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Synopsis
Based on covalent bond scission force estimates from single molecule experiments and a statistical
analysis of the instantaneous segmental tension (ST) distribution in bead-rod chains, a new
algorithm has been developed for the simulation of flow-induced polymer chain scission. This
algorithm overcomes the nonphysical time-step dependence inherent in stochastic chain scission
simulations that employ instantaneous ST-based criteria to identify scission events. This is
accomplished by the use of a normalized ST profile that is independent of the elongation rate E for
asymptotically large values of the Weissenberg number, defined as the ratio of the longest
relaxation time of the chain to 1/E. The algorithm is employed to study chain scission in steady
and transient elongational flows as well as the effect of hydrodynamic interactions on chain
scission in steady elongational flow. Simulation results for steady elongational flow reproduce the
experimentally observed scaling law for the critical elongation rate E,. OCM;,Z where M,, denotes the
molecular weight. Moreover, for E~FE,, the chains unravel via a coil-to-stretch configurational
transition. Since ST attains its maximum at the midpoint of the chain, the midpoint scission
hypothesis (MSH) is valid. This leads to a relatively narrow distribution of daughter chains.
However, for E>>E,_, sufficiently large ST could develop in the elongated portions of partially
coiled chains. Consequently, chain scission could occur farther from the midpoint. MSH is not
valid under such conditions, and the resulting distribution of daughter chains is relatively broad.
Hydrodynamic interactions are shown to slow down chain unraveling leading to an increase in E,
with the scaling ECOCM;V”. The effect of polymer residence time on E. is examined by
investigating scission of polymer chains that traverse the centerline of a regularized contraction
flow. It is found that the scaling relationship between E. and M, remains the same as that for
steady elongational flow given that the residence time exceeds 5% of the longest relaxation time of
the chain. This result suggests that the inverse proportionality of E. to M,, observed experimentally
in contraction flow might be due to preshearing effects. Finally, the effect of loading rate on
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scission probability is discussed in the context of an extended thermally activated barrier to
scission model. © 2007 The Society of Rheology. [DOI: 10.1122/1.2789945]

I. INTRODUCTION

Polymer chains can be cleaved by chemical and mechanical means. Chemical or
enzymatic cleavage, such as the one employed in DNA replication (e.g., as in polymerase
chain reaction), has been a subject of extensive research. Mechanically induced scission,
such as the one caused by strong (extensional) flows, has also been studied experimen-
tally since the early seventies [Horn and Merrill (1984); Keller and Odell (1985); Nguyen
and Kausch (1988); Nguyen and Kausch (1990); Odell and Keller (1986); Odell et al.
(1988); Rabin (1987); Reese and Zimm (1990); Vincent (1972)]. Experiments have also
focused on chain scission in inertia-dominated and turbulent flows to understand the
effects of polymer degradation on turbulent drag reduction [Choi et al. (2002); Lim et al.
(2003)]. The drag reducing capability of the polymeric additives is related to the molecu-
lar extensibility [Lumley (1969); Sureshkumar et al. (1997)], which is proportional to the
molecular weight (M,,). In turbulent flows, regions of strong, transient extensional defor-
mation exist such as in the buffer layer between counter-rotating, quasi-streamwise vor-
tices. Additives such as polyethylene oxide (PEO) with M,, exceeding 10° Da have been
found to lose much of their drag reduction capability exponentially with time and within
minutes after injection due to flow-induced rupture of the chains [Hunston and Zakin
(1978); Matthys (1991)]. Hence, knowledge of flow-molecular configuration coupling
mechanisms leading to chain scission is beneficial to drag reduction applications. In
addition to skin friction control, controlled fragmentation of high M, polymers including
flexible DNA molecules is technologically relevant in the synthesis of polymers with
narrow-distributed M,, and gene sequencing [Buchholz et al. (2004); Lengsfeld and An-
chordoquy (2002); Levy et al. (1999)]. Flow devices such as channel/tube with abrupt
contraction (with contraction ratios of order 100) have been used to achieve high
throughput breakage.

The mechanism of chain scission is generally believed to be dependent on the nature
of the flow. For instance, in planar extensional flows created by cross slots, opposed jets,
or four-roll mills, chain breakage occurs when the strain rate exceeds a critical value that
is determined by the strength of the chemical bonds between the monomers and the
solvent viscosity. Under these conditions, the molecule unravels from its equilibrium,
coiled state and remains in the “fully extended state” at least over a period of time
comparable to the longest relaxation time A, The distribution of the tension in the
extended chain is approximately parabolic with its maximum at the center. This has
motivated statistical theoretical descriptions based on the assumption of “midpoint sciss-
ion,” i.e., the chain cleavage is most likely to occur at midway along the chain contour.
This model leads to the prediction that the critical strain rate E,.o 7'M ;Vz where M, is the
polymer molecular weight, and 7 is the solvent viscosity. The above scaling for molecu-
lar weight is in good agreement with experimental observations in steady, planar exten-
sional flows and consistent with the asymptotic behavior of a Rouse chain in elongational
flow [Bird er al. (1987)]. Specifically, when \yN*E — m2/4, where N and Ay denote the
number of bead-spring segments and segmental relaxation time, respectively, of a Rouse
chain, a coil-to-stretch configurational transition is predicted. Since N> M,,, and Ny > 7,
this suggests that if the chains break in the fully extended configuration, E,. (l/anv).

By the 1980s, ample experimental evidence was provided to confirm that chain sciss-
ion can also occur in Lagrangian unsteady mixed flows with elongational and shear
deformation, such as the one created by the abrupt contraction flow, even if the residence
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time of the polymer within the flow field is less than A ,,,. This implies that breakage can
occur even when the molecule is in a partially uncoiled state. Under such conditions, a
scaling law of the form E.o M~! where M denotes the average molar mass of the sample,
which is qualitatively different from the analogous result in the case of steady elonga-
tional flow, has been obtained experimentally [Nguyen and Kausch (1988)]. Rabin (1987)
rationalized the experimental observation based on slender body hydrodynamic theory.
However, as pointed out by Nguyen and Kausch (1990), the hydrodynamic model pre-
dicts unrealistically low values of the maximum chain tension (up to 2 orders of magni-
tude lower compared to the C-C bond strength of 6—-8 nN) under conditions in which
chain scission is observed experimentally. Moreover, experiments using theta solvents
have shown that, as in the case of steady elongation, midpoint scission is dominant in
mixed flows [Nguyen and Kausch (1990)]. Midpoint scission and the relative insensitiv-
ity of polymer degradation to solvent viscosity are inconsistent with the slender body
theory. Alternative explanations based on the “yo-yo” model that represents the polymer
chain as two unraveling coiled ends connected by a stretched segment [Ryskin (1987)]
have been proposed. However, mesoscopic simulations [Hur er al. (2000); Hur et al
(2001); Larson et al. (1999); Somasi et al. (2002)] and single molecule visualization
using fluorescence microscopy [Perkins et al. (1997); Smith and Chu (1998); Smith ef al.
(1999)] show that the dynamics of coil-to-stretch transition, even in homogenous elon-
gational flows, differ from those assumed in the yo-yo model. Nguyen and Kausch (1990)
suggested that the inverse scaling of E, with M and the relative insensitivity of E, to
solvent viscosity can be explained based on energetic grounds if one accounts for the
internal friction (viscosity) between the segments of the coiled portions of the chain.
However, their result is based on the assumption that the equilibrium statistical mechan-
ics result for the probability of finding monomeric units close to each other holds even in
presence of a transient extensional flow field. Islam er al. (2004) and Vanapalli ef al.
(2006) recently proposed an alternative explanation for the differences in the E, versus
M, relationships observed in transient and steady flows based on their experimental data
for the scission of PEO in aqueous-based solvents of varying viscosity in a cross-slot flow
device. Specifically, these authors showed that inertia, as characterized by the Reynolds
number Re based on the flow rate and slot height, has a profound impact on scission.
They showed that their data as well as the literature data follow the trend E, % M~2 for
Re <1000 whereas for Re> 1000, E.«M~'. The change in the scaling with Re is attrib-
uted to an inertial flow transition signified by a discontinuity in the pressure drop versus
the Re curve at Re= 1000. These authors also showed that upon degradation, both mono-
dispersed and polydispersed samples yielded unimodal M,, distribution for Re> 1000
which is inconsistent with the midpoint scission hypothesis. We note that this observation
is not entirely inconsistent with the previous studies since it is plausible that the flow
instability threshold also corresponds to a transition point between steady (E.oM~2) and
transient (E.M™") flows.

Theoretical modeling of mechanically induced polymer chain scission has been based
on energetic considerations [Bestul (1956); Zhurkov and Korsukov (1974)]. In a broad
sense, scission can be viewed as a chemical reaction. Hence, ideally, quantum mechanical
level modeling is required for computing chemical bond dissociation rates in the presence
or absence of external forces. However, if the flow time scale (~1/E) is much larger than
molecular vibration time scales, a coarse grained micromechanical model can be used to
examine the influence of flow-induced changes in the chain conformation on scission
kinetics. Moreover, if the scission threshold is determined under very small loading rate
such that the activation energy for scission is not altered at the chemical bond level, it is
legitimate to use this estimate in Brownian dynamics simulations (BDS) in which the
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variation in segmental tension at the mesoscopic level occurs much slower than molecu-
lar time scales. Under such conditions, the applied mechanical stress is assumed to
sufficiently lower the activation energy barrier for scission such that thermal fluctuations
can overcome it. In a series of articles, Lépez Cascales and Garcia de la Torre (1991,
1992) and Knudsen et al. (1995, 1996) have performed BDS using bead spring models to
predict chain scission in transient and steady elongational flows. In their simulations, they
used linear springs (Rouse chain) as well as nonlinear Morse springs modeled by the
potential V=A(1—-exp[—B(Q—b)])?, where A and B are model constants (>0) and, Q and
b denote the instantaneous and equilibrium lengths respectively of the spring. When Q
=b, the spring force F=-dV/dQ=0 whereas F reaches a maximum F,, =AB/2 at
Omax=b+1n 2/B before decaying to zero for values of O>>b. Chain scission is assumed
to occur when spring potential reaches the dissociation energy (=A).

BDS using the above model (N<20) predicts E. (1/N?) in steady elongational flow
if hydrodynamic interaction (HI) between the beads is neglected, which is in excellent
agreement with experiments using dilute polystyrene solution [Odell and Keller (1986)].
However, when HI is included, the exponent of N is =1.65 and 1.6 for the Rouse and
Morse chains, respectively [Lopez Cascales and Garcia de la Torre (1991)]. Asymptotic
analysis in the presence of HI for strong flows suggests that for a very large value of N,
E,.*(1/N*1n N) (as compared to 1/N? in the absence of HI). Since the logarithmic term
varies much more slowly than N2, it was argued that the experimental data for very long
polymer chains will fit to E. (1/N?)(=1/M?). However, computer experiments showed
that for N as large as 500, the exponent (=1.8) is significantly below the limiting value
of 2. BDS using bead-spring chain has also been performed to probe chain breakage in
transient elongational flow that mimics the deformation experienced by a chain as it
translates along a streamline in an abrupt contraction device [Knudsen er al. (1995,
1996)]. In the presence of HI, the critical flow rate was found to be o«(1/NP), p
=0.95+0.2 while if HI was neglected, p=1.8+0.2. The closer agreement with experi-
mental data (0.95<p=<1.3) obtained using HI suggested that in transient elongational
flows, HI would retard the unraveling of the chains significantly more than that in steady
flows. We note here that the flow in an abrupt contraction device is mixed, i.e., both shear
and elongational deformations exist. Hence, it is plausible that prestretching of the chains
by shear deformation could have a pronounced influence on the scission threshold. In
fact, BDS using bead-spring chains performed by Hsieh ez al. (2005) for a planar cross-
slot flow precisely demonstrate this effect, i.e., the chains are prestretched by shear at the
inlet section of the channel and break as they approach the stagnation point dominated by
extensional deformation. Hsieh er al. (2005) defined chain scission to occur when any
spring experiences a force over a preset critical spring force.

While the above approach based on bead-spring models and ad hoc energetic or
instantaneous spring force criterion offers a computationally tractable route to predict the
onset of chain scission, it also raises certain questions that hitherto have been unan-
swered. In the bead-spring models, the spring does not necessarily represent a chemical
bond or an energetic link; rather it is of entropic origin. Hence, ‘“scission” at the bead-
spring level of description is at best ambiguously defined. As mentioned above, the
criterion for scission in steady elongational flow (E,. 7 'M~2) can be anticipated based
on the property of a Rouse chain to extend infinitely as \y;N°E — 72/4. In other words,
this criterion is a robust one independent of the specific form of the potential used. This
is evident from BDS studies in the literature: Although the Rouse and Morse chains differ
qualitatively in terms of the spring potential [see Fig. 1 in Lopez Cascales and Garcia de
la Torre (1991)], they both yield practically identical results for the dependence of the
scission threshold on the number of segments although the absolute value of the critical
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strain rate is model dependent. For instance, for N=20, E. for the Morse chain is ap-
proximately a factor of 3 greater than that for the Rouse chain. Hence, a protocol for the
selection of model parameters in bead-spring simulations that would yield model-
independent results is at best ambiguous. Data obtained from computer experiments
performed using fine-grained models such as bead-rod chains could help parameter se-
lection for coarser, bead-spring models. The selection of the scission criterion is also of
great importance. In energy-based approaches, the scission parameters such as the bond
dissociation energy cannot be estimated accurately. For the bead-rod chain, it is realistic
to use a force-based criterion for chain scission since the “rod” represents the collection
of monomers that move in a concerted fashion. Recent advances in atomic force micros-
copy (AFM) allow one to accurately determine the critical tension [Grandbois et al.
(1999)]. However, a criterion based on instantaneous segmental tension (ST) suffers from
certain numerical artifacts, since the time integration of stochastic differential equations
describing the polymer chain dynamics leads to an increase in instantaneous ST fluctua-
tions with decreasing time step dt as(df)~"?. Motivated by these considerations, we have
chosen to utilize BDS based on bead-rod chains in the present study and develop an
algorithm to account for the effect of stochastic fluctuations in segmental tension on the
scission probability so that dr-independent predictions can be obtained. While scission
threshold is of vital interest, in practical applications, strain rates much greater than E,. are
often used. Hence, it is also important to examine scission under the condition of E
>FE.. It is plausible (as shown in this work) that partially uncoiled chains with suffi-
ciently long contiguously extended portions could also break when E>E,.

In general, one would expect the scission probability should not only depend on the
instantaneous segmental tension but also on the “loading” rate, i.e., the rate at which the
polymer is stretched. In other words, the probability of scission for a chain stretched very
rapidly from equilibrium should be different from that for one unraveling at a very slow
rate. In the context of flow-induced scission, such elongation rate dependence of scission
probability has not been quantitatively studied. However, such effects have been studied
in the context of the disentanglement from a substrate of a polymer chain pulled by a
force exerted on the free end (e.g., using an atomic force microscope tip) [Evans and
Ritchie (1997)]. As in the case of the thermally activated barrier to scission (TABS)
models, [Bestul (1956); Zhurkov and Korsukov (1974)] the applied mechanical stress is
expected to lower the activation energy barrier AE for scission, but the extent to which it
is reduced depends on the pulling rate itself. This may be thought of as a generalization
of the Bell model [Bell (1978)] originally proposed to study the effect of mechanical
forces on cell adhesion on substrates. Evans and Ritchie (1997) argued that the probabil-
ity of detachment of a polymer chain depends on both the reduction in the energy barrier
to scission induced by the mechanical stimulus (applied force) and a hopping or attempt
rate to overcome this barrier. The direct application of their theoretical results to flow-
induced scission of free (i.e., nontethered) polymer chains is not straightforward. Note
that for free chains ST vanishes at the chain ends, a scenario that is qualitatively different
from the one in which tethered chains are pulled at their free ends. However, in general,
one would expect the attempt rate and the reduction in the energy barrier to be functions
of flow deformation rate since it has a direct influence in determining the loading rate e.
As a result, following Evans and Ritchie (1997), one can express the probability of
scission as a function of elongational rate p(e)=g(e)exp(-AE(e)/kT) where g(e) is the
likelihood of dissociation contributed by tension fluctuations, and AE is thermal activa-
tion energy to overcome the transition state, which is lowered by the applied deformation
rate e. In this work, we have analyzed and interpreted the scission probabilities predicted
by the present algorithm within the framework of this extended TABS model.
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This paper is organized as follows. In Sec. II, the governing equations and critical
tension estimation for the Kramers (bead-rod) chain model are introduced along with a
detailed discussion of the statistical properties of ST distribution and how they depend on
model/simulation parameters such as chain length, flow strength and time-step size. This
motivates the development of a new simulation algorithm for time-step size independent
predictions of scission kinetics, presented in Sec. II C. Section III contains results and
discussion for critical tension and kinetics of scission, probability density function (pdf)
of cleaved (daughter) chains, the effect of hydrodynamic interactions and transient elon-
gational flow on the scission threshold, and the effect of loading (extension) rate on
scission probability. Conclusions are offered in Sec. IV.

Il. SIMULATION METHODS
A. BDS of bead-rod chains

In a bead-rod chain, each bead represents a group of monomers of the polymer and the
rod length is related to the persistence length, which is a measure of chain stiffness of
polymer. BDS algorithms for Kramers chains have been presented in detail elsewhere
[Doyle et al. (1997); Liu (1989)]. For a spatially homogenous velocity gradient and in the
absence of HI, the stochastic differential equation governing the evolution of the position
vector, r;, of bead i, | <i<N,+1, is given by

dr; 1

— =vy+ [k 1]+ —(FS+F>), 1
At 0 [ 1] g( i 1) ( )
where v is an ambient fluid velocity, « is the transpose of the velocity gradient tensor, {
is the hydrodynamic friction coefficient, F[C is the constraint force, and F? is the ran-
domly fluctuating Brownian force that represents the jostling of the polymer by the
surrounding solvent molecules. Equation (1) is subjected to N, constraints:

gi=(l‘i+1—ri)2—a2=0, i=1,2,...,Nk, (2)

where a is the rod length. The constraint force Flc acting on bead i can be evaluated as

ag
FO=- 2 y—=F, (3)
PGy

where vy, (1<k<N,) are Lagrange multipliers representing the STs. Neglecting its cor-
relation with the constraint force, the Brownian force F? can be shown to have the
following statistical properties:

(FP0)=0, (FIOFX")=2ksTLS8,;8(1~1')8, (4)

where &; denotes the Kronecker delta, 8(t—1") denotes the Dirac delta function, & is the
unit tensor, and the angular brackets denote ensemble averaging.

In integrating Eq. (1), we follow Liu’s approach [Liu (1989); Somasi et al. (2002)]
where the bead position is updated by using a predictor-corrector algorithm. In the pre-
dictor step, the bead position rl-*(t+dt) is updated without the constraint force:

2kT gdt

r;(t+dr) =v,(t) + [ v(0)] - dr + AW, (5)

where AW, is the discrete random noise on bead i such that
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(AW)=0, (AWAW))=5,8. (6)

In the corrector step, the predicted bead positions are corrected for the constraint force
acting on the rod:

* dt 0
rt+dt)=r,(t+dt) — — >, Y—g. (7)
{7 o

Coupling Eq. (2) with Eq. (7) results in N, nonlinear equations for the STs, which can be
solved iteratively until all constraints are satisfied within the specific tolerance.

During the time interval from ¢ to #+dt, the fluctuating Brownian force acting on the
bead i has the statistical properties [Gardiner (1985)]:

(AF{(dn)) =0, (AF}(dr)AF}(di))= % 5 ®

Equation (8) implies that the variance in the stochastic fluctuation o<(1/dt). Hence a chain
scission criterion based on the instantaneous tension will not yield dr-independent results.
This issue and how to circumvent it will be discussed later.

As discussed in Sec. I, HI has been shown to influence the critical strain rate predicted
by BDS using bead-spring chains. For bead-rod chain, Ottinger (1994) has developed a
BDS technique that allows accurate incorporation of HI. Although such simulations are
computationally very expensive, we have performed a limited set of calculation to assess
the role of HI on chain scission. In presence of HI the predictor step is modified as [see
Eq. (25), Ottinger (1996)]:

r;(t+d0) =r(0) + [k 1i(0) + 2 Hy; - (Fy+ FV)] - di + \2kTpdt 2, By - AW, (9)
J J
where H;; is a tensor that determines the HI between bead i and j [see Eq. (10) below],
F] is the 1nternal interaction force on bead j, FA " is an extra force due to the constraint
[see Eq. (24), Ottinger (1994)], AW, is Gaussian random vectors with (AW )=0, and
(AW, AW )=3,; 6. B;; is related to the HI tensor satisfy:

( +Qz/ EBtk /k’ (10)

where é" is a symmetric friction tensor, and £);; represents the Rotne-Prager—Yamakawa
(RPY) tensor that is used in this study [Bird er al (1987)]. The corrector step is expressed
as [see Eq. (26), Ottinger (1994)]:

Ny

r(t+dr)=r,(t+dr) - Eyk[EHU ar}. (11)

k=1

The expression for the diagonal elements of RPY tensor is H”"6 (kT/Q)6, p and the
off-diagonal elements for nonoverlapping beads (r;;>2a) have the form:

3kT 2B\ 207 3788
H®P =p* \/E—g (5043"‘ ﬂ’%) +—2<5QB+LZ&‘ , (12a)
4 34 ry r 3rs i

i i U

where r;; is the distance between beads i and j, o is the hydrodynamic radius, and h*
=(3/m)"?a/a is the parameter representing the strength of HI. If the beads are allowed to
overlap (r < 2a) this tensor is
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kT 9r,; 3 P
H?'Bz—{<l—i)5aﬁ+—rl fi ] (12b)
J g 320’ 320' rij

Hereafter, we use the rod length, a, kzT/a and {a*/kgT as characteristic scales for length,
force and time, respectively. We define the Peclet number Pe=E({a*/kyT) as the ratio of
bead diffusion time to characteristic flow time 1/E and the Weissenberg number We
=EN\, .« Where N\, is the longest relaxation time of a bead-rod chain with N, segments.
For example, \ya, =0.0142-Ni({a*/kyT) if HI effects are negligible [Doyle ez al. (1997)].
If HI is incorporated, the exponent of N, is 1.5—1.6 depending on the value of hydrody-
namic interaction parameter 4° [Neelov et al. (2002)].

B. Critical tension estimation

In the simulations, it is required to determine whether the ST exceeds the bond rupture
force, fy,- Using the TABS model, Odell and Keller (1986) estimated f,, for C-C bonds
to be between 2.6 and 13.4 nN. Recently, the strength of a covalent bond has been
measured by AFM [Grandbois et al. (1999)]. In these experiments, a single polymer
chain that consists of hundreds of monomeric units is covalently anchored between a
substrate and the tip of an AFM and stretched until bond scission occurs. It was observed,
consistent with the theoretical predictions based on density functional theory (DFT), that
the pdf associated with chain rupture is a Gaussian where the mean and variance depend
on the atomic constituents. For instance, the rupture force (in nN) of Si—C bonds is found
(experimentally) to be 2+0.3 while the DFT prediction for the scission force for a Si—C
bond is approximately 2.8. DFT predicts f,,=3.7~4.3 nN for a C—C bond. In this work,
the dimensionless critical tension 7T, for chain scission is estimated based on the average
fracture force for C—C bond as

T, = frpllksTla] = 10°, (12")

where a= 100 nm is chosen as the Kuhn step length of stained A-phage DNA molecules
studied by Larson er al. (1999). This translates to approximately 150 segments to ad-
equately capture their configuration dynamics. Admittedly, the microstructure of biologi-
cal and synthetic polymers in solution is often more complicated than that represented by
a linear bead-rod chain. However, flow-induced configurational changes of such poly-
mers can be captured semiquantitatively by BDS using bead-rod chains [Doyle et al.
1997; Doyle and Shaqfeh (1998); Perkins er al. 1997]. Since the ST distribution depends
primarily on the chain configuration, BDS using bead-rod models should be able to
provide sufficiently accurate results for the mean and variance in STs. Evidently, the
choice of a is also system dependent. For instance, for flexible polymers such as poly-
styrene (PS) and poly-(ethylene oxide) (PEO), T, becomes much smaller because of their
relatively short Kuhn length. This implies that in order to represent a high M, PS or PEO,
thousands of segments would be necessary. This is computationally prohibitive. Hence in
this work, we focus on relatively flexible macromolecules that have large Kuhn lengths
and can be represented by O(10)-O(100) bead-rod segments. This allows us to study the
effect of M,, on E.. Moreover, as shown in Sec. III, scission kinetics should not be
qualitatively influenced by the choice of 7. but rather on the ratio 7,./We.

C. Scission algorithm

In BDS, ensemble averaged properties can be shown to approach asymptotic values as
dt becomes sufficiently small [Ottinger (1996)]. Utilizing the fact that the integration
error decreases as dt'? in the Euler method, extrapolation techniques have been devel-
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oped to allow for the evaluation of the asymptotic values for rheological parameters from
simulation data obtained using finite dr values. However, in order to determine whether a
chain scission event has occurred, the instantaneous segmental tension (IST) has to be
compared with the threshold value 7T, discussed in the previous section. Since “conver-
gence” with respect to dt for IST cannot be attained, any simulation that employs a
comparison of its value with 7, (and decides that a chain scission event occurs when IST
>T.) will not be able to provide results for scission kinetics that are independent of dt. In
the subsequent section, we demonstrate this and present a novel approach that can yield
dt-independent result. The principal idea behind the development of the new technique is
the experimental observation that scission itself is a stochastic process [Grandbois ef al.
(1999)] and via appropriate renormalization of the tension profile along the chain, it is
possible to develop a universal profile that can be used to make a decision for chain
scission.

1. Failure of instantaneous segmental tension (IST) criterion

In the literature, simulations of chain scission have been performed using instanta-
neous criteria; i.e., by comparing the instantaneous numerical value of a stochastic vari-
able to a pre-determined critical one. For instance, a bead-spring chain was assumed to be
cleaved if the stretching energy reaches some limiting value corresponding to a critical
spring length [Knudsen ef al. (1995, 1996); Lopez Cascales and Garcia de la Torre (1991,
1992); Reese and Zimm (1990)]. Although the above studies do not contain discussions
of the influence of the dr size used in the simulation, it is perceivable that the use of an
instantaneous scission criterion could present methodological difficulties. In order to
illustrate this, we show in Fig. 1 the dt dependence of scission kinetics, as indicated by
the plots of scission percentage, defined as 100(n-ny)/ny, where n and n, denote the
instantaneous and initial number of chains respectively, versus strain € = Et, and pdf of
chain length predicted using the IST criterion, i.e., scission occurs when IST exceeds
T.=10°. Figure 1(a) shows that for all cases, the number of chains increases with time
and approaches asymptotic values. However, the total number of chains in the plateau
region increases with decreasing df. Moreover, scission is predicted to occur at earlier
times as dt decreases. This means that, when the chain scission is determined based on
IST, the simulations give different results depending on the numerical parameter dt even
when identical initial configurations and physical parameters are used. The dependence of
dt on scission kinetics also appears in the pdf of the daughter chains as shown in Figure
1(b). When the simulation time step is large (m=6), two peaks appear approximately
symmetrically on either side of the midpoint (N,=50) of the fully stretched chain. This
means that scission occurred just one time at a distance of one third of the chain length
from the chain end, which almost doubles the chain number and gives two most likely
values of chain lengths, namely N;=35 and 65. At the smallest time step used (m=10),
the probabilities of chain length for less than N;=50 increase, which implies that most of
the chains greater than N;,=50 were cleaved more than once during the simulation.

In order to investigate the origin of the time-step dependence of scission kinetics, a
large amount of simulation data for STs are collected and analyzed. Figure 2(a) shows the
average and standard deviation in the tension along the fully stretched chain. The average
tension (T}) versus segment number k exhibits a parabolic shape and is well represented
by the function
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FIG. 1. Scission kinetics and pdf of chain length for n,=100, Kramers chains (N,=150) predicted by simula-
tion that use the instantaneous ST criterion for different dr=At/2", At=10"* values. We=20000. e=Et (a)
More scission events are predicted for small dt values. (b) The major peak in pdf is predicted to broaden and
shift to the smaller molecular weight region with decreasing dr.

2k \?
<Tk>=To|:l_(1_]vk) ] (13)

where N, is the number of segments in chain (1<k=<N,), and T is the maximum
average tension at the middle of a fully stretched chain. 7, is a function of strain rate and
chain length. Based on BD simulations for fully stretched Kramers chains in steady
elongational flow, we find that 7y can be expressed as

T, = 0.125EN:(La®lkyT). (14)

Figure 2(a) also shows that the standard deviation in the tension is the largest at the
middle of chain, and decreases toward the chain ends. Hence the most probable point of
scission is the midpoint when the chain is fully stretched.

From the above simulation results obtained for different dr values, it is clear that the
average tension is not affected by dr whereas the fluctuations are significantly influenced
by it. It means that the ST fluctuations need to be taken into account in order to explain
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FIG. 2. Average and fluctuations of ST for fully stretched Kramers chain (N,=150) at We=10 000. (a) Average
tension along the chain backbone has a parabolic shape (m=7). (b) ST fluctuations increase with decreasing dr,
dt=At/2", At=107%,

the time-step effects seen in Fig. 1. Figure 2(b) shows the average and standard deviation
of ST measured at the middle of chain, N,=75, as a function of dt. As seen from Eq. (8),
the statistical correlation of the Brownian force used in the numerical simulation is a
function of dr. This is reflected in Fig. 2(b), which shows that the standard deviation in
ST increases as dt decreases. Hence, the use of IST criterion can lead to the prediction of
scission events even when (T}) is less than T, if the time step is sufficiently small. In the
next subsection, we propose a suitable normalization to circumvent this problem.

2. Statistical properties of segmental tension

In order to develop an algorithm that predicts scission events independent of dt, it is
instructive to analyze the ST distribution along the chain. Figure 3(a) shows the ST
distribution at k=15 and k=75 for different dt values along a 150 segment chain. ST
distribution becomes broader as df decreases whereas average tension remains constant as
shown in Fig. 2. Moreover, the fluctuations in ST depend on the relative segment posi-
tion. However, the tension distribution can be normalized to a Gaussian distribution
function, independent of k and dt, as shown in Fig. 3(b), by utilizing the transformation
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FIG. 3. The pdf of segment tension for a 150 segment chain at We=10000. (a) pdf for k=15 (left) and k
=75 (right) broaden with decreasing dr. (b) Figure 3(a) can be normalized by using Eq. (15) to obtain a
Gaussian pdf (solid line) independent of the segment position k and time step dr.
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Ok
where oy is the standard deviation of T}, the tension in the kth segment. In Eq. (15), oy,
could be a function of elongation rate E, chain length N,;, and time-step dt; i.e., oy
=0 (E,Ny.dr). Figure 4 shows cri versus k along a 150-segment chain for different dt
values. The distribution of tension fluctuation has a parabolic shape and can be fitted by

the expression
2k\?
ﬁ=%-b—@—)}, (16)
Ni

where the coefficient o,=0,(k,E,Ny,dt).

In order to obtain an analytical expression for o,, a large number of simulations were
performed with different values of df and E for N;=25,50,100, and 150. As shown in
Fig. 5, we found that if We=FN\,,,, is sufficiently large, the coefficient o, is only a
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FIG. 4. Fluctuation in segment tension along the backbone of a 150 segment chain at We=10 000. Symbols are
simulation data for different time step dr, and lines represent Eq. (16) with corresponding parameters for dt
=At/2", Ar=107*,

function of N, and dt, i.e., o,=0,(Ny,dt). This asymptotic independence of o, on We is
illustrated in Fig. 5(b). From the simulations performed for N,=10, 25, 50, and 100 with
1<We<100000, we find that o, is independent of We for We>1000. In this
asymptotic regime, it can be seen that [Fig. 5(b)]

N,
UO=0.527d—;‘. (17)

Substitution of Eq. (17) into Eq. (16) gives an analytical expression for the standard
deviation of tension in the kth rod within a fully stretched chain of N, segments:

{ N, 26 \2]) 2
P 0.527—[1—(1——)] . (18)
dt Ny

Equation (18), together with Eq. (14) for (T,), can be used to find We, N, and
dt-independent, normalized segmental tension (NST) distribution 7* defined by Eq. (15).

3. Use of normalized segmental tension (NST) in scission algorithm

In experiments, the measured fracture force of a covalent bond was observed to have
a broad distribution [Grandbois et al. (1999)]. Thus, it is reasonable for chain scission to
be modeled as a stochastic event and incorporate the statistical properties of ST fluctua-
tion presented in Sec. II C 2 into a new algorithm to predict scission events. Besides the
statistical properties of fracture tension, the complexity in the conformational dynamics
must be taken into account in the simulation. During the unraveling process, molecules
undergo various conformational changes, the taxonomy of which can be expressed in
terms of coiled, folded, kinked, dumbbell, and fully stretched conformations depending
on the mass density of the chain along a characteristic direction, e.g., that of the end to
end vector [Larson ef al. (1999)]. Therefore, if the deformation rate is sufficiently high,
the chain can be cleaved before it is fully stretched. In these cases, the coefficients of the
average of and the fluctuations in ST in Egs. (14) and (17) cannot be directly used in
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FIG. 5. (a) Log-log plot of the coefficient o, in Eq. (16) for different values of dr, N;, and 8000<We
<16 000. (b) Log-log plot of o, for 1 <We< 100 000.

chain scission simulation because they are obtained from a fully stretched configuration
of N, segments chain. As discussed below, we have developed an algorithm that can
account for the configurational diversity.

Experimental observations [Grandbois et al. (1999)] suggest that the probability dis-
tribution of scission as a function of normalized tension 7" is Gaussian. Hence, the
probability that a segment with tension 7" is fractured can be obtained by integrating the
Gaussian distribution function

*

. I
PS(T*) =7 E_Zz/zdz. (19)
\2’77 —0

Note that as expected from physical grounds, Py = 0 as 7" — —o and approaches unity as
T"— 0, as implied by Eq. (19). While probing for a scission event, we locate the instan-
taneous maximum tension 7,,, within a chain of N, segments. Subsequently, we identify
the contiguously stretched chain portion within which 7,,,, occurs as well as the number
of the partially stretched segments N, contained in this stretched portion of the chain.
Note that N,<N,, with the equality implying a fully stretched chain. Moreover, N, is
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FIG. 6. Schematic of a partially coiled chain. The circles with square dot represent the contiguous extended
portion of N, segment in which the maximum instantaneous tension 7y, is located. The position p for Ty, is
counted from the end of the stretched chain portion.

typically >1. The segments within the stretched portion are numbered as shown in Fig.
6 from p=1,2,...,N,. We then normalize the instantaneous maximum tension by apply-
ing the transformation

Tmax - <Tp> T <Tp> - Tc

g,

T = , (20)

(e

where (7)) is the average of and o, is the standard deviation in the tension at the pth
segment along the partially stretched, N,-segment chain portion. The variables (7,) and
o, are calculated from Egs. (13) and (18) after replacing N, with N,. o represents the
standard deviation in the bond rupture force. The molecular parameters, o; and T, are
obtained from single chain rupture experiments or flow-induced scission experiments.
The first term on the left-hand side is the normalization of the instantaneous tension and
the second is a shift factor scaled with respect to the standard deviation o in the bond

rupture force. We now compare the scission probability Ps(fk) with a uniformly distrib-

uted random number x, Osx<1. If PS(YH)>x, the segment is predicted to be cleaved.
After fragmentation, the total number of Kuhn steps is kept constant by adding a bead on
either of fractured chain ends by random selection. We note that the normalization pro-
cedure described above was obtained from an analysis of tension distribution in a fully
stretched chain. The implicit assumption in the new algorithm is that the normalization
procedure would apply to the extended portion of the chain even when it is a partially
coiled state (Fig. 6). Since the characteristic time scales of the deformation rate and that
associated with the delocalization of molecular vibrational energies are well separated, it
appears that the statistical properties of the segment tension for the transient partially
coiled configuration are not much different from those of the steady state configuration
[Odell and Keller (1986)].

4. Use of instantaneous deterministic segmental tension

For bead-rod chains, it is possible that scission criterion can be replaced by an instan-
taneous, deterministic tension (IDST) derived by Schieber and Obasanjo (2005). The
authors divided the constraint tension into an instantaneous, deterministic segmental ten-
sion (IDT) and a stochastic part. They derived an expression for IDST as a function of the
deformation rate and chain configuration given by
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- 6kT -, KT N
Y= la> Ay kugu, + 72 A == 2 AL ALAYLAL (U, - u,), (21)
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i,m,n

where u; is the unit vector pointing from bead i to bead i+1, A,-ﬁzE,,E,,ﬁW is the Rouse
matrix, Aij: =E,,(u,~uj)§,,,-l§vj is the Kramers matrix where EU]: v+1,;= Op,j- The scission
algorithm is simplified if this criterion is used, i.e., a scission event occurs when the IDST
>T,.. We will present a comparison between the predictions obtained using the normal-
ized tension (NST) and IDST criterion in the subsequent section.

5. Statistics of ST in presence of HI

The incorporation of HI into the chain dynamics changes the tension profiles along the
chain in addition to the delay in unraveling of coiled chain. Hydrodynamic shielding
induced by neighboring beads decreases the segment tension [Agarwal and Mashelkar
(1994); Lopez Cascales and Garcia de la Torre (1991)]. Expressions analogous to Eq.
(21) are not available in the presence of HI. Hence, we have performed statistical analysis
similar to that described above for bead-rod chains in presence of HI leading to the
development of equations analogous to Eqgs. (13) and (18) to help probe for scission
events. Specifically, we used 4" =0.244 and found that the expression for the coefficients
of the average of and the fluctuation in tension become T0=O.1555EN,1'7 and o,
=0.7255N2'78/ dt, respectively. The scission algorithm described in Sec. I C 3 is modified
accordingly for cases with HI.

lll. DISCUSSION OF RESULTS

A. Time-step independence of scission kinetics

As discussed above, we choose T,.=10° and, o3=T,/50=2000, which is motivated by
experiments [Grandbois et al. (1999)]. During the simulations we probe for scission
events at every Ar=10"*(a?/k,T), which is much smaller than A, or 1/E. Figure 7
shows the simulation results for scission kinetics obtained with different dr values at
We=24 000. The parameters used in this simulation are the same as the ones reported in
Fig. 1. With the new algorithm, however, the nonphysical dt dependence of scission
kinetics is eliminated so that the number of total chains n approaches a df-independent,
statistically converged value n,, as the strain becomes >1 [Fig. 7(a)]. The ratio n../n(t
=0) lies between 2.16 and 2.21, and no systematic correlation is observed between the
stochastic variability in n, and dt. The pdf of daughter chain lengths, P(N,), for long
times, shown in Fig. 7(b), is also independent of dr. The pdfs obtained for different dr
values have two peaks at N;=35 and 65 implying that many chains break far from the
middle. This shows that MSH does not hold for very strong flows that generate chain
tension values that well exceed the threshold value 7. This is consistent with the BDS
predictions obtained using bead-spring models [Lopez Cascales and Garcia de la Torre
(1992); Reese and Zimm (1990)]. We discuss the effect of flow strength in detail in the
next subsection.

B. Effect of scission criterion: NST versus IDST

Figure 8(a) compares scission kinetics obtained by using the NST and IDST criterion
for We=12 000, 24 000, and 48 000 while Fig. 8(b) shows the chain length pdf after
scission for We=24 000. At We=12 000, which is marginally above We.=11 000, there
is little difference in the scission kinetics obtained using the two criteria. Moreover, it was
found that for this value of We, pdf of daughter chain lengths is consistent with MSH as
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FIG. 7. Simulation results for steady elongational flow obtained by using the NST algorithm for a 100 segment
chain at We=24 000 for different dr=A¢/2", At=10"* values. Each simulation uses the same initial configura-
tion (n,=100). (a) The number of chains predicted is statistically independent of the dr value used in the
simulation. (b) The predicted pdf of chain length is also df independent.

shown in Fig. 9(a). However, the use of IDST criterion results in relatively narrow chain
length distribution as compared with that obtained using NST criterion, which, due to the
presence of ST fluctuations, predicts a broader distribution centered at the midpoint of the
mother chains. At We=24000, n,./n(t=0)=2, and 2.21 for IDST and NST criterion,
respectively. Since the simulations use the same initial configurations and dt, the differ-
ences originate from the stochastic nature of the normalized tension criterion. Figure 8(b)
shows pdfs of chain length for long times for We=24 000. The major difference is the
occurrence of more pronounced maxima predicted by the IDST criterion. Stochastic ST
fluctuations can result in the breakage of partially coiled or folded chains if the extended
portions are large enough to generate average tension values in the neighborhood of (but
not necessarily greater than) T,.. Such fluctuations (which increase as We is increased) are
incorporated into the NST criterion. Hence, it predicts more scission events and more
frequent scission near the chain ends for We values that well exceed We,. It was found for
We=24 000 and 48 000 scission occurred in some daughter chains as well. For instance,
the longer of the two daughter chains resulting from a first scission at N;, =70 can be fully
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FIG. 8. (a) Scission kinetics obtained based on different criteria at We=12 000 (circles), 24 000 (squares), and
48 000 (diamonds). Filled symbols are for IDST and open symbols are for NST criterion. (b) pdf for chain
length distribution at We=24 000. Filled symbols are for IDST and open symbols are for NST criterion.

stretched and broken again in the middle giving rise to two chains with 35 segments each.
The probability of secondary scission is much larger with the NST criterion (due to the
presence of ST fluctuations) and this is reflected in the more pronounced peak in the pdf
[Fig. 8(b)] at N, = 35.

C. Midpoint scission hypothesis

In steady elongational flow for 7° =~ T, chain scission is typically assumed to occur at
the middle of the chain when the fully stretched configuration is achieved. The critical
elongational rate, E., for MSH was observed to be inversely proportional to the square of
the molecular weight or equivalently, for Kramers chains with N, segments, ECOCI/Ng
[Odell er al. (1988); Horn and Merrill (1984)]. From the simulations performed for N,
=25, 50, 100, and 150, we found that 10 000<We, <11 000 regardless of the chain
length. This is consistent with the inverse square law dependence of E. on N, since
We = \,,.xE * N’E for Kramers chains. The chain length pdf for We=12 000 is shown in
Fig. 9(a). It is evident that the chains are primarily cleaved at the middle regardless of the
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FIG. 9. (a) The pdf of molecular weight distribution normalized by the mother chain length at We=12 000.
Chain scission occurs most likely at the middle of the chain regardless of the chain length. (b) At high We, the
number of midpoint scission events decreases and more chains break in a partially coiled state.

mother chain length when the elongation rate is just above the threshold value. This
implies that, even though the initial configuration influences the unraveling path of a
chain in elongational flow [Larson et al. (1999)], the “individualism” in the single chain
dynamics does not affect the pdf of chain length at We= We.. When We = We_, the chain
needs to be stretched fully to allow for T,,,,~7,.. However, as discussed above, if a
coiled chain is abruptly subjected to a very strong flow, MSH is not strictly applicable
even in steady elongational flow. Specifically, the larger the value of E (We), the greater
the departure from the midpoint scission scenario. This is illustrated in Fig. 9(b), which
shows that as We is increased, the chain length pdf becomes progressively broader (the
mother chains are allowed to break only once in these simulations). For We/We, > 2, the
peaks appear in the pdf on either side of the midpoint and these peaks move farther away
from the center as We is increased.

D. Configurational diversity

While most chains break in the fully stretched state near We, there are diverse chain
configurations at the moment of scission for We>We,. Figure 10 shows different con-
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FIG. 10. Transient configurations and instantaneous tension along the chain backbone at the moment of
scission for We=14 000, 28 000, and 56 000 (for each column from the left). (a) Folded, (b) Dumbbell, and (c)
Kinked configurations.

figurations at the moment of scission and the corresponding instantaneous tension profile
starting from different initial configurations. The chains could achieve folded, dumbbell,
or kinked (knotted) configurations before scission occurs as shown in Figs. 10(a)-10(c),
respectively. At We=14 000 [first column in Figs. 10(a)-10(c)], however, MSH holds
regardless of the unraveling path. At We=28 000, the folded configuration, Fig. 10(a),
can be cleaved far from the midpoint as its unfolded segment length can allow for tension
to reach 7T, before it is fully stretched, which can give the peaks in the pdf of chain length
shown in Fig. 7(b). For the dumbbell configuration, if it has symmetric coiled ends during
unfolding process as shown in Fig. 10(b), the scission occurs at midpoint during the
process of unraveling. Similarly, Fig. 10(c) shows that if the chain is in the kinked
configuration, far from midpoint scission is possible if the “knot” is near the chain ends
such that the unknotted portion of chain develops instantaneous ST within the neighbor-
hood of T..

At We=56 000 [third column of Figs. 10(a)-10(c)] the effect of configurational diver-
sity on chain scission is significantly more pronounced. In the folded configuration, the
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first scission occurs at nearly one third of the mother chain length and the second happens
around the middle of the longer daughter chain after it is unfolded leading to a total of
three chains in the final state. In the symmetric dumbbell configuration, scissions could
occur twice at the middle of the original and daughter chains: First in the dumbbell state,
and then after the daughter chains unravel almost entirely leading to a total of four chains
in the final state. For the kinked configuration, scission occurs simultaneously at seg-
ments located one and two thirds of chain length along the chain backbone if the knot is
placed in the middle. If the knot is far from the middle, the second scission can be
delayed until the daughter chain with the knotted segments unravels to gain a sufficient
tension.

E. Effect of critical tension, elongation rate, and chain length

As mentioned in Sec. II B, the critical tension is scaled by a force unit, kz7/a where
a is the Kuhn step length in the Kramers chain model. The Kuhn step length represents
the “flexibility” of polymer, which is a molecular property that depends on the details of
the chemical structure and solvent-polymer interactions. Hence, 7, values would also be
system dependent. Motivated by this, we have performed a set of simulations to assess
the effect of 7, on scission kinetics and the findings are summarized below.

Figure 11(a) shows the percentage increase in chains due to scission as a function of
the elongational strain e=Et for N,=150 for different values of We and 7T,.. As We is
increased, scission occurs at smaller values of € and the kinetics become progressively
more rapid. However, note that the data sets that correspond to the same We/T, ratio
overlap with one another regardless of their critical fracture tension 7. Similarly, the
final chain length pdfs of daughter chains for cases that correspond to the same We/T.. are
also statistically indistinguishable [see Fig. 11(b)]. We further note that this conclusion is
valid for the chain length pdfs in the transient region as well.

Simulations were also performed with different mother chain lengths, N, at E values
above the critical one to investigate the effects of chain length on scission. Figure 12
shows the simulation results for the scission kinetics and pdf of molecular weight. Figure
12(a) shows that shorter chains break faster since they unravel more rapidly [Doyle and
Shaqfeh (1998)]. As the strain becomes >1 an asymptotic state is achieved. The total
number of chains at this state gradually increases with the length of the mother chain:
n,./n(r=0)=2.12, 2.19, 2.2, and 2.25 for N, =25, 50, 100, and 150, respectively. This
slight increase in n,./n(t=0) with increasing N, is due to the increased ST fluctuation for
longer chains [see Eq. (17)]. The final chain length pdfs are shown in Fig. 12(b). For
shorter chains (N,=25), the location of the first peak shifts to right as compared with
those of longer chains, which can be attributed to the reduction in ST fluctuations with
chain length.

F. Effect of HI and polymer residence time on critical strain rate

In order to ascertain the effect of HI on the longest relaxation time, we performed a
number of simulations by varying N,. In these simulations, fully extended chains were
allowed to relax to their equilibrium configurations and their end-to-end distances were
tracked as function of time. By fitting the latter stages of the dynamical data to an
exponential function, the longest relaxation time \,, can be obtained [Somasi er al.
(2002)]. Figure 13(a) shows the effect of HI on \,,,, for different chain lengths. The N,
exponent for Kramers chains is found to be =2 while with HI, the exponent decreases to
1.54. These results are consistent with the predictions of Neelov er al. (2002) who ex-
amined the effect of HI on the extension rate E at the onset of coil-to-stretch transition.
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FIG. 11. Superposition of simulation results from different We and critical tension 7. for a 150-segment chain.
(a) Scission kinetics at We/10°={(3,6,12),(12,24,48),(24,48,96)} with T,/10°=(25,50,100) from bottom to
top, respectively. Each group of three curves has the same We/T, ratio as indicated. (b) The pdf’s of chain
length obtained for different We for We/T, = 0.48.

They found that E_ is proportional to Naz for Kramers chains while in presence of HI the
N, exponent increased to =—1.55. Since coil-to-stretch transition is known to occur when
NmaxEes = %, these results imply that )\maXOCN% and N(l)‘55 for cases without and with HI,
respectively. This is consistent with results of the present study.

We further examined the effect of HI on the critical elongation rate for the onset of
chain scission. Figure 13(b) shows the simulation results for the scission kinetics for
different values of N,. The critical elongation rate is found to decrease with N, as E.
OCI\FO”. As described in Sec. I1 C 5, in presence of HI, the average ST T, (1)'7. This is
consistent with the N, dependence of E, since near the critical elongation rate, the chains
are cleaved mostly in the fully stretched configuration 7, ~ T0=O.1555éN(1)‘7. Simulations
based on energetic scission criterion and bead-spring models yield the N, exponent of
~1.65 and 1.6 for the Rouse and Morse chains, respectively [Lopez Cascales and Garcia
de la Torre (1991)]. An increase in the number of degrees of freedom in the chain is
expected to increase the exponent: Asymptotic behavior for strong flows is given by E.
OCN(—)Z/In(No) such that for very large N,, the experimentally observed behavior E,
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T.=10°. (a) Beginning of chain scission for short chain occurs earlier than that of long chains whereas the final
results for percentage scission are nearly independent of chain length. (b) The pdf of 25-segment chain shows
narrower distribution as compared with those for longer chains.

o<N52w0uld be recovered [Lopez Cascales and Garcia de la Torre (1991)]. However, as
mentioned in the Sec. I, computer experiments using bead-spring models showed that for
N as large as 500, the exponent (=1.8) is significantly below the limiting value of 2. One
plausible explanation is that excluded volume effects, not considered here, could increase
the rate of chain unraveling resulting in breakage at lower values E. At this point,
computational cost prohibits simulations with HI for Ny>100.

As mentioned in the Sec. I, in fast transient flows (FTF) such as the one created in an
abrupt contraction device [Nguyen and Kausch (1988); Rabin (1988)], E.cc1/N,. The
weak dependence of scaling law in FTF was explained by the combined effect of hydro-
dynamic interactions on chain unraveling [Nguyen and Kausch (1988); Rabin (1987)]
and the shorter residence times that the polymer spends in the flow field. We have
explored the effect of the latter on scission kinetics (in the absence of HI) by performing
scission simulations for polymers that traverse the centerline of an abrupt contraction
device. The flow field and geometry for the contraction flow are identical to those used by
Knudsen et al. (1996) in the context of bead-spring chain simulations. It is a simplified
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FIG. 13. (a) Longest relaxation time vs. number of segments for bead-rod chains with and without H.I. (b)
Scission kinetics vs E for different chain lengths with HI effects

flow model that represents the transient elongational deformation in an axisymmetric
contraction flow where the inlet and outlet radius of 1.0 and 0.02 cm, respectively (Fig.
14). The elongation rate in the converging flow region is modeled by that created by a
mass flow sink as E=4Q/mr® where Q is the flow rate and r denotes the distance from
the contraction plane. In order to avoid the singularity in £ at r=0, the maximum exten-
sion rate is selected as the value of E at r=0.02 cm (outlet radius).

In the contraction flow described above, the chain experiences an extensional flow
field only for a very short time compared with its longest relaxation time so that the chain
can traverse the orifice before it is fully stretched. Because of short residence time, only
a small fraction of chains could be cleaved in contraction flow even though the flow rate
is greater than the threshold value [Nguyen and Kausch (1988)]. In the simulations, we
place chains at different distances from the orifice and compute their trajectories as they
translate along the centerline. The distance from the sink orifice is chosen such that for
each chain length the ratio R of the residence time to the longest relaxation time is
maintained constant. From simulations performed for R ranging between 0.001 and 0.2,
we found that the critical volumetric flow rate Q. for the scission approaches an
asymptotic value for R >0.05. Figure 15 shows simulation results for the scission yield
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FIG. 14. Schematic of the transient elongational deformation in contraction flow.

with increasing Q for different NV, and R values. From the critical volumetric flow rate
Q.=7r’E,./4|,.¢, we found that ECOC]\FOW4 for R>0.05. The weaker dependence of
critical elongation rate on the chain length as compared with that for steady elongational
flow is accounted for by the short residence time that necessitates larger elongational
rates to cause the scission. The effect of HI can further slow down the unraveling process,
leading to further increase in the critical tension. Simulations that incorporate HI into
transient elongational flow are required to investigate this; such simulations using bead-
rod chains are computationally expensive and hence are not reported here. If one assumes
the effect of HI (on the N, exponent) in transient flows is similar to that in steady
elongational flow (in which introduction of HI changes the exponent from 2 to 1.7), this
would result in the prediction E,.%N,” where p~3/2. This is still significantly different
from unity observed experimentally for scission threshold in contraction flow devices,
which suggests that preshearing could play an important role in configuration dynamics
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FIG. 15. Simulation results for the contraction flow for different residence times (measured as fraction of the
longest relaxation time; see legend) and N,
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and scission in such flows. Moreover, it is also possible that if the shear rates are suffi-
ciently large, the chains may break since they could unravel fully from a coiled state
before tumbling events occur.

G. Dependence of scission probability on loading rate

As discussed in Sec. I, extended TABS-based theories suggest that the scission prob-
ability should depend on the rate at which the chain is stretched from a coiled to extended
state such that p(e)=g(e)exp(~AE/kT) where AE is the activation energy barrier to
scission and e is interpreted as a time rate of increase in molecular extension rather than
the applied elongational deformation. For free chains in flow the unraveling rate depends
on the applied deformation rate E. Hence, we choose the elongation rate as the parameter
that qualitatively represents the loading rate and examine the dependence of the scission
probability predicted by the algorithm on the loading rate at constant strain values. The
results are reported in Fig. 16. It can be seen that p increases with increasing elongation
rate before saturating to unity for sufficiently large values of E. Although in the simula-
tions the critical tension distribution for bond scission is not a function of the loading rate
(E), the number of macromolecular scission events is significantly affected by the im-
posed extension rate. Specifically, as the extension rate is increased, the probability of
finding straight sections [at length scales significantly above the persistence length; see
Figs. 10(a)-10(c)] that possess segmental tension in the neighborhood of its critical value
increases. Hence, the enhanced scission at high loading rates is a consequence of the
modification of the macromolecular configuration landscape as opposed to alteration of
the bond scission energy. The scission probability data p(E) can be interpreted within the
framework of the TABS model by considering the flow-induced configurational changes
to decrease the effective energy barrier to scission. For We> 1, the prefactor g(E) can be
considered to be independent of E (or We), since the magnitude of tension fluctuation is
independent of We in this limit [Fig. 5(b)]. Given this, for We> 1, the asymptotic be-
havior of the scission probability obtained from the simulations can be expressed as
p(E)=exp(~AE"(E)/kT). We note that the data in Fig. 16 can be fitted to this expression
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by choosing AE* =a/(bE+c) where a, b, and ¢ are fitting parameters. In other words, the
mechanical stimulus (flow), alters the configurational landscape of the macromolecules,
especially in terms of enhancing the probability of finding elongated chains that are more
prone to scission. This effect can be quantified and interpreted as a flow-induced reduc-
tion in the barrier to scission.

IV. CONCLUSIONS

In this paper, we have presented a novel algorithm for the predictions of flow-induced
scission of linear macromolecules in dilute solution. The configurational evolution of the
chains as well as the instantaneous segmental tension distribution along the chain back-
bone are tracked using accurate Brownian dynamics simulations that employ a bead-rod
model. The scission criterion is developed based on covalent bond scission force esti-
mates available from the literature and statistical analysis for the instantaneous ST dis-
tribution in the bead-rod chains. It is shown that by the use of a normalized ST profile
that is independent of the elongation rate E for asymptotically large values of the Weis-
senberg number, the new algorithm overcomes the inherent time-step dependence present
in chain scission simulations that employ instantaneous ST-based criteria to determine
scission events.

We have reported results for steady and transient elongational flows and examined the
effect of HI on scission in the former, especially in order to probe the origin of the
experimentally observed pronounced flow type dependence in the scaling relationships
between critical extension rate and sample My, i.e., E.<M ;,2 in steady elongational flow
versus M;,l in transient flows. Simulation results for steady elongational flow predict
ECOCM;VZ. Moreover, for E~E_, the chains unravel via a coil-to-stretch configurational
transition, and, since ST attains its maximum at the midpoint of the chain, the midpoint
scission hypothesis (MSH) is valid. This leads to a relatively narrow distribution of
daughter chains. However, for E>E_, the elongated portions of partially coiled chains
could break and MSH is not valid. This results in a relatively broad distribution of
daughter chains. Hydrodynamic interactions are shown to slow down the unraveling
process leading to an increase in E. with the scaling EL.OCM:V”. The effect of polymer
residence time on E, is examined by investigating the scission of polymer chains that
traverse the centerline of a regularized contraction flow. It is found that the scaling
relationship between E. and M,, remains the same as that for steady elongational flow
given that the residence time exceeds 5% of the longest relaxation time of the chain. This
result suggests that the inverse proportionality of E,. to M|, observed experimentally in
contraction flows could be contributed by a number of factors including preshearing
effects, potential scission in shear flow at sufficiently large We values, i.e., the chain could
unravel completely before a tumbling event occurs as suggested by our preliminary
investigations [Sim er al. (2005)], and/or polydispersity.
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