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bstract

Nonlinear dynamics that ensue after the inception of viscoelastic flow instabilities in homogeneous, curvilinear shear flows remain largely
nexplored. In this work, we have developed an efficient, operator splitting influence matrix spectral (OSIMS) algorithm for the simulation of
hree-dimensional and transient viscoelastic flows. The OSIMS algorithm is applied to explore, for the first time, the post-critical dynamics of
iscoelastic Taylor–Couette flow of dilute polymeric solutions utilizing the Oldroyd-B constitutive equation. Linear stability theory predicts that
he flow is unstable to non-axisymmetric and time-dependent disturbances with critical conditions depending on the flow elasticity, E, defined as

he ratio of the characteristic time scales of fluid relaxation to viscous diffusion. Two types of secondary flow patterns emerge near the bifurcation
oint, namely, ribbons and spirals. We have demonstrated via time-dependent simulations for narrow and moderate gap widths, ribbon-like patterns
re generally stable at and above the linear stability threshold for 0.05 ≤ E ≤ 0.15. For an inner to outer cylinder radius ratio of 0.8, the bifurcation
o ribbons at E = 0.1 and 0.125 occurs through a subcritical transition while the transition is supercritical at smaller E values.
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. Introduction

The addition of high molecular weight polymers to a Newto-
ian flow can qualitatively alter the sequence of flow transitions
s well as the critical points. Depending on the flow elasticity,
haracterized by the ratio of the time scale of fluid relaxation
o that of viscous diffusion, and inertia, such flow transitions
an lead to turbulent states whose time-averaged properties (e.g.
elocity profile, drag) and (energy) spectral characteristics are
ramatically different from those in the Newtonian case. In fact,
t has been shown experimentally that viscoelastic flow transi-
ions in curvilinear shear flows could result in the establishment
f turbulent flow states even when the Reynolds number, Re

ratio of inertial to viscous forces) is vanishingly small [1]. This
henomenon, referred to as “elastic turbulence”, has eluded
xplanation based on first principle modeling/simulations. To
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ate, the literature on the direct numerical simulation (DNS) of
hree-dimensional (3D) and time-dependent viscoelastic flows
s limited to homogeneous shear [2] and pressure-driven channel
3,4] flows focusing primarily on the study of polymer-induced
urbulent drag reduction. In this paper, we report the first suc-
essful simulation of 3D, time-dependent flow patterns in a
iscoelastic, curvilinear shear flow.

For several decades, unidirectional shear flows with (primar-
ly) curved streamlines of simple (Newtonian) and complex (e.g.
olymeric liquids) fluids have served as classical paradigms
or the investigation of hydrodynamic instabilities and pat-
ern formation [5]. Prominent among the paradigms used for
urvilinear flows is the Taylor–Couette flow in which a fluid
onfined between two long concentric cylinders is sheared by
heir relative rotation. Taylor [6], in a landmark paper in 1923,
howed both theoretically as well as experimentally that the
rimary (base) azimuthal shear flow of a Newtonian fluid in
Taylor–Couette cell with the inner cylinder rotating and the

uter stationary, becomes unstable to axisymmetric disturbances
hen Re

√
d/R1 ≈ 41 where d is the radial gap width and R1 is
he inner cylinder radius. The instability manifests in the form of
teady toroidal vortex cells (Taylor vortices) in the axial direction
hich replace the circular, base Couette flow. Theoretically, the

tability threshold is determined based on a normal mode pertur-
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ation analysis in which infinitesimally small disturbances are
uperimposed onto the primary base flow solution. Substitution
f the normal mode expansion in the governing system of equa-
ions and the boundary conditions leads to a complex differential
igenvalue problem. The least negative eigenvalue determines
he growth/decay rate of the perturbations. Based on several
xperimental and theoretical studies, a series of flow transitions
hat occur starting from the base Couette flow to fully turbulent
ow are well documented for the Newtonian Taylor–Couette
ow for different rotational speed ratios of the cylinders [7–17].

Due to the interplay between elastic and viscous/inertial
orces, the instability characteristics of and flow transitions in
iscoelastic curvilinear flows [18] could differ qualitatively from
heir Newtonian counterparts. In particular, viscoelastic shear
ows with curved streamlines are prone to instabilities due to the
evelopment of hoop or normal stresses even in the absence of
nertia [19–25]. Experimental studies [20–22,24–29] and linear
tability analysis (LSA) [19,30] have shown that under isother-
al conditions, the base circular Couette flow becomes unstable

s the Deborah number (De), defined as the ratio of polymer
elaxation time to the flow time scale, exceeds a critical value.
or the Oldroyd-B constitutive model, LSA predicts that in the

imit of Re → 0, De
√

d/R1 ranges between 6 and 8 depending
n the ratio of solvent to total (i.e., solvent + polymer) viscosity
t the critical point.

Linear stability theory based on axisymmetric modes pre-
icts the existence of two possible time-periodic flow structures
t the onset of instability: a standing wave characterized by
adially propagating vortices and a traveling wave character-
zed by upward/downward axially propagating vortices. From
ifurcation theory in presence of symmetries [12,31,32], it can
e shown that if at least one of the bifurcations is subcritical,
oth of them are unstable and if both bifurcations are super-
ritical, then only one of the two patterns is stable. In order to
ompute the finite amplitude states, time integration of the gov-
rning equations can be employed. The axisymmetric and purely
lastic time-dependent Taylor–Couette flow was simulated suc-
essfully using a finite-element algorithm by Northey et al. [33].
heir results showed a flow transition leading to standing waves
hich are in agreement with the predictions of the spectral sim-
lations by Avgousti et al. [34] who showed that the standing
ave was the stable pattern for high values of elasticity number,
≡ De/Re. The traveling wave was only presumed to be sta-

le for intermediate values of E because the simulations broke
own before reaching a stable limit cycle when the standing wave
as chosen as the initial solution. Kupferman [35] adopted an

fficient and simple scheme based on second order central dif-
erence method to simulate the axisymmetric viscoelastic states
n the inertio–elastic regime in a flow domain with at least eight
avelengths in the axial direction. His results confirmed the
ndings of Avgousti et al. [34].

Linear stability analysis with non-axisymmetric disturbances
ater revealed that depending on the gap width and E, such per-

urbations can be responsible for the primary flow instability in
iscoelastic Taylor–Couette flow [28,36–38]. For instance, for
he Oldroyd-B fluid model, Avgousti and Beris [36] showed
hat flow transitions from the circular Couette flow to non-
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xisymmetric and time-dependent secondary states could occur
or E ≥ 0.01. In contrast to these predictions, based on flow visu-
lization techniques and digital particle imaging velocimetry
DPIV) measurements, Baumert and Muller [26,27] observed
hat the primary azimuthal flow undergoes transition to steady
nd axisymmetric toroidal vortices upon the inception of flow
nstability for purely elastic flows (E → ∞). The critical onset
alue of Deborah number was an order of magnitude lower
han that in the previous experiments [20] and that predicted
y the linear stability analysis [36]. These qualitative and quan-
itative differences between theoretical predictions [20,36] and
xperimental observations [20] as well as between experiments
20,26,27] performed using different test fluids in the purely
lastic Taylor–Couette flows were later resolved by the dis-
overy of a new mode of instability, namely, the thermoelastic
nstability [39–41] via a non-isothermal linear stability analysis.
pecifically, the thermal effects are caused by a combination
f viscous heating and thermal sensitivity of the fluid. Based
n a thermodynamically consistent formulation of the Oldroyd-

constitutive model, Al-Mubaiyedh et al. [39–41] predicted
hat, in presence of viscous heating, an axisymmetric and sta-
ionary mode with O(1) critical Deborah number is responsible
or the primary instability for the purely elastic flow, which is
n excellent agreement with experimental observations [26,27].
his new mode arises due to the convection of base state tem-
erature gradients by the perturbation velocity and is dependent
n the amount of viscous heating and the gap temperature gra-
ient [39]. Nonlinear analysis shows that the stationary mode
ripens” over the time scale of thermal diffusion [41]. The bifur-
ation to the stationary axisymmetric mode is supercritical [41].
he interested reader may refer to [26,27,39–44] for a complete
verview of thermoelastic instabilities in Taylor–Couette flow.

Thermal effects due to viscous heating become important
hen the ratio Γ of the polymer relaxation time, λ, to the thermal
iffusion time scale, d2/αt, where αt is the thermal diffusivity, is
uch smaller than 1. If Γ 	 1, then one recovers the isothermal

ystem for which LSA clearly shows that the most dangerous
erturbations are non-axisymmetric and time-dependent [41].
he isothermal scenario is applicable to aqueous dilute solutions
hose viscosity is significantly lower and heat capacity is sig-
ificantly higher as compared to those of organic solutions such
s Boger fluids. In addition, even in presence of viscous heating,
igher order flow transitions could result in non-axisymmetric
tates if the shear rate is increased beyond a critical value [27].
herefore, time-dependent simulation of 3D, transient flow is
ecessary to study nonlinear dynamics of both isothermal and
on-isothermal flows.

The bifurcation to the non-axisymmetric and time-dependent
econdary flow, that occurs for Γ 	 1, has been shown to be
egenerate based on the spatio-temporal symmetries of the base
ow [31]. Two secondary flow patterns have been identified

o emerge at the critical point – axially traveling spirals and
zimuthally rotating ribbons. Based on a local nonlinear analysis

32], Renardy et al. [37] and Sureshkumar et al. [38] predicted,
or narrow gaps and sufficiently large (O(1)) values of elastic-
ty, at least one of the two non-axisymmetric families (ribbons
r spirals) bifurcates subcritically, indicating that neither of the
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wo families is stable. For a relatively wide gap width [38], the
ifurcations for both spirals and ribbons are supercritical and
he ribbons were shown to be the stable pattern based on a
inzburg–Landau analysis. However, local nonlinear analysis

annot be expected to predict the flow patterns for De values
ppreciably greater than the critical one. This further motivates
he need for a global nonlinear analysis via time-dependent sim-
lation of the 3D, time-dependent flow to identify the pattern
election in the post-critical regime.

Recently, Groisman and Steinberg [45] performed flow visu-
lization experiments in which, the solution elasticity was sys-
ematically varied up to three orders of magnitude to span the
nertial (E = 0) to purely elastic (E 	 1) flow regimes and inves-
igated the effect of E. For an inner to outer cylinder radius ratio
R1/R2) of 0.708 and solvent to total solution viscosity ratio
β) of 0.926, two new oscillatory flow patterns were shown to
xist—disordered oscillations (DO) as a result of fluid elasticity
nd rotating standing waves (RSW) as a result of inertial insta-
ility modified by elasticity. At a particular value of the elasticity
umber known as the co-dimension two point (ct-point) [46], the
ouette flow becomes simultaneously unstable to both Taylor-
ortex flow (TVF) and oscillatory modes. The RSW occurred as
result of the second bifurcation after the TVF. At elasticities
igher than ct-point, a subcritical bifurcation from the Couette
ow results in the formation of DOs. When the inner-cylinder
otation rate was reduced, the DOs decayed first to separated
scillatory strips with a central core followed by solitary vortex
airs or “diwhirls” in experiments with β = 0.55 and gap ratio
f 0.829 [47,48]. The diwhirls appeared as randomly spaced
xisymmetric dark rings and they decayed further to the Cou-
tte flow at a rotation velocity 45% of that at the DO onset
45,47–51].

In order to explore the diverse and complex pattern selection
echanisms in viscoelastic flows, faithful and robust simulation

ools that can capture non-axisymmetric and the time-dependent
tates are necessary. Unlike Newtonian fluids where the stress
epends on the local, instantaneous rate of deformation, the
tress in polymeric liquids depends on the deformation history,
ypically described by a constitutive equation (C.E.). Hence,
iscoelastic flow simulations require the self-consistent solu-
ion of the continuity and momentum equations in conjunction
ith a C.E. that describes the evolution of the viscoelastic ten-

or [19,52]. The C.E. introduces six additional variables for the
tress that need to be computed along with the (three) veloc-
ty and (one) pressure variables in 3D transient viscoelastic flow
roblems. As the amplitude of the disturbance is increased, non-
inear interactions between eigenmodes become progressively
tronger, hence, finer mesh resolution is required to capture the
esulting spatial structures. This inevitably leads to solving a
arge number of equations ((3 + 1 + 6) × N3) which require pro-
ibitively large storage space and computational time for the
irect solution of the time-dependent problem. Moreover, the
ixed (elliptic–hyperbolic) nature of the system of equations
mposes stringent numerical stability limitations on the time step
nd mesh discretization [53]. In addition, the evolutionary char-
cter of the stress constitutive equation can be lost due to the
oss of positive definiteness of the numerical approximation of

�

w
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he stress conformation tensor especially in highly elastic flow
egimes, resulting in Hadamard instabilities [52,53], although
ew formulations that preserve the positive definiteness have
een recently proposed to alleviate this problem [2,54–56].

In this study, we have implemented an operator-splitting,
nfluence matrix spectral (OSIMS) algorithm to simulate 3D
nd time-dependent viscoelastic Taylor–Couette flow. The poly-
eric fluid is modeled using the Oldroyd-B constitutive equation

18] which qualitatively describes the shear rheology of dilute,
on-shear thinning polymer solutions. This paper is organized as
ollows. The viscoelastic Taylor–Couette problem is formulated
n Section 2, followed by a description of the OSIMS algo-
ithm in Section 3. The validation and performance details of
he OSIMS code as compared to a fully implicit method, and
arallel implementation for 3D transient viscoelastic flow com-
utations are presented in Section 4. Subsequently, linear and
onlinear stability analyses are discussed in Section 5. Section
deals with the implementation of the OSIMS algorithm with
global artificial diffusivity to stabilize the time-integration of

he C.E. We present our conclusions in Section 7.

. Problem formulation

Consider a Taylor–Couette system with rotating inner and sta-
ionary outer cylinder with radius R1 and R2, respectively. Let
he angular velocity of the inner cylinder be denoted by Ω1. Let
T, ρ and λ denote the total solution viscosity, fluid density and
verage relaxation time of the polymer solution, respectively.
he total solution viscosity ηT is the sum of the solvent (ηS) and
olymeric (ηP) contributions, i.e., ηT = ηS + ηP. We choose gap
idth d ≡ R2 − R1, d/(R1Ω1), R1Ω1, ρ(R1Ω1)2 and ηPR1Ω1/d

s the scales for length, time, velocity, pressure and polymeric
tress, respectively. Then the non-dimensional momentum equa-
ion can be written for an incompressible (�·u = 0) viscoelastic
uid as

∂u
∂t

= u × ω − ∇P + 1

Re
∇2u − E(1 − β) ∇ · �(1), (1)

here u denotes the velocity vector with components ur, uθ

nd uz in the r, θ and z directions of a cylindrical coordinate
ystem with the z-axis coinciding with that of the cylinders,
espectively, β is the solvent to total viscosity ratio, ω ≡�× u,
he Reynolds number Re ≡ ρR1Ω1d/ηT, P denotes the hydrody-
amic pressure, and �(1) denotes the upper convected derivative
f polymeric stress, �, defined as

(1) ≡ ∂�

∂t
+ u · ∇� − [(∇u)t · � + � · ∇u]. (2)

he Oldroyd-B constitutive model used in this work can be
erived from either molecular theory for dilute polymer solu-
ions in which the polymer molecules are modeled as non-
nteracting Hookean elastic dumbbells or continuum mechanics
ased on a generalized spring-dashpot model:
(1) = − 1

De
[� − (∇u + (∇u)t)], (3)

here the Deborah number De ≡ λR1Ω1/d.
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Eqs. (1)–(3) are supplemented with the no-slip boundary con-
dition at the cylinder walls.

3. Simulation algorithm

We have developed a CPU and memory efficient, stable time
integration algorithm based on the concepts of operator split-
ting and influence matrix technique to enforce the divergence
free velocity field on the boundary [4,15,16,34,53,57–59]. The
salient features of this spectral (in space) [58], multi-step (in
time) algorithm are explained below.

3.1. Spatial discretization

Spatial discretization is accomplished via the use of expo-
nentially convergent spectral basis functions: Chebyshev poly-
nomials in the radial (r) direction and Fourier basis functions in
the axial (z) and azimuthal (θ) directions leading to

u(t, r, z, θ) =
L∑

l=0

J/2−1∑
j=−J/2

K/2−1∑
k=−K/2

ûljk(t) Tl(r) ei(2π jz/Lz+kθ)

(4)

where i is the imaginary unit (i ≡ √−1), Lz is the length of
the computational domain along the cylinder axis, Tl(r) is the
Chebyshev polynomial of degree l, the complex exponentials
represent the complex Fourier series for the axial and azimuthal
directions truncated at J/2 and K/2, respectively, and ûljk(t)s are
the spectral coefficients. Note that these choices for the basis
functions further allow for the use of O(N log(N)) fast Fourier
transform (FFT) for the evaluation of spectral coefficients as well
as easy evaluation of the derivatives as discussed in the context
of viscoelastic turbulent channel flow simulations by Sureshku-
mar et al. [4]. After substitution of the spectral expansion for the
flow variables in the governing equations, a Galerkin projection
is implemented leading to a system of ordinary differential equa-
tions (in time) for the 10JK(L + 1) spectral coefficients ûljk(t).
Hence, fully implicit time-integration techniques are infeasible
even for coarse meshes. Hence, we employ a multi-step, operator
splitting method for the time-integration of the spectral coeffi-
cients. However, operator splitting will lead to algorithms with
conditional numerical stability and will require special treatment
for the satisfaction of the incompressibility constraint. Although
such methods have been well-developed for Newtonian flows,
robust operator-splitting (OS) algorithms for non-axisymmetric,
viscoelastic flow simulations for large values of Re and O(10)
De do not exist. Previous work in this area by us and oth-
ers has developed efficient algorithms to track axisymmetric
transitions [31,41,60]. However, in axisymmetric implemen-
tations the momentum and continuity equations are typically
solved simultaneously, there by eliminating the need for special
techniques to ensure the satisfaction of the divergence free con-
straint for the velocity field. The large size of the coupled (u,

P) problem makes its simultaneous solution infeasible. Hence,
the momentum equation (1) is split into three parts as outlined
below.

H

T
e
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.2. Time-integration using the OSIMS algorithm

In the OSIMS technique the velocity is updated in three steps
o produce an intermediate solution (denoted by *), which will be
orrected later to ensure the satisfaction of the incompressibil-
ty constraint. In the first step, the inertial and polymeric stress
ontributions are updated explicitly using an Adams–Bashforth
AB) second order method, i.e.:

un+1/3∗ − un

�t
= 3

2

(
u × ω + 1 − β

Re
∇ · �

)n

− 1

2

(
u × ω + 1 − β

Re
∇ · �

)n−1

, (5)

here �t is the time step size. In the second and third steps, we
ccount implicitly for the pressure and viscous contributions.
ased on past literature on numerical stability of the overall

ime-integration procedure [15] and storage considerations, we
ave chosen here a first order implicit Euler method that gives:

un+2/3∗ − un+1/3∗

�t
= −∇Pn+1∗ (6)

nd

un+1∗ − un+2/3∗

�t
= β

Re
∇2un+1∗. (7)

ote that the pressure Pn+1* in Eq. (6) is still unknown. There-
ore, before implementing the second step, a Poisson equation
or the pressure is derived by taking the divergence of Eq. (6)
nd enforcing that un+2/3* is divergence free, i.e.:

2Pn+1∗ = ∇ · un+1/3∗

�t
. (8)

q. (8) is solved subject to homogeneous boundary conditions
or the pressure. Hence, the solution needs to be corrected for
he true pressure boundary conditions. Therefore, the influence

atrix [57] has to be evaluated and used along with the interme-
iate solution to evaluate the true pressure boundary conditions.
n order to evaluate the influence matrix, the following Stokes
roblem is solved:

2pi = 0, pi(rj) = δji, (9a)

β

Re
∇2ui − ∇pi = ui

�t
, ui(rj) = 0 (9b)

here i = 1,. . ., N and N is the total number of grid points on
he cylinder wall (i.e., N = 2KJ, see Eq. (4)). In the above equa-
ions, rj (j = 1, 2,. . ., N), represent the grid points on the cylinder
alls and δji is the Kronecker delta. By solving Eqs. 9(a) and
(b), a total of N linearly independent solutions are constructed.
he influence matrix, denoted by H, is then evaluated from the
ivergence of the velocities, ui, at the cylinder walls as follows:
ji = ∇ · ui(rj). (10)

he solutions to Eqs. (9a) and (9b) and the influence matrix are
valuated and stored in a pre-processing stage. The corrected



nian Fluid Mech. 138 (2006) 111–133 115

s
c

P

u

w
e

H

F
t
a

w

f

T
c
c
t

4
p

4
a
t
a
4
i
a
a
i
f
p
o

4

b
m
t
t
E
1
p
t

Fig. 1. Comparison (semi-log plot) of memory size and CPU time (per time
s
m

w
(
c
O
t
O
c

r
d
f
t
o
f
R
a
a
(
O
T
a
H
d
b
o

4

i
[
a

D.G. Thomas et al. / J. Non-Newto

olution at the end of each time step, Pn+1 and un+1 can now be
onstructed by the following linear superposition as

n+1 = Pn+1∗ +
N∑

i=1

γipi, (11a)

n+1 = un+1∗ +
N∑

i=1

γiui, (11b)

here the coefficients γ i are chosen by solving the system of
quations given by

ijγi = −∇ · un+1∗(ri). (12)

inally, we note that the integration of the evolution equation for
he polymeric stress is performed explicitly using a second-order
ccurate Adams–Bashforth formula:

�n+1 − �n

�t
= 3

2
f (�n, un) − 1

2
f (�n−1, un−1), (13)

here

= − 1

De
[� − (∇u + (∇u)t)] − u · ∇� + [(∇u)t · � + � · ∇u].

(14)

he initial solutions for the time-dependent simulations are
onstructed by superposition of the respective eigenfunctions
orresponding to the leading eigenvalue obtained from LSA onto
he base flow solution.

. OSIMS algorithm: performance, validation and
arallel implementation

This section is divided into four subsections. In Section
.1, the CPU and memory efficiency of the operator splitting
lgorithm based on the influence matrix method is compared
o that of the fully implicit algorithm [41,60] for the case of
n axisymmetric Newtonian Taylor–Couette flow. In Section
.2, we compare our results with those obtained from the fully
mplicit algorithm for axisymmetric transitions [41,60] as well
s selected experimental [61] and computational [17] results
vailable in the literature. In Section 4.3 we perform compar-
son between OSIMS and theoretical bifurcation analysis [13]
or the non-axisymmetric Newtonian flow. In Section 4.4, we
resent the details of the implementation of OSIMS algorithm
n a parallel-computing platform.

.1. OSIMS algorithm: performance

By simulating the axisymmetric Newtonian flow (TVF) using
oth OSIMS and fully implicit algorithms, the CPU time and
emory requirements for each algorithm are calculated and plot-

ed in Fig. 1 as a function of the total number of unknowns in
he simulation. All simulations are performed on a DEC alpha

S40 Linux workstation with a single 833 MHz processor and
4GB of RAM. The number of unknowns is equivalent to the
roduct of the number of partial differential equations and the
otal number of mesh points. In this case, it is equal to 4 × L × J,

T
a
a
v

tep) requirements for the fully implicit method (�, ©) vs. influence matrix
ethod (�, �) for axisymmetric Newtonian Taylor–Couette flow.

here L and J represent the number of mesh points in the radial
Chebyshev) and axial (Fourier) directions, respectively. It is
lear from Fig. 1 that the CPU and memory requirements of the
SIMS algorithm are several orders of magnitude lower than

hose of the fully implicit technique. Therefore, as expected, the
SIMS algorithm is extremely CPU and memory efficient in

omparison to the fully implicit technique.
The scaling of the CPU time and memory requirements with

espect to the number of mesh points in the radial and axial
irections is shown in Fig. 2 for the two algorithms. For the
ully implicit algorithm based on the Newton–Raphson method,
he required CPU time scales as (4 × L × J)3 while the mem-
ry size requirements are of O(4 × L × J)2 (Fig. 2(a)). The
ully implicit algorithm, when based on a modified Newton-
aphson’s method in which the Jacobian matrix is updated only
fter every 50 time steps and after every 40 iterations within
time step, requires CPU time only of the order O(4 × L × J)2

Fig. 2(b)). The OSIMS algorithm, on the other hand, needs only
(4 × L2 × J) amount of CPU time and memory size (Fig. 2(c)).
his is due to the linearity of the implicitly treated elliptic oper-
tors described in Section 3. Specifically, for the Poisson and
elmholtz operators, the Fourier modes in the axial direction
ecouple. Hence, for each of the J Fourier modes, we perform a
ack substitution for four L × L matrices each involving O(L2)
perations.

.2. OSIMS algorithm: validation

In order to validate the accuracy of the OSIMS algorithm,
ts predictions are compared with the fully implicit algorithm
60] as well as experimental [61] and computational [17] results
vailable from the literature for the axisymmetric Newtonian

aylor-vortex flow as shown in Table 1. We compute the torque
t the inner cylinder for Re > Rec (critical Reynolds number)
s the flow evolves from the base azimuthal flow to the Taylor
ortex flow. The torque exerted by the fluid on the inner cylinder
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ig. 2. Scaling of memory size and CPU time requirements with the number
aylor–Couette flow: (a) fully implicit method (CPU time), (b) fully implicit m

s calculated based on the formula:

= 2πr1Re

(
d(rūθ)

dr
− 2ūθ

)
(15)

here G is the dimensionless torque (per unit length) normal-
zed with respect to η2/ρ and the over bar denotes an average
ver the axial direction. Specifically, we perform the calcula-
ions for a gap ratio of 0.95 and 0.5 at a Reynolds number equal
o 195 and 78.6, respectively. The corresponding critical axial
avenumbers (αc) made dimensionless with respect to the gap
idth (α = (2πd)/Lz) are 3.128 and 3.161, respectively. Moser

t al. [17] used pseudo-spectral methods that inherently satisfy
he boundary conditions and the continuity equation. They used

1 × 10 points in r- and z-axes to evaluate the linear terms while
7 × 16 points were required to evaluate the nonlinear terms so
hat aliasing errors are minimized. They compared their results
or torque at the inner cylinder with the experiments of Donnelly

t
w
a

able 1
ewtonian Taylor-vortex flow: comparison of calculated torque at the inner cylinder

arameters Experiments [61] Calculation [17]

1/R2 = 0.95

5.26 × 105 5.42 × 105c = 3.128
e = 195

1/R2 = 0.5
1.479 × 103 1.487 × 103c = 3.161

e = 78.6
ints in the radial (L) and the axial (J) directions for axisymmetric Newtonian
(memory size) and (c) influence matrix method (memory size and CPU time).

nd Simon [61] for the two gap widths as shown in Table 1. The
orque values predicted by Moser et al. [17] agreed with the
xperimentally observed values by Donnelly and Simon [61]
ithin 3% and 0.5% for 0.95 and 0.5 gap ratios, respectively.
he prediction of the fully implicit and OSIMS algorithms from

he present study are also tabulated in Table 1 using �t = 0.1 and
ithout de-aliasing. The results obtained from both methods are

n good agreement with the calculations of Moser et al. [17] as
ell as the experiments of Donnelly and Simon [61].

.3. Application of OSIMS algorithm to non-axisymmetric
ewtonian flows
In the Newtonian Taylor–Couette flow, the primary transi-
ion to axisymmetric and stationary toroidal vortex flow occurs
hen the inner cylinder is rotating while the outer cylinder is

t rest. However, when both the cylinders are rotating, non-

with literature values (�t = 0.1)

Present calaculation

Fully implicit Influence matrix r × z points

5.4186 × 105 5.4391 × 105 9 × 8
5.4184 × 105 5.4180 × 105 17 × 8
5.4184 × 105 5.4184 × 105 17 × 16

1.4848 × 103 1.4848 × 105 33 × 8
1.4988 × 103 1.4988 × 103 17 × 16
1.4846 × 103 1.4846 × 103 33 × 16
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ig. 3. Time evolution of radial velocity for Newtonian Taylor–Couette flow at th
= 3.517, Re2 = −129.05 and Re1 = 167.2. (a) Spiral flow initial condition and

teady state solution.

xisymmetric and time-dependent transitions are likely to occur
7]. Andereck et al. [7] had carried out an extensive set of
xperiments that revealed a wide variety of flow states in the
aylor–Couette flow when the cylinders are either co-rotating
r counter-rotating. Here, we present calculations for the case

here the cylinders are counter-rotated. Specifically, the outer

ylinder rotation rate, Ω2, is held fixed while the inner cylinder
otation rate is varied to explore different flow states. We denote
he Reynolds number based on the outer and inner cylinder radius

t
w
a
r

ig. 4. Newtonian secondary flow contour plots of radial velocity (ur) in r–θ plane (z = π

o spirals of Fig. 3(a) about time = 8000 where amplitude is (a) minimum, (b) zero an
er of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for R1/R2 = 0.883,
ibbon flow initial condition. All initial conditions are superimposed over the

s Re2 ≡ ±ρR2Ω2d/ηT and Re1 ≡ ±ρR1Ω1d/ηT, respectively.
he negative sign corresponds to counter rotation (clockwise
irection with respect to the θ coordinate).

Golubitsky and Langford [13] had performed local nonlin-
ar stability analysis to calculate the bifurcation diagrams at

he point of bistability (0, 1) for large, moderate and small gap
idths. The point of bistability (0, 1) is defined as the point

t which the primary bifurcation changes from an axisymmet-
ic (ξ = 0) to a non-axisymmetric (ξ = 1) branch. This occurs

/α) for R1/R2 = 0.883, α = 3.517, Re2 = −129.05 and Re1 = 167.2 corresponding
d (c) maximum.
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ig. 5. Newtonian secondary flow contour plots of axial velocity (uz) in r–z plan
o spirals of Fig. 3(a) about time = 8000 where amplitude is (a) minimum, (b) z

hen the |Re2| is increased above a critical value denoted by
Re2|c01. Similarly, increasing |Re2| further leads to bistabili-
ies (1, 2), (2, 3) and so on. By varying Re1 as a bifurcation
arameter, Golubitsky and Langford [13] showed, that for a rela-
ively wide gap (R1/R2 = 0.736), both the axisymmetric (for |Re2|
lightly lower than |Re2|c01) and non-axisymmetric bifurcations
for |Re2| slightly higher than |Re2|c01) are supercritical. For a
maller gap R1/R2 = 0.883, the axisymmetric bifurcation is sub-
ritical while the non-axisymmetric one remains supercritical.
or a narrow gap (R1/R2 = 0.95), however, both the axisym-
etric and non-axisymmetric transitions are subcritical. Using
opf bifurcation theory in presence of symmetry, Golubitsky

nd Langford [13] showed that the non-axisymmetric transi-
ions will result in either one of two possible patterns, namely,
pirals and ribbons.

The OSIMS algorithm was used to perform nonlinear sta-
ility analysis using time-dependent simulations for a moderate
ap ratio of 0.883 that was previously considered by Golubitsky
nd Langford [13] and Andereck et al. [7]. From linear stability
nalysis for counter-rotating cylinders, the critical conditions
t the bistability point (0, 1) are αc = 3.517, |Re2|c01 = 128.95

nd Re1c = 166.89. The simulations are carried out using 33
radial) × 16 (axial) × 16 (azimuthal) with a time step size of
.1. In Fig. 3 we present the time evolution of the radial veloc-
ty for αc = 3.517, Re2 = −129.05 and Re1 = 167.2 for both the

r
r
o
s

π) for R1/R2 = 0.883, α = 3.517, Re2 = −129.05 and Re1 = 167.2 corresponding
d (c) maximum.

piral (see Fig. 3 (a)) as well as ribbon (see Fig. 3(b)) initial
onditions. Specifically, the spiral patterns are characterized by
n azimuthal wavenumber, ξ = 1 as shown in the r − θ contour
lots of radial velocity in Fig. 4(a)–(c). The axial velocity is also
lotted in the r–z and θ–z planes in Figs. 5 and 6, respectively,
hich indicate spiral structures. This is consistent with the bifur-

ation analysis [13] that predicts a stable spiral flow pattern for
1/R2 = 0.883. From Fig. 3(b), it is seen that the ribbon solution
ecomes unstable and evolves into a stable spiral, and this is
lucidated by the θ–z contour plots of the axial velocity in Fig. 7
t dimensionless time t = 10,000 (Fig. 7(a)) and at t = 22,000
Fig. 7(b)). When Re2 = −128.95, the secondary flow manifests
n the form of stationary Taylor vortex cells (ξ = 0) as shown
n Fig. 8 that is also in agreement with the bifurcation analysis
13]. In Fig. 9, the amplitude of the radial velocity at the cen-
er of the computational domain is plotted against (Re1 − Re1c)
or the inner cylinder to investigate the bifurcation character-
stic of the spiral (Fig. 9(a)) and TVF (Fig. 9(b)) solutions. A
ifurcation diagram is constructed by plotting the radial velocity
mplitude versus Re1 − Re1c. The bifurcation diagrams indicate
upercritical and subcritical bifurcation of the spirals and TVF,

espectively. Moreover, the amplitude corresponding to the (spi-
al) supercritical bifurcation follows a square-root dependence
n Re1 − Re1c that is in agreement with bifurcation theory for
upercritical bifurcation near the stability threshold.
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ig. 6. Newtonian secondary flow contour plots of axial velocity (uz) in θ–z
orresponding to spirals of Fig. 3(a) about time = 8000 where amplitude is (a) m

.4. Parallel implementation of OSIMS algorithm
Time-dependent simulation of 3D viscoelastic flows to
redict the experimentally observed flow states [1,45,47,48]
equires large memory storage space and computation time. In

i
c
S
(

ig. 7. Newtonian secondary flow contour plots of axial velocity (uz) in θ–z plane (r
he ribbon to spiral transition of Fig. 3(b). (a) Ribbon at time = 10,000 and (b) spiral a
(r = (r1 + r2)/2) for R1/R2 = 0.883, α = 3.517, Re2 = −129.05 and Re1 = 167.2
um, (b) zero and (c) maximum.

rder to perform fast and efficient simulations, we successfully

mplemented the OSIMS algorithm on a parallel super-
omputing platform (SGI-ORIGIN 2000) at the Center for
cientific Parallel Computing (CSPC) at Washington University
St. Louis). The ORIGIN has a 64GB shared memory system

= (r1 + r2)/2) for R1/R2 = 0.883, α = 3.517, Re2 = −129.05 and Re1 = 167.2 for
t time = 22,000.
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ig. 8. Newtonian Taylor-vortex (TVF) flow. (a) Time evolution of radial ve

1/R2 = 0.883, α = 3.517, Re2 = −128.85, Re1 = 167.2 and (b) final contour plot

nd is equipped with 64×R12000 MIPS processors with
00 MHz clock speed per processor and 8MB L2 cache. Since,
he dependent flow variables are spectrally decomposed in
ourier modes in both azimuthal (θ) and axial (z) directions,

t is easier to distribute the z and θ planes among the proces-
ors/nodes. Note that in the current implementation, only the θ

lanes are distributed among the processors. Since the OSIMS
lgorithm updates the spectral coefficients, the nonlinear terms
ave to be computed in physical space. Hence, spectral to/from
hysical space transformations are required, necessitating
ommunication between the processors. This is achieved by
sing MPI (Message Passing Interface) protocol.

In order to measure the performance of the parallel OSIMS
lgorithm, we calculate the speed-up (S(np)) and efficiency
Ef(np)) with the number of processors (np) and the total degrees
f freedom. Specifically, we perform a 3D, time-dependent vis-
oelastic flow simulation for 1000 time steps and record the
xecution time (t(np)) on np number of processors for different
esh sizes as tabulated in Table 2. The speed-up of a parallel

rogram is a measure of how fast the program runs on np (≥1)

rocessors compared to 1 processor, i.e.:

(np) = t(1)

t(np)
, (16)

a
s
g
w

ig. 9. Bifurcation diagram of final radial velocity (ur) amplitude of Newtonian Taylo
= π/α) for R1/R2 = 0.883, α = 3.517, Re1c = 167.2. (a) Re2 = −129.05 (spiral flow) an
at the center of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for
ial velocity (ur) in r–z plane (θ = π).

hile the efficiency is given by

f(np) (%) = S(np)

np
× 100. (17)

n efficiency of 100% (S(np) = np) corresponds to a linear
peed-up of the program with the number of processors, which
s the best theoretical achievable limit although there are excep-
ions where super-linear speed-up can occur due to the effects
f cache architecture and optimization of MPI communications
n the super-computing platform. As clearly seen from Table 2,
he total time required to complete the simulation reduces with
ncrease in the number of processors for all mesh sizes stud-
ed. For example, a single processor requires about 6.5 h to run
000 time steps for a problem size of ≈2.7 million degrees of
reedom (=10 × 65 × 64 × 64), while the simulation takes only
bout 16 min with 32 processors (see Fig. 10(a)). For large mesh
izes, about 90–96% reduction in time is achieved with 32 pro-
essors. Overall, the speed-up of the parallel program follows
ub-linearly with the number of processors as the problem size
ecomes larger as shown in Fig. 10(b). However, it is encour-

ging to note that as mesh size is increased, the efficiency and
peed-up increase as well and for the largest mesh size investi-
ated here (65 × 64 × 64), the program runs at 75% efficiency
ith 32 processors. This can be attributed to the fact that for

r–Couette flow at the center of the computational domain (r = (r1 + r2)/2, θ = π,
d (b) Re2 = −128.85 (TVF).
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Table 2
Parallel implementation of OSIMS algorithm for 3D time-dependent viscoelastic Taylor–Couette flow: speed-up and efficiency

Mesh size
(r/z/θ)

No. of processors,
np

Real execution
time, t(np) (min)

Maximum memory
required (MB)

Swap memory
required (MB)

Speed-up,
S(np) = t(1)/t(np)

Efficiency,
Ef(np) = 100S(np)/np (%)

33/16/16

1 7.57 16 52 1 100
2 4.87 28 82 1.6 77.7
4 3.12 44 139 2.4 60.7
8 1.98 76 286 3.8 47.7

16 1.73 140 707 4.4 27.3

33/32/32

1 33.00 34 90 1 100
2 19.85 52 123 1.7 83.1
4 10.78 79 192 3.1 76.5
8 6.10 133 367 5.4 67.6

16 3.88 241 847 8.5 53.1
32 3.32 456 2323 10.0 31.1

33/32/64

1 71.28 59 141 1 100
2 41.88 84 176 1.7 85.1
4 23.10 125 262 3.1 77.1
8 12.30 208 474 5.8 72.4

16 6.87 374 1031 10.4 64.9
32 4.93 703 2665 14.4 45.2

33/64/64

1 169.25 108 238 1 100
2 91.17 146 280 1.9 92.8
4 48.45 215 397 3.5 87.3
8 25.30 353 682 6.7 83.6

16 13.47 631 1388 12.6 78.6
32 8.03 1185 3330 21.1 65.8

65/64/64

1 380.95 256 570 1 100
2 206.38 373 693 1.8 92.3
4 104.05 601 1012 3.7 91.5
8 57.35 1058 1717 6.6 83.0
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16 29.63 1972
32 15.85 3800

ata for 1000 time steps.

arger meshes, the communication overhead is only a smaller
raction of the total CPU time.

. Application of OSIMS algorithm to

on-axisymmetric viscoelastic Taylor–Couette flow

In order to identify the parametric window for time-
ependent viscoelastic simulations, a linear stability analysis

o
g
s
m

ig. 10. Performance of parallel OSIMS program for 3D time-dependent viscoelastic
3 × 32 × 32 (©), 33 × 32 × 64 (♦), 33 × 64 × 64 (�) and 65 × 64 × 64 (�). (a) Sem
b) speed-up (S(np)) vs. number of processors (np).
3275 12.9 80.3
6940 24.0 75.1

s performed. From this point onwards, we consider only the
nner cylinder rotating (Re1 ≡ Re) while the outer cylinder is
ept stationary (Re2 = 0). We choose β = 0.8 and gap ratios 0.912
nd 0.8 used in previous experiments [26,27,43,44]. The effect

f elasticity (E ≡ De/Re) on stability threshold is presented for
ap ratio of 0.912 in Fig. 11 through a linear stability analy-
is. As shown in Fig. 11(a), the axisymmetric and stationary
ode (ξ = 0) is the most unstable one only for low values of

flow simulation for 1000 time steps with mesh (r, z, θ) sizes: (�) 33 × 16 × 16,
i-log plot of execution time (t(np) in min) vs. number of processors (np) and
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Fig. 11. Linear stability analysis of viscoelastic Taylor–Couette flow for R1/R2 = 0.912, β = 0.8, (�) ξ = 0, (©) ξ = 1, (♦) ξ = 2, (�) ξ = 3. (a) Critical Reynolds number
(Rec) vs. elasticity number (E), (b) critical axial wave number (αc) vs. elasticity number (E) and (c) critical angular frequency (σIc) vs. elasticity number (E). Dashed
and solid lines correspond to stationary and time-dependent modes, respectively.

Fig. 12. Time evolution of radial velocity for viscoelastic Taylor–Couette flow at the center of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for
R1/R2 = 0.912, α = 3.7, Re = 114, De = 10, ξ = 2. (a) Ribbon flow initial condition, (b) spiral flow initial condition, (c) velocity fluctuations of spirals of Fig. 12(b) and
(d) velocity fluctuations of modulated spirals of Fig. 12(b). All initial conditions are superimposed over the steady state solution.
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while for 0.05 ≤ E ≤ 0.15, the most unstable mode becomes
on-axisymmetric and time-dependent with ξ = 2. For values of
lasticity numbers greater than 0.15 the unstable mode corre-
ponds to ξ = 1. The plot of the critical axial wavenumber αc
ersus E in Fig. 11(b) shows that αc varies within 3.15 and 4.2
n the range 0 ≤ E ≤ 0.2. The temporal period, 2π/σIc, associated
ith the eigenfunctions of the time-dependent modes corre-

ponding to the critical imaginary eigenvalue, σIc, is of O(10)
ith respect to the time scale d/R1Ω1 as shown in Fig. 11(c).
Time-dependent simulations are first performed using 33, 16

nd 16 mesh points in r, z and θ directions respectively with
t = 0.05 for Re = 114, De = 10, α = 3.7 (ξ = 2). The initial solu-

ion corresponds to either of the two critical eigenfunctions:
ibbon (Fig. 12(a)) or spiral (Fig. 12(b)). As shown in Fig. 12,
he ribbon solution reaches a final time-periodic state while the
piral solution becomes unstable giving rise to a modulated spiral
tate with multiple frequencies. From the radial velocity contour
lots of the final ribbon state of Fig. 12(a), it is evident that the

ibbons are periodic with axial and azimuthal periods of 2π/αc
nd π, respectively (Fig. 13(a) and (b)), as predicted by LSA.
ontour plots at time = 10,000 (spirals of Fig. 14(a) and (b)) and
t time = 30,000 (modulated spirals of Fig. 14(d) and (e)) reveal

c

t
b

ig. 13. Secondary flow contour plots of viscoelastic Taylor–Couette flow (ξ = 2) f
attern of Fig. 12(a). (a) Radial velocity (ur) in r–z plane (θ = π), (b) radial velocity (u
d) 3D snapshot of ur.
Fluid Mech. 138 (2006) 111–133 123

he same spatial periodicity. The axial velocity (θ–z contour plot)
n Fig. 13(c) indicates that the final state corresponds to ribbon
attern as compared to the spiral in Fig. 14(c) and modulated
piral in Fig. 14(g). From bifurcation analysis, it is seen that the
ifurcations for both the ribbons and the spirals are supercritical
ith an amplitude proportional to the square-root of Re − Rec

s shown in Fig. 15, and the time-dependent simulation reveals
hat the ribbon is the asymptotically stable pattern since the spiral
ecomes unstable for long times via an amplitude modulation.

In Fig. 16, we present LSA results for the viscoelastic TC
ow of gap ratio R1/R2 = 0.8 for a range of elasticity numbers
etween 0 and 0.2. For low values of E, the axisymmetric modes
ξ = 0) are the most unstable ones while for E > 0.03, ξ = 1 (time-
ependent) is the most unstable mode as plotted in Fig. 16(a).
he axial wavenumber is also plotted against E in Fig. 16(b) and
as a value that ranges between 3.1 and 4.2 for 0 ≤ E ≤ 0.2. Note
hat the axisymmetric mode is stationary for E ≤ 0.1 beyond
hich it is time-dependent with a time-period, 2π/σIc, of O(10)
ompared to the flow time scale, d/R1Ω1 as shown in Fig. 16(c).
For the case R1/R2 = 0.8 and β = 0.8, time-dependent simula-

ions are performed to investigate the limiting elasticity number
elow which the OSIMS algorithm can be employed without

or R1/R2 = 0.912, α = 3.7, Re = 114 and De = 10 corresponding to final ribbon

r) in r–θ plane (z = π/α), (c) axial velocity (uz) in θ–z plane (r = (r1 + r2)/2) and
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umerical instabilities that are expected to occur in semi-implicit
chemes for viscoelastic flows [62]. The OSIMS algorithm suc-
essfully simulated flows for E < 0.15. Results are presented for
alues of E = 0.03, 0.05, 0.1, 0.125 and 0.15 slightly above the
inear stability threshold, using 33, 16 and 16 mesh points in the
adial, axial and azimuthal directions with a time step �t = 0.05.
ote that that all the results presented here for mesh size
3 × 16 × 16 remain unchanged when the mesh was refined to
3 × 32 × 32. For the case when E = 0.03 (Re = 89.5, α = 3.26) as
hown in Fig. 17, time-dependent simulations based on random
nitial conditions show that the secondary flow is axisymmet-
ic and stationary, resembling TVF with an axial period 2π/αc
s evident from the inset (r–z contour plots of the final radial
nd axial velocities at θ = π). For E = 0.05 (Re = 86.6, α = 3.4),
he critical disturbance is non-axisymmetric (ξ = 1) and time-
ependent (Fig. 16(a)). Hence two secondary flow patterns,

amely ribbon or spiral can emerge at or above the stability
hreshold [36,38]. Time-dependent simulations were performed
y using initial (Fig. 18) disturbances constructed from eigen-
unctions of spiral and ribbon patterns. Irrespective of the initial

a
t
t
(

ig. 14. Secondary flow contour plots of viscoelastic Taylor–Couette flow (ξ = 2) fo
ig. 12(b). (a) Radial velocity (ur) in r–z plane (θ = π) at time = 10,000, (b) radial ve
lane (r = (r1 + r2)/2) at time = 10,000, (d) 3D snapshot of ur at time = 10,000 (e) rad
–θ plane (z = π/α) at time = 30,000, (g) axial velocity (uz) in θ–z plane (r = (r1 + r2)/2
Fluid Mech. 138 (2006) 111–133

ondition, we observe that the final state corresponds to the
ibbon pattern with ξ = 1. The r–z, r–θ and θ–z plane contour
lots for radial and axial velocities corresponding to the final
ibbon state of Fig. 18(a) are shown in Fig. 19. The spiral solu-
ion becomes unstable for long times and evolves into ribbon as
hown in Fig. 18(b), and the θ–z contour plots of axial velocity
epresent spirals at time = 8000 and ribbons in the final state in
ig. 20(a) and (b), respectively. The bifurcation to the ribbon
nd spiral is supercritical as shown in Fig. 21, indicating that
ne of the two solutions is stable, which in this case happens to
e the ribbon [12].

Time-dependent simulations for the ribbon state were also
uccessfully performed for values of E = 0.1 (Re = 72.0, α = 3.85)
nd 0.125 (Re = 64.8, α = 4.0) as shown in Fig. 22(a) and (b),
espectively. The final ribbon solution from simulations with
= 0.05 was used as initial solution for simulation with E = 0.1,
nd subsequently, the simulation for E = 0.125 was started using
he final solution of E = 0.1. The bifurcation analyses show that
he ribbons bifurcate subcritically for both E = 0.1 and 0.125
see Fig. 23). Subcritical bifurcation to non-axisymmetric and

r R1/R2 = 0.912, α = 3.7, Re = 114 and De = 10 with spiral initial condition of
locity (ur) in r–θ plane (z = π/α) at time = 10,000, (c) axial velocity (uz) in θ–z
ial velocity (ur) in r–z plane (θ = π) at time = 30,000, (f) radial velocity (ur) in
) at time = 30,000 and (h) 3D snapshot of ur at time = 30,000.
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Fig. 14. (Cont

Fig. 15. Bifurcation diagram of final radial velocity (ur) amplitude of viscoelas-
tic Taylor–Couette flow (ξ = 2) corresponding to ribbons and spirals at the center
of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for R1/R2 = 0.912,
α = 3.7, Rec = 111.32 and De = 10.
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ime-periodic states in viscoelastic flows has been predicted by
ocal nonlinear analysis by Sureshkumar et al. [38] who enforced
he spatio-temporal symmetries of the spiral and ribbon into
spectral numerical algorithm based on the Newton–Raphson

echnique. Bifurcation theory in presence of symmetries indi-
ates that under such conditions neither of the two families is
table. However, we observe stable, ribbon-like patterns for suf-
ciently long times. It is plausible that this state is established

hrough a limit point transition at high amplitudes, as conjec-
ured by Sureshkumar et al. [38].

As shown in Fig. 24, for E = 0.15 (Re = 59.333, α = 4.05),
ontinuation from the final state at E = 0.125, failed after a few
undred time steps due to inception of numerical instabilities.
he numerical instability did not disappear even after reducing

he time step from 0.05 to 0.01 or refining the mesh size (r, z, θ)
rom 33 × 16 × 16 to 33 × 32 × 32. These numerical instabili-
ies are commonly encountered in viscoelastic flow simulations
4,52,53,62] where the operator splitting errors lead to the loss

f positive definiteness of the stress conformation tensor. In the
ollowing section, we investigate the use of an artificial stress
iffusivity term introduced into the constitutive equation to over-
ome the numerical instability.
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Fig. 16. Linear stability analysis of viscoelastic Taylor–Couette flow for R1/R2 = 0.8, β = 0.8, (�) ξ = 0, (©) ξ = 1, (♦) ξ = 2, (�) ξ = 3. (a) Critical Reynolds
number (Rec) vs. elasticity number (E), (b) critical axial wave number (αc) vs. elasticity number (E) and (c) critical angular frequency (σ ) vs. elasticity num-
ber (E). Dashed and solid lines correspond to stationary and time-dependent mod
simulations.

Fig. 17. Time evolution of radial velocity for axisymmetric (ξ = 0) viscoelastic
Taylor–Couette flow at the center of the computational domain (r = (r1 + r2)/2,
θ = π, z = π/α) for R1/R2 = 0.8, β = 0.8, α = 3.26, Re = 89.5, E = De/Re = 0.03.
Inset figures correspond to r–z plane contours (θ = π) of axial velocity, uz (bot-
tom) and radial velocity, ur (top) at the final stationary state.
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es, respectively. Filled dots correspond to points chosen for time-dependent

. Effect of artificial stress diffusivity

Introducing small amounts of artificial stress diffusion into
he hyperbolic stress constitutive equation has been proved to
e successful in earlier studies [4,53,62] which used opera-
or splitting algorithms in viscoelastic turbulent channel flow
imulations. Specifically, the presence of small amounts of arti-
cial stress diffusion made it possible for time integrating the
ixed elliptic–hyperbolic set of equations over longer periods

f time, which would otherwise be affected by numerical insta-
ilities. Note that such an artificial diffusive scheme has not
een implemented for curvilinear viscoelastic flows such as the
aylor–Couette flow. The scheme is implemented by adding
stress diffusion term, involving a constant scalar diffusivity
(dimensionless w.r.t. R1Ω1d), into the Oldroyd-B Eq. (3) as

iven by

(1) = − 1

De
[� − (∇u + (∇u)t)] + κ∇2�. (18)

he scalar diffusion coefficientκ should be selected such that sta-
le time-integration is achieved without qualitatively influencing

he flow dynamics. In the simulations, we follow a general cri-
eria for choosing the magnitude of stress diffusivity (κ) based
pon the fact that κ(R1Ω1d)/ν 
 1 and κ(R1Ω1d)/(d2/λ) 
 1,
here ν is the total kinematic viscosity (ηT/ρ). In other words,
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Fig. 18. Time evolution of radial velocity for non-axisymmetric (ξ = 1) viscoelastic Taylor–Couette flow at the center of the computational domain (r = (r1 + r2)/2,
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= π, z = π/α) for R1/R2 = 0.8, β = 0.8, α = 3.4, Re = 86.6, E = De/Re = 0.05. (a) R
re superimposed over the steady state solution. Final pattern corresponds to rib

he value of κ is to be selected such that κRe 
 1 and κDe 
 1.
he former may be thought of as inverse of a Schmidt number
cκ defined as the ratio of the kinematic viscosity to (dimen-
ional) stress diffusivity. In DNS of channel flow, typical values
f Scκ

∼= 0.3. The values of Scκ used here range between 8.33
nd 16.67.

The evolution equation of the modified Oldroyd-B (Eq. (18))
s time-integrated first based on the Adams–Bashforth second
rder explicit scheme in the absence of artificial diffusion, given
s

�n+1/2 − �n

�t
= 3

2
f (�n, un) − 1

2
f (�n−1, un−1), (19)

here f is given by Eq. (14).
This is followed by solving implicitly for the polymeric stress

�n+1) at the (n + 1)th time step, with inclusion of the stress dif-
usion term, given as

∇2�)
n+1 − 2

κ�t
�n+1 = −(∇2�)

n − 2

κ�t
�n+1/2. (20)

q. (20) is supplemented with wall boundary conditions
n+1 = �n+1/2 at r = r1 and r = r2.

Using the diffusive OSIMS algorithm, we first examine the
inear stability problem to examine the influence of stress dif-
usivity on the leading mesh-converged eigenvalues. It is also
mportant to examine the effect of diffusivity on the two con-
inuous sets of eigenvalues of the Oldroyd-B model, whose real
arts are equal to −1/De and −1/(βDe). The eigenfunctions cor-
esponding to these eigenvalues exhibit highly singular behavior
nd are difficult to be resolved numerically [63]. Finally, it
s essential to verify that the introduction of finite κ does not
esult in “spurious” eigenvalues on the positive half plane. Two
est cases in the Re versus E diagram (see Fig. 16(a)) are cho-
en for the present study—one close to the stability boundary

E = 0.15, Re = 59.333, α = 4.05) at which numerical break-down
ccurred in the absence of diffusivity as shown in Fig. 24,
nd the other well beyond the stability threshold (E = 0.033,
e = 120, α = 4.0). In Fig. 25(a), we compare the eigenspectrum

o
t
d
t

flow initial condition and (b) spiral flow initial condition. All initial conditions
n both cases.

or E = 0.15 (Re = 59.333, α = 4.05, ξ = 1) both in the absence
nd presence of stress diffusivity (κ = 10−4, 10−3). As seen
rom there, the presence of artificial diffusivity destroys the
ontinuous spectra and causes the real part of the eigenvalues
ontained in them to become more negative. This is consistent
ith the observations made by Sureshkumar and Beris for plane
oiseuille flow [53]. Moreover, the leading eigenvalue remains
ractically unaffected when κ = 10−4 although a (95%) shift
owards the stable region is observed, when κ is raised to 10−3.
hus, stress diffusivity has a stabilizing effect on the linearly per-

urbed flow. We also see that the artificial stress diffusivity does
ot give rise to any spurious eigenvalues in the unstable region,
hich is an encouraging result from the view point of finite-

mplitude simulations. Similar observations were also made for
= 0.033 (Fig. 25(b)).
We now present results for the nonlinear dynamics predicted

y the diffusive OSIMS algorithm. A value of κ = 10−4 was suf-
cient to overcome the numerical instability as clearly shown in

he time-dependent simulation result plotted in Fig. 26(a). The
nal state corresponds to the ribbon pattern as evident from the
–z contour plot of uz in Fig. 26(b). In order to ascertain the
ffect of κ on the temporal evolution of the disturbances and
attern selection, we compared the dynamics predicted by the
iffusive and non-diffusive OSIMS algorithm. We chose to per-
orm simulations at E = 0.033 (Re = 120, De = 4, α = 4.0, ξ = 1)
t which the latter algorithm was numerically stable, by using
s initial condition the stable ribbon state obtained for E = 0.125
Re = 64.8, De = 8.1, α = 4.0, ξ = 1), reported in Fig. 22(b). The
emporal evolution predicted by the two algorithms is shown in
ig. 27(a) and (b) while θ–z contour plots of the asymptotic sta-
le states are compared in Fig. 28(a) and (b). As evident from
igs. 27 and 28, the final stable states are axially traveling spirals

n the diffusive and non-diffusive simulations. Thus, the diffu-
ive algorithm is able to capture the final stable spiral pattern

f the non-diffusive simulation, although the ribbon (E = 0.125)
o spiral transition time occurs earlier in the presence of stress
iffusion as seen in Fig. 27(a) and (b). The advancement in the
ransition time from ribbon to spiral can be understood as fol-
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ig. 19. Secondary flow contour plots of viscoelastic Taylor–Couette flow (ξ =
nal ribbon pattern of Fig. 18(a). (a) Radial velocity (ur) in r–z plane (θ = π), (b
d) axial velocity (uz) in r–θ plane (z = π/α), (e) radial velocity (ur) in θ–z plane
ows. It is expected that the magnitudes of the velocities and
tresses should change due to decrease in the elasticity from
.125 to 0.033. The elastic forces are therefore reduced, and the
ow adjusts itself to the stable spiral pattern which is a modi-

fi
o
t
e

R1/R2 = 0.8, β = 0.8, α = 3.4, Re = 86.6 and E = De/Re = 0.05 corresponding to
l velocity (uz) in r–z plane (θ = π), (c) radial velocity (ur) in r–θ plane (z = π/α),
r1 + r2)/2) and (f) axial velocity (uz) in θ–z plane (r = (r1 + r2)/2).
cation of the Newtonian flow. The presence of small amounts
f diffusion will have a dampening effect on the magnitude of
he stresses which through the elasticity term in the momentum
quation (Eq. (1)) can cause the velocity flow field to adjust itself
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Fig. 20. Secondary flow contour plots of viscoelastic Taylor–Couette flow (ξ = 1) for
condition of Fig. 18(b). (a) Axial velocity (uz) in θ–z plane (r = (r1 + r2)/2) correspo
(r = (r1 + r2)/2) corresponding to final ribbon pattern.

Fig. 21. Bifurcation diagram of final radial velocity (ur) amplitude of viscoelas-
tic Taylor–Couette flow (ξ = 1) corresponding to ribbons and spirals at the center
of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for R1/R2 = 0.8,
β = 0.8, α = 3.4, Rec = 85.87 and De = 4.33.
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Fig. 22. Time evolution of radial velocity for viscoelastic Taylor–Couette flow (ξ = 1
R1/R2 = 0.8, β = 0.8. (a) α = 3.85, Re = 72.0, E = De/Re = 0.1 (continued from ribbon s
ribbon state at E = 0.1).
R1/R2 = 0.8, β = 0.8, α = 3.4, Re = 86.6 and E = De/Re = 0.05 with spiral initial
nding to spiral state about time = 8000 and (b) axial velocity (uz) in θ–z plane

aster (in this case) or slower to reach the stable state depending
pon the growth/dissipation of mean flow energy necessary to
ustain the new flow state. It is also to be noted that no informa-
ion about the actual flow dynamics is lost in presence of small
mounts of stress diffusion, except on the onset time of flow
tate transition. Generally, depending on the nonlinear interplay
etween inertial, viscous and elastic forces in the flow and also
n the pattern (spatio-temporal)/strength (mean flow energy) of
he initial flow state, the flow can either transition to a different
attern or remain the same with modification in the stress, veloc-
ty or energy amplitudes. The sequence of transitions to the final
table pattern and the time for these transitions depend on the
nitial solution used and the energy contained in the mean flow.
or example, the base Couette flow cannot change to TVF by

ncreasing the flow parameters beyond the critical values with-
ut adding sufficient amount of finite-amplitude disturbances

energy) to the base flow to start with. Hence, introduction of
tress diffusivity allows us to circumvent the numerical instabili-
ies for simulation of flows with high elasticity without affecting
he flow dynamics appreciably.

) at the center of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for
tate at E = 0.05) and (b) α = 4.0, Re = 64.8, E = De/Re = 0.125 (continued from
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Fig. 23. Bifurcation diagram of final radial velocity (ur) amplitude of viscoelas-
tic Taylor–Couette flow (ξ = 1) corresponding to ribbons at the center of the
computational domain (r = (r1 + r2)/2, θ = π, z = π/α) for R1/R2 = 0.8, β = 0.8.
(a) α = 3.85, Rec = 70.67, De = 7.2 and (b) α = 4.0, Rec = 63.9 and De = 8.1.

Fig. 25. Effect of artificial stress diffusivity on eigenspectrum (R1/R2 = 0.8). (a) E = 0.15, Re = 59.333, α = 4.05 at (�) κ = 0, (©) κ = 10−4, (♦) κ = 10−3 and (b)
Re = 120, De = 4, α = 4.0 at (�) κ = 0, (©) κ = 10−4, (♦) κ = 10−3.

Fig. 26. Effect of artificial stress diffusivity for E = 0.15, Re = 59.333, α = 4.05 with κ = 10−4 (R1/R2 = 0.8, ξ = 1). (a) Time-dependent simulation with �t = 0.05,
33 × 16 × 16 mesh points in r, z, θ directions respectively and (b) contour plot of axial velocity (uz) in θ–z plane (r = (r1 + r2)/2) corresponding to final ribbon pattern.

Fig. 24. Time evolution of radial velocity for viscoelastic Taylor–Couette flow
(ξ = 1) at the center of the computational domain (r = (r1 + r2)/2, θ = π, z = π/α)
for R1/R2 = 0.8, β = 0.8, α = 4.05, Re = 59.333, E = De/Re = 0.15 (continued from
ribbon state at E = 0.125, �t = 0.01 (dashed line), 0.05 (solid line)).
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Fig. 27. Effect of artificial diffusivity for Re = 120, De = 4, α = 4.0 (R1/R2 = 0.8, ξ = 1). (a) Time-dependent simulation with κ = 0 and (b) time-dependent simulation
with κ = 10−3. All initial conditions are from the final solution of E = 0.125 of Fig. 22(b). �t = 0.05, 33 × 16 × 16 mesh points in r, z and θ directions, respectively.
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ig. 28. Contour plot of axial velocity (uz) in θ–z plane (r = (r1 + r2)/2) correspo
nd (b) κ = 10−3.

. Conclusions

We have implemented an operator-splitting influence matrix
pectral (OSIMS) algorithm to simulate for the first time non-
xisymmetric and time-dependent flow states in the viscoelastic
aylor–Couette flow of an Oldroyd-B liquid. The OSIMS algo-
ithm is validated based on its predictions for the torque and
nite amplitude states in axisymmetric Newtonian flows, which
re in excellent agreement with previous experimental [61] and
heoretical studies [13,17]. Moreover, the predictions of the
ynamics near the bistability point (0, 1) for counter-rotating
ylinders are also consistent with the findings of a bifurcation
nalysis in presence of symmetries [13] and the experimental
bservations of Andereck et al. [7].

The OSIMS algorithm is shown to be very memory and CPU
fficient as both requirements scale linearly with L2JK where L,
and K represents the number of mesh points used in the radial
Chebyshev), axial (Fourier) and azimuthal (Fourier) directions,
espectively. Faster simulations were made possible by par-
llel implementation of the algorithm on a super-computing
latform. For large degrees of freedom, Np > 2 million, the par-
ing to final spiral pattern for Re = 120, De = 4, α = 4.0 (R1/R2 = 0.8, ξ = 1). (a) κ = 0

allel program performs very well with efficiency and speed-up
increasing with increasing Np. Specifically, for Np ≈ 2.7 million
(=10 × 65 × 64 × 64), the program runs at 75% efficiency with
32 processors. For E ≡ De/Re ≥ 0.15, the OSIMS algorithm is
prone to numerical instabilities. Hence, a diffusive version of
OSIMS was developed by introducing an artificial stress diffu-
sion, κ, into the Oldroyd-B constitutive equation. It was shown
that small amount of stress diffusion (κRe or κDe 
 1) allows
for stable time-integration for larger E values. Moreover, for E
values smaller than 0.15 for which the non-diffusive algorithm is
numerical stable, its predictions are shown to be consistent with
those obtained with artificial stress diffusion. In the scope of
the present work, the largest elasticity value investigated using
artificial stress diffusion is 0.15, but values of E as high as 0.3
can also be simulated based on our experience.

The pattern selection is shown to be dependent on E and the
gap width. For a gap ratio (R1/R2) of 0.8, simulations show that

the ribbon pattern is asymptotically stable as compared to the spi-
ral for E < 0.15. However, for R1/R2 = 0.912, a modulated spiral
flow with multiple frequencies is also observed. For R1/R2 = 0.8
and E = 0.1 and 0.125, the bifurcation to ribbons occurs through
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subcritical transition while the transition is supercritical for
maller E values. It is plausible that higher-order transitions from
he ribbon or spiral states could occur at larger E values leading
o chaotic or disordered states seen experimentally [1,45,47,48].
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