in the following section~within 3% error!.

On a 500 MHz alpha processor our code needs ca. 124

seconds per step forN520. The performance increases reg
larly with the value ofN. On the Cray SV1 of the ETH
Downloaded 23 Aug 2004 to 128.200.91.177. Redistribution subject to AI
l-

r-
-
h

i-

-
cf.
-

-

Zürich we get 86 MFlops forN530, 156 forN5128, and
184 forN5254, which is very close to the theoretical max
mum. This indicates nearly optimal use of the vector arc
tecture for our algorithm.

III. RESULTS AND DISCUSSION

The most interesting theoretical predictions for expe
mentally accessible quantities are those independent of
physical parameters.

In the limit of infinitely long chains the Zimm mode
predicts a diffusion coefficientDh , radius of gyrationRg and
a spectrum of relaxation timesl j

Zimm ( j 5$1,2, . . .%):4,32

limN→`Dh5ch* kBT/(zAN), limN→`Rg5(NkBT/2H)1/2,
and limN→`l j

Zimm5cj (N/ j )2/3z/(4h* Hp2) with c151.22
andcj52p j /(2p j 21) for j .1.33

Having established these relationships for the Zim
model one can construct and define a number of unive
ratios for experimentally accessible quantities:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 23 Aug
TABLE I. Previous analytical, experimental, numerical, as well as novel results for universal ratios in the
shear rate limit. E.g., Fixman estimatedURD51.42 ~Ref. 41! but could not estimateUhR due to the slow
convergence of rheological propertiesh ~and alsoC1,2). The asterisk marks results obtainedtaking into
accountexcluded volume. The estimates of de la Torreet al. and Bernalet al. were obtained by extrapolation
from their results forh* 51/4 Ref. 45. The following abbreviations for computational methods are used:
~Brownian dynamics!, MD ~Molecular dynamics!, MC ~Monte Carlo!.

URD UhR UCh UCC Uhl UCS

Theory
Rouse~Ref. 2! }N21/2 }N11/2 0.8 0 1.645 }N
Zimm ~Ref. 8! 1.479 34 1.664 25 0.413 865 0 2.39 20.112
Gaussian approx.~Ref. 35! — 1.213~3! 0.560~3! 20.0226~5! 1.835~1! 14.46~1!
Twofold normal Zimm~Ref. 35! — 1.210~3! 0.5615~3! 20.0232~1! 1.835~1! 14.42~1!
Öttinger ~Ref. 10! — 1.377~1! 0.6096~1! 20.0130~1! — 20.29~1!
Oonoet al.* ~Ref. 36! 1.56~1! — — — — —
Öttinger* ~Ref. 37! — — 0.6288~1! — — 10.46~1!

Experiment
Schmidtet al. ~Ref. 38! 1.27~6! — — — — —
Miyaki et al. ~Ref. 39! — 1.49~6! — — — —
Bossartet al. ~Ref. 40! — — 0.64~9! — — —
Bossartet al.* ~Ref. 40! — — 0.535~40! — — —

Simulation
Fixman ~Ref. 41! ~BD! 1.42~8! — — — — —
de la Torreet al. ~Ref. 42! ~BD! 1.28~11! 1.47~15! — — 2.0 —
Rubio et al. ~Ref. 43! ~MC! — .1.36~5! — — — —
Garcia Bernalet al.* ~Ref. 44! ~BD! 1.48~15! 1.11~10! — — —
Aust et al.* ~Ref. 46! ~MD! 1.41~6! — — — — —
This work ~BD! 1.33~4! 1.55~6! 0.45~7! 0.05~4! — 19~2!
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URD[
Rg

Rh
[

6phsDhRg

kBT
,

UhR[ lim
c→0

hp

chs~4pRg
3/3!

——→
Zimm 9

2

UhlDhl1
Zimm

URDRg
2

,

UCh[ lim
c→0

ckBTC1

hp
2

,

~10!

UCC[
C2

C1
,

Uhl[ lim
c→0

hp

ckBTl1
——→

Zimm lh

l1
5

( jl j

l1
5

p5/2

4@G~3/4!#2c1

,

UCS[
kBTC1

chs
2Rg

6
5UChUhR

2 ~4p/3!2.

The quantityURD is the ratio between radius of gyration an
hydrodynamic radius, the latter quantity can be actually m
sured experimentally in a dynamic experiment, e.g., by
serving the relaxation time of the dynamic scattering fu
tion S(q,t) for small momentum transfersq Rg!1. The
quantityUhR is a measure for the specific polymer contrib
tion hp to the reduced shear viscosity,UCh gives the ratio
between first viscometric function and squared polymer c
tribution to the shear viscosity,UCC is the ratio between the
second and first viscometric function,Uhl reflects the pro-
portionality betweenhp and the longest relaxation time. Fo
the Zimm model one infersUhl from hp /ckBT5( jl j . Fi-
nally, UCS is introduced for convenience. It is a combinatio
 2004 to 128.200.91.177. Redistribution subject to AI
a-
-
-

-

of two other characteristic ratios. From these ratios one c
for example, eliminate the unspecified proportionality co
ficients in the ‘‘blob’’ theory of polymer statistics.34

The universal ratios predicted by the Zimm model in
long-chain limit are collected in Table I. These numbe
serve as reference values for the exact result without pre
eraging procedure. Our estimates for the exact long-ch
limit are extrapolated from the data shown in Figs. 1~a!–
1~d!. The polymer contribution to the stress tensor and rad
of gyration needed to analyze universal ratios listed in Ta
I have been calculated directly from bead trajectories.
independent discussion about relaxation times for this s
tem, needed to determineUhl can be found in Ref. 42. As
for the Zimm model, our simulation results reveal that t
radius of gyration converges more fast to its long-chain lim
than the hydrodynamic radius. A sample time series for
cumulated data is shown in Fig. 2. The results are basic
summarized in Table I, together with theoretical, experim
tal and earlier findings. Sample simulation parameters
listed in Table II.

In Ref. 6 the leading corrections to the limit of infinitel
long chains have been estimated in the framework of a g
eralized Zimm model for dilute polymer solutions. They a
of the following form:

Ui~h* ,N!5Ũ i1
ci

AN
S 1

hi*
2

1

h* D ~11!

for i P$RD,hR,etc.%. A careful analysis of the simulation
data yielded the following results for the coefficients defin
through Eq.~11!:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ŨRD51.3360.05, cRD520.49, hRD* 50.267,

ŨhR51.5560.04, chR51.9, hhR* 50.250,
~12!

ŨCh50.2960.1, cCh520.20, hCh* 50.261,

ŨCC50.0560.1, cCC50.05, hCC* 50.247.

As expected from Ref. 6 the valueshi* for which the leading
order corrections are absent do not coincide for the vari
functionsUi . Since the functions Eq.~11! for a giveni and
different HI parameters appear as a set of converging stra
lines in the representations of raw data in Figs. 1~a!–1~d! it is
obvious that the data forURD is represented better by th
expression Eq.~11! than the data for the remaining univers
ratios, for the set of finite chain lengths under study.

FIG. 2. Sample time series of accumulated averages for the ratiosURD ,UhR

andUCh for N5120 andh* 50.20.

TABLE II. The table contains static simulation parameters for a numbe
chain lengthsN and hydrodynamic interaction parametersh* ~see Sec. II A!
which allow to reproduce the results. As discussed in the text, simulat
with small condition numberL possess the highest efficiency due to alg
rithmic convergence. Methods for estimating eigenvaluesL0 ,LM during the
coarse of the simulation are discussed in the text;g denotes shear rate.

N h* L0 LM L g

10 0.05 0.46 2.99 3 0.0122
10 0.1 0.41 3.99 4 0.0122
10 0.2 0.33 5.97 5 0.0122
10 0.25 0.29 6.97 5 0.0122
10 0.3 0.24 7.96 6 0.0122
10 0.4 0.16 9.95 8 0.0122
10 0.5 0.073 11.9 13 0.0122
20 0.25 0.29 9.02 6 0.003 08
50 0.25 0.29 13.1 7 0.000 493

100 0.25 0.29 17.7 8 0.000 123
200 0.05 0.46 6.44 4 0.000 030 8
200 0.25 0.29 24.2 10 0.000 030 8
200 0.5 0.073 46.4 26 0.000 030 8
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IV. CONCLUSIONS

We have investigated the universal behavior of line
polymers in dilute theta solutions at small shear rates
Brownian dynamics simulations. Hydrodynamic interactio
are treated with an efficient algorithm proposed by Fixm
for which the increase of computing time with chain leng
is governed by the exponent 9/4. With modern comput
and variance reduction techniques, chain lengths up toN
5254 have been reached and, with careful extrapola
techniques, the universal predictions for the diffusion coe
cient and the viscosity with error bars of less than 3% a
4%, respectively, have been obtained. The results for
normal-stress coefficients are much less reliable: The e
bar for the first normal-stress coefficient is some 30%,
sign for the much smaller second normal-stress coefficien
inconclusive.
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11H. C. Öttinger, J. Chem. Phys.83, 6535–6536~1985!.
12R. G. Larson,Constitutive Equations for Polymer Melts and Solutio

~Butterworths, Boston, 1988!.
13M. Fixman, Macromolecules19, 1204~1986!.
14R. M. Jendrejack, M. D. Graham, and J. J. de Pablo, ‘‘Hydrodynam

interactions in long chain polymers: Application of the Chebyshev po
nomial approximation in stochastic simulations,’’ J. Chem. Phys.~in
press!.

15M. Melchior and H. C. O¨ ttinger, J. Chem. Phys.105, 3316–3331~1996!.
16S. Navarro, M. C. L. Martinez, and J. Garcia de la Torre, J. Chem. P

103, 7631~1995!.
17C. Pierleoni and J. P. Ryckaert, Macromolecules28, 5097–5108~1995!.
18P. S. Grassia, E. J. Hinch, and L. C. Nitsche, J. Fluid Mech.282, 373–403

~1995!.
19J. D. Schieber, J. Non-Newtonian Fluid Mech.45, 47–61~1992!.
20C. Elvingston, Biophys. Chem.43, 9–19~1992!.
21W. Zylka, J. Chem. Phys.94, 4628–4636~1991!.
22C. Elvingston, J. Comput. Chem.12, 71–77~1991!.
23M. Fixman, J. Chem. Phys.89, 2442–2462~1988!.
24M. Fixman, Faraday Discuss.83, 199–211~1987!.
25M. Fixman, Macromolecules19, 1195–1204~1986!.
26R. Rzehak, D. Kienle, T. Kawakatsu, and W. Zimmermann, Europh

Lett. 46, 821–826~1999!.
27W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numeri-

cal Recipes in Fortran, 2nd ed.~Cambridge University Press, Cambridg
1992!, p. 184.

28D. Dahlquist and A. Bork,Numerical Methods~Prentice-Hall, Englewood
Cliffs, NJ, 1974!.

f

s

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ro

J.

o-

ng:

e.,

her
s up

r

4773J. Chem. Phys., Vol. 113, No. 11, 15 September 2000 Brownian simulation of a bead-spring chain
29G. H. Golub and C. F. v. Loan,Matrix Computations, 2nd ed.~John
Hopkins University Press, Baltimore, MD, 1989!.

30R. Rzehak, D. Kienle, T. Kawakatsu and W. Zimmermann,Brownian
Dynamics of Tethered Polymers in Flow~World Scientific, Singapore, in
press!.

31J. J. de Pablo, personal communication.
32B. H. Zimm, G. M. Roe, and L. F. Epstein, J. Chem. Phys.24, 279~1956!.
33B. H. Zimm, G. M. Roe, and L. F. Epstein, J. Chem. Phys.24, 279~1956!.
34M. Daoud and G. Jannink, J. Phys.~France! Lett. 39, 1045~1976!; P. G.

de Gennes, Macromolecules9, 587,594~1976!.
35J. R. Prakash and H. C. O¨ ttinger, J. Non-Newtonian Fluid Mech.71,

245–272~1997!.
36Y. Oono and M. Kohmoto, J. Chem. Phys.78, 2044~1983!.
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