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A new approach for studying the hydrodynamic stability of fluids
with microstructure
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A new methodology for studying the stability of fluids with microstructure has been developed. This
technique relies on combining continuum based conservation equations and stochastic simulation
techniques to determine the hydrodynamic stability of flows under consideration. To illustrate the
capability of the method, the stability of viscoelastic Taylor—Couette flow has been examined.
© 2001 American Institute of Physic§DOI: 10.1063/1.1369126

Understanding the stability and dynamics of fluids with because it is one of the most widely studied stability prob-
microstructure such as viscoelastic fluids has proved to be lems in the viscoelastic flow communtty® and is hence a
great challenge for researchers over the last couple ofery good paradigm to demonstrate our technique.
decades:? Traditionally, the linear stability analyses of these ~ Taylor—Couette flow is essentially the flow in the annu-
flows have been carried out by solving the generalized eigeriar region of two infinitely long, coaxial cylinders of rad®,
value problem(GEVP) resulting from normal-mode analysis andR; either or both of which can be rotating with angular
or time-dependent simulations. However, both these techspeeds(}; and (),, respectively. In the present work, we
niques suffer from an inherent need for a closed-form conshall be concerned with the case in which only the inner
stitutive equatiorfCCE) to describe the relationship between cylinder is rotating, i.e.f,=0. It is well known that this
fluid stresses and the deformation rate. While most of thesBOW becomes unstable once a critical value of the Deborah
CCEs for fluids with microstructure originate from models NUmber, characterizing the relative importance of the elastic-
based on statistical mechanics, the final CCE itself is derivedy @nd flow time scales of the fluid, is exceeded. This insta-
by invoking various “closure” approximations. However, p|I|ty manlfests |tse_lf as t9r0|dal vortices in the axial dlrep-
these approximations can sometimes distort the actual moddPnS in an otherwise azimuthal base flow. The governing
behavior to a significant extent. For example, the stress corffduations for creeping flow of an incompressible fluid in the

formation hysteresis seen in uniaxial extensional flows ofe\bsence of body forces are

polymeric solutions can be captured by Brownian dynamics —yp+V.r =0, )
of finitely extensible spring models, but the corresponding
macroscopic equation derived by making closure approxima-  V-u=0, 2

tions does not display this hysteretic behavior seen ifyherep, 7 andu are the fluid pressure, deviatoric stress

experiments. _ ~ tensor, and the velocity vector, respectively. The character-
~ Recently, a new methodology for performing flow simu- jstic scales are the gap width=R,— R;, the velocity at the
lations of fluids with a microstructure has emerged. For eXinner cylinderQ;R; and d/Q,R; for length, velocity, and
ample, simulations of viscoelastic flows are performed byjme, respectively. The radii ratio is set t6=R;/R,
combining solution of macroscopic equations such as conset=0 912 in order to facilitate comparisons with previous
vation of mass and momentum with kinetic theory basedstudies> The stress and the pressure variables have been
models for determination of the polymeric stresbés.this  made dimensionless by, Q1R, /d where o= 5+ 7, is the
study, we have developed a new technique that uses a coftal solution viscosity withy and 7, being the solvent and
bined finite element/Brownian dynamics approach to examthe polymer viscosity, respectively. As is common in vis-
ine the hydrodynamic stability of fluids with microstructure. coelastic flow simulations, the stress is split into a polymer
The principal motivation behind this work has been to de-and solvent contribution, i.ez = 7+ 7,. The solvent con-
velop a technique that will allow one to determine the hy-tribution is assumed to be Newtonian,=287%, where ¥
drodynamic stability of fluids with microstructure without =3(Vu+Vu') is the rate of deformation tensor ang
invoking closure approximations. In particular, we shall be= 7/ 7, denotes the solvent viscosity ratio. The system of
looking at the stability of Taylor—Couette flow of polymer equations[Eq. (1) and (2)] is closed by either selecting a
solutions modeled as a noninteracting suspension of elastidosed form constitutive equation for the polymeric stress or
dumbbells. The Taylor—Couette geometry has been chosdwy evaluating the polymeric stress as an appropriate expec-
tation from an ensemble of model polymers. The closed form
dAuthor to whom correspondence should be addressed. TeIephoncg::onsml_mve _equatlon used _|n thIS.Stu.dy is the Oldroyd-B
(314 935-6065. Fax: (314 935-7211. Electronic mail: Model in which the polymeric contribution to the stress,

bam@poly1.che.wustl.edu is given as
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7o+ Dery 1y =2(1- )y, the smaller mesh. An ensemble size of 2000 trajectories has

been used for the configuration fields, although satisfactory

results have been obtained with as few as 500 trajectories.
To examine the linear stability of Taylor—Couette flow,

where De=\;R;/d is the Deborah number with being
the relaxation time of the polymer. The subscfiptdenotes

the upper-convected derivative, which is defined as the base flow equatiori&gs.(1) and(2)] are linearized. The
a7, ‘ equation for perturbation stresg is obtained in the macro-
”p<1>:7+“‘v"p_"‘ T~ T K scopic case by linearizing the Oldroyd-B constitutive equa-
tion

where k is the transpose of the velocity gradiefite., «

=Vu'). The kinetic theory based models used are the 7,+Der); =De(—Uu"-Va+ 7, &' T+ K- 7))

Hookean and the FENEinitely Extensible Non-linear Elas- o

tic) dumbbell model$. Both the models consist of elastic T(1=-B) (' "+ x'). ()

dumbbells having two Brownian beads attached by an enyariables with superscripit) refer to perturbation quantities

tropic spring. For the Hookean dumbbell, a linear spring conof the corresponding base flow values.

nects the two beads such ttet=Q whereas for the FENE In the microscopic dumbbells case, one needs to start

dumbbell, we have a non-linear spring force law of the formfrom the SDE describing the evolution of the connector vec-

Fe=Q/(1-Q?/b). In the above expressiong,is the vector  tors in order to derive an expression fely. For example, the

connecting the two beadq is the length of the connector |inearized equation for the perturbation connector ve€tor

andb is the maximum extensibility of the spring. Note that for the Hookean dumbbell can be written as

b— o for Hookean dumbbells because of their infinite exten-

sibility. Another difference between the two models is the |, ., , , 1

fact that only the Hookean dumbbell renders itself to an exI? _( TUVQIUTVRE K Qi s QT 55 Q" fdt.

act CCE, namely the Oldroyd-B model. In both the models, . ) ) ) )
the evolution of the connector vector is modeled using thé”Sing the above equation, the evolution equations @Q()

method of Brownian configurational fieldgccording to the and Q'Q) can be Writter) for use in determining,. For
following stochastic differential equatiotSDE): example, the SDE forQQ') is of the form

dtﬂ/édw(t), d(QQ)=| ~ (U YQQ' - Q(u-VQ') ~ Q' - VQ)+

Q=] —u-Q+ k-Q— oo F©

2De
where dW(t) is a Wiener process which accounts for the , L g 1 ,
Brownian force experienced by the beads. The Wiener pro- QR HQQ K +QQ K~ 5 QQ dt
cess is a Gaussian random vector with zero mean and vari-
anceAt, the discretization for the time interval. N dw o
Once all theQs have been evaluated, the polymeric JDe ~

stress can be obtained by invoking the Kramer's expression

(1= B) (b+5 Now defining the perturbatiqn polymerig .s'tress§$[(l
- <—)((F°Q>—<F°Q>equ), —B)/Del{QQ’' +Q'Q) and using the definition of the base

De b flow polymeric stressr, from Eq. (11), we get

where(F°Q)eqpni= 4, the unit tensor. We have used a spe-
cialized finite element method, namely the DEVSS-G/SUPG
(Discrete Elastic Viscous Split Stress—Gradient of Velocity/ +(1-B) (K T+K),
Streamline Upwind Petrov—GalerKithat has been shown to o _ ) _ ) _
provide an accurate discretization for viscoelastic flows withhich is identical to the linearized evolution equation for the
a predictor-corrector type of discretization in time to solvePerturbation polymeric stresses of an Oldroyd-B fifiie.,
the set of governing equations. The exact details of th&d- (3)]. This demonstrates the viability of our proposed

scheme and its advantages over other techniques can Bethodology for determining the perturbation polymeric
found elsewher8. stresses via a stochastic approach.

The boundary conditions are no-slip conditions for all Similarly, the linearized equation for the perturbation
three velocity components on the surface of either cylindefonnector vectoQ' for the FENE dumbbells can be shown
and periodic conditions for all variabléexcept pressujeat to be
Z=0 andZ=L. The solvent viscosityd has been chosen to
be 0.59 in order to facilitate comparisons with previous dQ’'=
studies’ The simulations have been performed for two dif-
ferent meshes with 200 and 400 elements, respectively. Al- 1
though, changing the mesh size had no significant effect on ~ SDe
the results, it was observed that the resuéspecially in
stability analyseswere quite sensitive to the time step size and the perturbation polymeric stresﬁ,can be obtained by
used in the simulations. All the results presented henceforthnearizing the corresponding base flow expression for the
are for time step size of 0.128limensionless timeand for  polymeric stress, .

p

] / — _ T
7,+Dery,=De(—u"-Vrp+ 7, k' '+ K- 7))

—Uu"-VOQ—u-VQ'+ k' -Q+ k- Q'

Q' +g (Q-Q’)Q) dt
1-Q%b b (1-Q%b)?/ |
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FIG. 1. Evolution of the norm for various values of the Deborah number.
The inset shows the statistical error-bar for the Hookean dumbbell simula-
tions.

108 r

Axisymmetric two-dimensional small amplitude distur- 106

bances in velocity’ are introduced into the governing equa-
tions such thaty’ = ¢(r)expiaz) where is the axial wave

number and(r) is the amplitude of the disturbance velocity 0 01 02 03 04 05 06 07 08
chosen such thati’ satisfies continuity requirements and z

boundary conditionsu’(z,Ry) =u’(z,R;)=0. The axial 5 5 gigentunctions of! for (a) Oldroyd-B fiuid and(b) Hookean
wave numbera is set to 7.7 for all the simulations. The gumbbells at time 1650.

choice of wave number is made in order to facilitate quanti-

tative comparisons for the most dangerous eigenvalue ob-

tained from the time-dependent simulations employed in thi
study and prior GEVP studiés.

10.4

10.2

fhe critical Deborah number D& 21.55 matches well with

) i that previously reported for axisymmetric disturbantes.

i The evolut_|0n of the norm of the SOIl_J'F'On vectpr(dg-_ However, a stricter test would be to compare the actual
fined asyp-p) is used to predict the stability characteristics growth rates obtained from the different techniques. It can be

of the flow. If the norm is monitored for sufficiently long gqapy that, except for De near Dé.e., very small growth
times, it settles into an exponentially decayifeg growind  ate9  the match is quite good and the difference can be
oscillatory behavior. These oscillations are a result of havingtributed to the fact that GEVP studies are much more spa-
a nonzero imaginary part of the most dangerous eigenvaluggy refined. In order to test this hypothesis, we ran one test
The long time behavior of the norm is used to evaluate th%ase(for Oldroyd-B) at De=22.00 and obtained an eigen-
real part of the most dangerous eigenvalue. The slope of they e of 8.14 4 which is much closer to the GEVP result
sgmilog plot of the norm versus time gives this feigenvaluethan the value reported in Table I. Figure@?2and 2b)
Figure 1 shows typical plots of the norms at various valuegay the eigenfunctions corresponding to the perturbation
of the Deborah number obtained from both macroscopiGg|acity in ther direction, v/ , obtained from both simula-
(Oldroyd-B) and the corresponding Brownian dynamics jong ot a dimensionless tinte= 1625. Clearly, the contours
(Hookean dumbbellsimulations. As can be seen from the 5.0 yery similar and if followed in time, it is observed that
plots, within Brownian fluctuations, there is an exact me,‘tChthey actually travel in the radial direction which is also in
between the two. The real part of the most dangerous eigengorqance with prior studiédn Table II, the most danger-
values, obtained as the slopes of these semilog plots, afgs eigenvalues obtained from the FENE calculations are
tabulated in Table | along with those reported in literature, e gented. We see that the decrease in the finite extensibility
using GEVP studie3First, one can observe that the value of predicts greater stability for the system. This is expected,

because now there is enhanced shear-thinning and hence the

TABLE I. Most dangerous eigenvalues for different Deborah numbers com-

puted for Hookear{within a statistical error of 4%and Oldroyd-B cases.

OLD-B* values are GEVP results from Ref. 5. TABLE II. Most dangerous eigenvaluéwithin a statistical error of 4%&for
different values ob for FENE dumbbells.

De Hookean OLD-B OLD-B
— — — De b=5000 b=10000
21.10 —9.00e —9.00e —8.40
21.55 —1.2075 —1.20e°5 —8.076 35.0 -1.871 2378
22.00 +8.06e74 +8.062"* +8.2007* 40.0 -5.87° 1.2274
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Deborah number, having been defined based on the zergpeed-up with number of processors. It is worthwhile to em-

shear rate properties, is effectively decreased providinghasize that, although much more CPU intensive, such tech-

greater stability. niques are essential in accurately describing the dynamics of
In conclusion, we have constructed a new technique thahe true kinetic theory model. We are presently developing

allows determination of the hydrodynamic stability of fluids more efficient algorithms to apply this technique to more

with microstructure using combined finite element/stochasticomplex flows.

simulation method. The feasibility of this approach has been
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