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A new approach for studying the hydrodynamic stability of fluids
with microstructure
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A new methodology for studying the stability of fluids with microstructure has been developed. This
technique relies on combining continuum based conservation equations and stochastic simulation
techniques to determine the hydrodynamic stability of flows under consideration. To illustrate the
capability of the method, the stability of viscoelastic Taylor–Couette flow has been examined.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1369126#
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Understanding the stability and dynamics of fluids w
microstructure such as viscoelastic fluids has proved to b
great challenge for researchers over the last couple
decades.1,2 Traditionally, the linear stability analyses of the
flows have been carried out by solving the generalized eig
value problem~GEVP! resulting from normal-mode analys
or time-dependent simulations. However, both these te
niques suffer from an inherent need for a closed-form c
stitutive equation~CCE! to describe the relationship betwee
fluid stresses and the deformation rate. While most of th
CCEs for fluids with microstructure originate from mode
based on statistical mechanics, the final CCE itself is deri
by invoking various ‘‘closure’’ approximations. Howeve
these approximations can sometimes distort the actual m
behavior to a significant extent. For example, the stress c
formation hysteresis seen in uniaxial extensional flows
polymeric solutions can be captured by Brownian dynam
of finitely extensible spring models, but the correspond
macroscopic equation derived by making closure approxi
tions does not display this hysteretic behavior seen
experiments.3

Recently, a new methodology for performing flow sim
lations of fluids with a microstructure has emerged. For
ample, simulations of viscoelastic flows are performed
combining solution of macroscopic equations such as con
vation of mass and momentum with kinetic theory bas
models for determination of the polymeric stresses.4 In this
study, we have developed a new technique that uses a c
bined finite element/Brownian dynamics approach to exa
ine the hydrodynamic stability of fluids with microstructur
The principal motivation behind this work has been to d
velop a technique that will allow one to determine the h
drodynamic stability of fluids with microstructure withou
invoking closure approximations. In particular, we shall
looking at the stability of Taylor–Couette flow of polyme
solutions modeled as a noninteracting suspension of ela
dumbbells. The Taylor–Couette geometry has been cho
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because it is one of the most widely studied stability pro
lems in the viscoelastic flow community1,2,5 and is hence a
very good paradigm to demonstrate our technique.

Taylor–Couette flow is essentially the flow in the ann
lar region of two infinitely long, coaxial cylinders of radiiR1

andR2 either or both of which can be rotating with angul
speedsV1 and V2 , respectively. In the present work, w
shall be concerned with the case in which only the inn
cylinder is rotating, i.e.,V2[0. It is well known that this
flow becomes unstable once a critical value of the Debo
number, characterizing the relative importance of the elas
ity and flow time scales of the fluid, is exceeded. This ins
bility manifests itself as toroidal vortices in the axial dire
tions in an otherwise azimuthal base flow. The govern
equations for creeping flow of an incompressible fluid in t
absence of body forces are

2¹P1¹•t 50, ~1!

¹•u50, ~2!

where P, t, and u are the fluid pressure, deviatoric stre
tensor, and the velocity vector, respectively. The charac
istic scales are the gap widthd5R22R1 , the velocity at the
inner cylinderV1R1 and d/V1R1 for length, velocity, and
time, respectively. The radii ratio is set tod[R1 /R2

50.912 in order to facilitate comparisons with previo
studies.5 The stress and the pressure variables have b
made dimensionless byh0V1R1 /d whereh05hs1hp is the
total solution viscosity withhs andhp being the solvent and
the polymer viscosity, respectively. As is common in v
coelastic flow simulations, the stress is split into a polym
and solvent contribution, i.e.,t 5ts1tp . The solvent con-
tribution is assumed to be Newtonian,ts52bġ, where ġ
5 1

2(¹u1¹u†) is the rate of deformation tensor andb
5hs /h0 denotes the solvent viscosity ratio. The system
equations@Eq. ~1! and ~2!# is closed by either selecting
closed form constitutive equation for the polymeric stress
by evaluating the polymeric stress as an appropriate ex
tation from an ensemble of model polymers. The closed fo
constitutive equation used in this study is the Oldroyd
model in which the polymeric contribution to the stress,tp ,
is given as

e:
1 © 2001 American Institute of Physics
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1812 Phys. Fluids, Vol. 13, No. 6, June 2001 M. Somasi and B. Khomami
tp1Detp~1!52~12b!ġ,

where De5lV1R1 /d is the Deborah number withl being
the relaxation time of the polymer. The subscript~1! denotes
the upper-convected derivative, which is defined as

tp~1!5
]tp

]t
1u•¹tp2k•tp2tp•k†,

where k is the transpose of the velocity gradient~i.e., k
5¹u†!. The kinetic theory based models used are
Hookean and the FENE~Finitely Extensible Non-linear Elas
tic! dumbbell models.6 Both the models consist of elast
dumbbells having two Brownian beads attached by an
tropic spring. For the Hookean dumbbell, a linear spring c
nects the two beads such thatFc5Q whereas for the FENE
dumbbell, we have a non-linear spring force law of the fo
Fc5Q/(12Q2/b). In the above expressions,Q is the vector
connecting the two beads,Q is the length of the connecto
andb is the maximum extensibility of the spring. Note th
b→` for Hookean dumbbells because of their infinite exte
sibility. Another difference between the two models is t
fact that only the Hookean dumbbell renders itself to an
act CCE, namely the Oldroyd-B model. In both the mode
the evolution of the connector vector is modeled using
method of Brownian configurational fields,7 according to the
following stochastic differential equation~SDE!:

dQ5F2u•Q1k•Q2
1

2De
FcGdt1A 1

De
dW~ t !,

where dW(t) is a Wiener process which accounts for t
Brownian force experienced by the beads. The Wiener p
cess is a Gaussian random vector with zero mean and
anceDt, the discretization for the time interval.

Once all theQs have been evaluated, the polyme
stress can be obtained by invoking the Kramer’s express

tp5
~12b!

De S b15

b D ~^FcQ&2^FcQ&eqbm!,

where^FcQ&eqbm5d, the unit tensor. We have used a sp
cialized finite element method, namely the DEVSS-G/SU
~Discrete Elastic Viscous Split Stress—Gradient of Veloci
Streamline Upwind Petrov–Galerkin! that has been shown t
provide an accurate discretization for viscoelastic flows w
a predictor-corrector type of discretization in time to sol
the set of governing equations. The exact details of
scheme and its advantages over other techniques ca
found elsewhere.8

The boundary conditions are no-slip conditions for
three velocity components on the surface of either cylin
and periodic conditions for all variables~except pressure! at
Z50 andZ5L. The solvent viscosityb has been chosen t
be 0.59 in order to facilitate comparisons with previo
studies.5 The simulations have been performed for two d
ferent meshes with 200 and 400 elements, respectively.
though, changing the mesh size had no significant effec
the results, it was observed that the results~especially in
stability analyses! were quite sensitive to the time step si
used in the simulations. All the results presented hencef
are for time step size of 0.125~dimensionless time! and for
Downloaded 01 Mar 2009 to 160.36.32.176. Redistribution subject to AIP
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the smaller mesh. An ensemble size of 2000 trajectories
been used for the configuration fields, although satisfact
results have been obtained with as few as 500 trajectorie

To examine the linear stability of Taylor–Couette flow
the base flow equations@Eqs.~1! and~2!# are linearized. The
equation for perturbation stresstp is obtained in the macro
scopic case by linearizing the Oldroyd-B constitutive equ
tion

tp81Detp~1!8 5De~2u8•¹tp1tp•k8†1k8•tp!

1~12b!~k8†1k8!. ~3!

Variables with superscript~8! refer to perturbation quantitie
of the corresponding base flow values.

In the microscopic dumbbells case, one needs to s
from the SDE describing the evolution of the connector v
tors in order to derive an expression fortp8 . For example, the
linearized equation for the perturbation connector vectorQ8
for the Hookean dumbbell can be written as

dQ85S 2u•¹Q82u8•¹Q1k8•Q1k•Q82
1

2De
Q8Ddt.

Using the above equation, the evolution equations for (QQ8)
and (Q8Q) can be written for use in determiningtp8 . For
example, the SDE for (QQ8) is of the form

d~QQ8!5F2~u•¹Q!Q82Q~u•¹Q8!2Q~u8•¹Q!1k

•QQ81QQ8•k†1QQ•k8†2
1

De
QQ8Gdt

1
dW

ADe
Q8.

Now defining the perturbation polymeric stress astp85@(1
2b)/De#^QQ81Q8Q& and using the definition of the bas
flow polymeric stresstp from Eq. ~11!, we get

tp81Detp~1!8 5De~2u8•¹tp1tp•k8†1k8•tp!

1~12b!~k8†1k8!,

which is identical to the linearized evolution equation for t
perturbation polymeric stresses of an Oldroyd-B fluid@i.e.,
Eq. ~3!#. This demonstrates the viability of our propose
methodology for determining the perturbation polyme
stresses via a stochastic approach.

Similarly, the linearized equation for the perturbatio
connector vectorQ8 for the FENE dumbbells can be show
to be

dQ85F2u8•¹Q2u•¹Q81k8•Q1k•Q8

2
1

2DeS Q8

12Q2/b
1

2

b

~Q•Q8!Q

~12Q2/b!2D Gdt,

and the perturbation polymeric stress,tp8 can be obtained by
linearizing the corresponding base flow expression for
polymeric stresstp .
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



r-
a-

ty
d

e
nt
o

th

cs
g

in
lu
th
f t
ue
e
p
cs
e

tc
e
a
re
o

s.
ual
be

be
pa-
est
-
lt

tion

at
in
-
are
ility

ed,
e the

er
ul

om
.

1813Phys. Fluids, Vol. 13, No. 6, June 2001 Hydrodynamic stability of fluids with microstructure
Axisymmetric two-dimensional small amplitude distu
bances in velocityu8 are introduced into the governing equ
tions such that,u85f(r )exp(iaz) wherea is the axial wave
number andf(r ) is the amplitude of the disturbance veloci
chosen such thatu8 satisfies continuity requirements an
boundary conditionsu8(z,R1)5u8(z,R2)50. The axial
wave numbera is set to 7.7 for all the simulations. Th
choice of wave number is made in order to facilitate qua
tative comparisons for the most dangerous eigenvalue
tained from the time-dependent simulations employed in
study and prior GEVP studies.5

The evolution of the norm of the solution vectorp ~de-
fined asAp•p) is used to predict the stability characteristi
of the flow. If the norm is monitored for sufficiently lon
times, it settles into an exponentially decaying~or growing!
oscillatory behavior. These oscillations are a result of hav
a nonzero imaginary part of the most dangerous eigenva
The long time behavior of the norm is used to evaluate
real part of the most dangerous eigenvalue. The slope o
semilog plot of the norm versus time gives this eigenval
Figure 1 shows typical plots of the norms at various valu
of the Deborah number obtained from both macrosco
~Oldroyd-B! and the corresponding Brownian dynami
~Hookean dumbbell! simulations. As can be seen from th
plots, within Brownian fluctuations, there is an exact ma
between the two. The real part of the most dangerous eig
values, obtained as the slopes of these semilog plots,
tabulated in Table I along with those reported in literatu
using GEVP studies.5 First, one can observe that the value

FIG. 1. Evolution of the norm for various values of the Deborah numb
The inset shows the statistical error-bar for the Hookean dumbbell sim
tions.

TABLE I. Most dangerous eigenvalues for different Deborah numbers c
puted for Hookean~within a statistical error of 4%! and Oldroyd-B cases
OLD-B* values are GEVP results from Ref. 5.

De Hookean OLD-B OLD-B*

21.10 29.00e24 29.00e24 28.40e24

21.55 21.20e25 21.20e25 28.00e26

22.00 18.06e24 18.06e24 18.20e24
Downloaded 01 Mar 2009 to 160.36.32.176. Redistribution subject to AIP
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the critical Deborah number Dec521.55 matches well with
that previously reported for axisymmetric disturbance5

However, a stricter test would be to compare the act
growth rates obtained from the different techniques. It can
seen that, except for De near Dec ~i.e., very small growth
rates!, the match is quite good and the difference can
attributed to the fact that GEVP studies are much more s
tially refined. In order to test this hypothesis, we ran one t
case~for Oldroyd-B! at De522.00 and obtained an eigen
value of 8.14e24 which is much closer to the GEVP resu
than the value reported in Table I. Figures 2~a! and 2~b!
show the eigenfunctions corresponding to the perturba
velocity in the r direction, v r8 , obtained from both simula-
tions at a dimensionless timet51625. Clearly, the contours
are very similar and if followed in time, it is observed th
they actually travel in the radial direction which is also
accordance with prior studies.5 In Table II, the most danger
ous eigenvalues obtained from the FENE calculations
presented. We see that the decrease in the finite extensib
predicts greater stability for the system. This is expect
because now there is enhanced shear-thinning and henc

.
a-

FIG. 2. Eigenfunctions ofur8 for ~a! Oldroyd-B fluid and ~b! Hookean
dumbbells at time51650.

-

TABLE II. Most dangerous eigenvalues~within a statistical error of 4%! for
different values ofb for FENE dumbbells.

De b55000 b510000

35.0 21.8e21 2.3e23

40.0 25.8e23 1.2e24
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1814 Phys. Fluids, Vol. 13, No. 6, June 2001 M. Somasi and B. Khomami
Deborah number, having been defined based on the z
shear rate properties, is effectively decreased provid
greater stability.

In conclusion, we have constructed a new technique
allows determination of the hydrodynamic stability of fluid
with microstructure using combined finite element/stocha
simulation method. The feasibility of this approach has be
demonstrated by examining the linear stability of viscoela
Taylor–Couette flow using the Hookean and the FE
dumbbell models and comparing the Hookean dumbbell
sults with its corresponding macroscopic constitutive eq
tion, the Oldroyd-B model. It should be noted that the me
odology proposed here is not limited to linear stabil
analyses and can be easily extended to perform nonli
stability analyses by time integration of the full nonline
equations by disturbing the base flow with the most dang
ous linearly unstable eigenfunctions. One important issue
sociated with the present technique is the large CPU t
needed to perform the combined Brownian dynamics/fin
element simulations. For example, the macrosco
Oldroyd-B stability calculations shown in Fig. 1 take a
proximately 4 hours to complete, while the correspond
stochastic simulations require;300 hours on a 533 MHz
Alpha system with 1 GB memory. However, it is notewort
that the most intensive CPU step in the latter simulation
the backsubstitution of the configuration fields, which
trivially parallelizable. We have developed a parallel vers
of the stochastic simulation code and have observed lin
Downloaded 01 Mar 2009 to 160.36.32.176. Redistribution subject to AIP
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speed-up with number of processors. It is worthwhile to e
phasize that, although much more CPU intensive, such te
niques are essential in accurately describing the dynamic
the true kinetic theory model. We are presently develop
more efficient algorithms to apply this technique to mo
complex flows.
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