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Synopsis

he microscopic origins of five rheological models are investigated by comparing their predictions
or the conformation tensor and stress tensor with the same tensors obtained via nonequilibrium
olecular dynamics simulations for n-hexadecane. Steady-state simulations were performed under

oth planar Couette and planar elongational flows, and the results of each are compared with
heological model predictions in the same flows, without any fitting parameters where possible.
he use of the conformation tensor for comparisons between theory and experiment/simulation,

ather than just the stress tensor, allows additional information to be obtained regarding the
hysical basis of each model examined herein. The character of the relationship between stress and
onformation is examined using model predictions and simulation data. © 2006 The Society of
heology. �DOI: 10.1122/1.2240308�

. INTRODUCTION

One of the primary interests in rheology is to develop both physically and practically
seful rheological models that can explain and predict various linear and nonlinear vis-
oelastic properties of polymeric materials. Although there have been numerous efforts to
evelop such viscoelastic models for complex liquids using various techniques from the
tomistic to the continuum scale, any of the existing models is still far from complete in
erms of being able to explain the wealth of complicated phenomena occurring in flowing
hain-molecule systems �Bird et al. �1987a, 1987b�; Morrison 2001; Beris and Edwards
1994��. However, many models, in particular, ones with sound physical bases rather than
urely phenomenological ones, do have merit and can provide some clues that are useful
n interpreting complex phenomena and possibly even predicting behavior which is un-
nown to us. Therefore, it is very important to understand the advantages and disadvan-
ages of the existing rheological models through detailed physical and mathematical
nalyses and comparison with an extensive suite of experimental and/or simulation data.

In this work, we carry out an analysis on five simple viscoelastic fluid models, each of
hich has a reasonably sound physical basis: The upper-convected Maxwell �UCM�
odel, the Rouse model, the extended White/Metzner �EWM� model, the finitely exten-

ible nonlinear elastic �FENE-p� model with the Peterlin approximation, and the Giesekus
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626 BAIG et al.
odel �see, for example, Chapter 8 of Beris and Edwards �1994� for details of these
odels�. We restrict our attention to these relatively simple models due to the simplicity

f the molecular system under consideration: n-hexadecane is well below the entangle-
ent length of linear polyethylene chains, and thus reptation models are not going to

pply to this situation. The question then arises: Why should any of these rheological
odels for polymers, reptation or not, apply to the fairly short-chain n-hexadecane, and,

ven if they did, what useful information can be gleaned from examining them?
The answer to the above-stated question is one of time scales. Indeed, many models

ommonly used for polymer rheology were actually derived for some other physical
ystem. For example, the UCM model was developed by applying Oldroyd’s contravari-
nt deformation derivative �Oldroyd �1950�� to the model derived by Maxwell �1867� for
dilute gas! The operative time scale for this physical system is on the order of 10−15 s.
et, this model has played a major role in the development of polymeric flow theory on
any different time scales. Furthermore, this model is the limiting case for vanishing

train rate for many other viscoelastic fluid models. It corresponds to the Hookean dumb-
ell model derived through kinetic theory �Bird et al. 1987b�. In fact, the multiple-mode
ersion is still the primary fitting model for storage and loss moduli in small-amplitude
scillatory flow experiments for all sorts of viscoelastic fluids. As another example,
onsider the Oldroyd-B model. This model was developed by applying Oldroyd’s con-
ravariant deformational derivative to the model introduced by Jeffreys �1924� to describe
he motion of the Earth’s tectonic plates on geological time scales �1015 s�. Again, despite
he overwhelming difference in time scales of polymers compared to the Earth’s mantle,
his model has been used commonly in viscoelastic flow calculations.

In hexadecane, the intrinsic time scale is very small relative to those of typical poly-
er solutions and melts. According to our equilibrium and nonequilibrium simulations,

escribed below, the longest �rotational or Rouse� relaxation time of n-hexadecane is
bout 190 ps. Thus, for all common experimental procedures, this fluid is Newtonian for
ll practical purposes. However, an advantage of simulation is that impractical situations
an often be investigated with relative ease, and, in this case, it is possible to exceed the
train rate �reciprocal of the Rouse time� at which point significant non-Newtonian flow
haracteristics might be expected to appear. After all, even a dilute gas, according to
axwell, will exhibit viscoelastic characteristics under the right conditions.
All of the simple models examined herein reduce to the UCM model under the ap-

ropriate conditions, generally when the strain rate vanishes. As described below, each
odel extends the UCM model by incorporating an additional ansatz for the motion of

he chain molecules comprising the system. Although these models were developed for
olymeric fluids with time scales much larger than hexadecane, there is no reason to
xpect that the inherent physics contained therein is not also applicable on the much
maller time scale. It is thus natural to examine how well these simple models compare
o simulated results of short-chain molecules under shear and planar elongational flows at
igh strain rates. Whether or not the results are directly applicable to entangled polymers
s not the issue here; they are probably not applicable. Nevertheless, the simulation
esults presented herein do offer significant clues as to the nature of the viscoelastic
esponses of the various models relative to the structure of the chains that they purport-
dly represent. For instance, possible issues to resolve are: Does the maximum chain
ength in the FENE-p model correspond to the actual length of the chains, and does the
nisotropic mobility tensor of the Giesekus model correspond to actual physics? These
uestions can be addressed in a systematic fashion using nonequilibrium molecular dy-
amics �NEMD� simulations.
In the following analysis, instead of using only the stress tensor or material functions
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627PROPERTIES OF CHAIN MOLECULES
or comparison between theory and experiment/simulation, we employ primarily the
onformation tensor in analyzing the predictive capabilities of each model. Of course, it
s difficult to measure the conformation tensor directly during experimentation, but it is
ery easy to calculate it during simulation. The dimensionless conformation tensor, c̃, is
efined herein as

c̃ = �3RR/�R2�eq� , �1�

here R represents the end-to-end vector of chain. The angular brackets represent the
ime average of the system trajectory, and the subscript eq stands for the equilibrium
tate. Notice that at equilibrium, c̃ reduces to the unit tensor.

Another aspect of this work is that we use the steady-state simulation data not only
nder shear, but also under elongational flow. This is another advantage of simulation
ver experiment, since it is extremely difficult to obtain the steady-state experimental
ata under elongation. This is considered essential since rheological models are, in gen-
ral, built without regard to a specific type of flow, and thus the test of models using data
nder shear flow only is not as informative.

I. SIMULATION DETAILS

The simulation data under planar Couette flow �PCF� and planar elongational flow
PEF� were obtained by performing �constant particle number, volume, and temperature�
VT NEMD simulations using the p-SLLOD algorithm incorporating the Nosé-Hoover

hermostat �Nosé 1984a, 1984b; Hoover 1985�. The equations of motion for this system,
s well as all of the pertinent simulation details, are described elsewhere �Cui et al.
996a; Baig et al. 2005a, 2005b; Edwards et al. 2005�. The united atom model known as
he Siepmann, Karaboni, and Smit �SKS� model, �Siepmann et al. �1993�� was used to
escribe n-hexadecane. This model does an excellent job of describing the thermophysi-
al properties of liquid and gaseous n-alkanes under quiescent conditions �Siepmann et
l. 1993; Ionescu et al. 2006�, and has been shown to reproduce experimental viscosity
easurements of Newtonian n-alkanes �Cui et al. 1996b�.
In this work, we employed 162 molecules of hexadecane �C16H34� for both PCF and

EF. The state point in this study is exactly the same as that used by Cui et al. �1996a� for
hear flow: The temperature is T=323 K, and the density is �=0.7530 g/cm3. We em-
loyed the same range of strain rates for PCF and PEF: 0.002��̇�m�2 /��1/2,

˙ �m�2 /��1/2�1.0. Here, �̇ and �̇ denote the shear and elongation rates, respectively, m is
ass of the CH2 group, and � and �, respectively, are the size and energy parameters of

he CH2 group in the Lennard-Jones potential in the SKS model. The lowest strain rate is
mall enough for the system to lie within the linear viscoelastic regime. The highest strain
ate is well below the point where any thermostat artifacts are known to occur �Cui et al.
996a; Baig et al. 2005b�. Statistical error bars for the simulation data can be found in
aig et al. �2005b� and Cui et al. �1996a�.

II. VISCOELASTIC MODELS

All five viscoelastic models studied in this work contain two common parameters, the
longest� primary relaxation time of the system, �, and the concentration of chains, n.
See the Appendix for the detailed equations for each of the five models.� From the state
oint of the simulation, we know that n=0.002/Å3. An equilibrium molecular dynamics
imulation reveals that �=191 ps, which was obtained using the time correlation function
f the chain end-to-end unit vector �Cui et al. 1996a; Doi and Edwards 1986; Baig et al.

005b�. This value agrees very well with the one obtained from NEMD simulations for
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628 BAIG et al.
he Rouse time obtained from the reciprocal value of the strain rate for the onset of
train-thinning behavior in planar elongational flow �Baig et al. 2005b�. These values of

and n are used to obtain the predictions of each model. Therefore, the two linear
odels �the UCM and Rouse models� containing only � and n, in fact, have no fitting

arameters whatsoever. The other three nonlinear models �the EWM, FENE-p, and
iesekus models� contain one additional parameter. The nonlinear parameters, k=−36.2

or PCF and −4.98 for PEF, a shear �tension�-thinning exponent in the EWM, and �
0.882 for PCF and 1.00 for PEF, a factor accounting for anisotropic drag forces in the
iesekus model, were obtained by fitting one �c̃xy for PCF� or two �c̃xx and c̃yy simulta-
eously for PEF� components of c̃ to the simulation data. In the FENE-p model, the
onlinear parameter, b, the maximum chain extension, can also be obtained from simu-
ation, as will be discussed later. Ergo, the FENE-p model also has no fitting parameters.

Note that the parameter k of the EWM model is significantly different in PCF than in
EF. One would expect that this parameter should be the same in both types of flow if the
nderlying physical concept of the model was realistic. This parameter of the EWM
odel quantifies the degree of change induced in the fluid’s relaxation time due to the

rientation induced by the imposed flow field. Although perhaps reasonable for polymeric
uids, for a short-chain molecule, such as hexadecane, one would expect that this param-
ter would not have much of an effect on the system relaxation time. The large difference
n its value between the two types of flow fields seems to invalidate the model for
hort-chain molecular systems, since the relaxation time of the stretched molecules can-
ot be dramatically altered by the flow field. Nevertheless, we shall present the results
rom this model below for didactic purposes.

From the perspective of the Hookean dumbbell model �which is equivalent to the
CM model�, the drag coefficient, �, can be calculated from equilibrium simulations

hrough the formula �=4K� �Beris and Edwards 1994�. For hexadecane, the spring con-
tant, K, was calculated as 3.05	10−3 kg/s2, which gives a value for � of 2.33

10−12 kg/s.
For several of the models investigated herein, analytical solutions for the conformation

ensor and material functions for PCF and PEF can be derived. In the case that analytical
olutions could not be derived, the model equations were solved numerically using the
ewton-Raphson method �Press et al. 1992�. The technique we employed to optimize the
odel parameters �for the EWM and Giesekus models� to simulation data was the Nelder

nd Mead downhill simplex method �NMDSM� �Press et al. 1992�. �For more details
oncerning the numerical methodology, see Jiang et al. �2004��.

V. COMPARISONS OF MODELS AND SIMULATION DATA

With these results for c̃ and the material functions for each model, let us compare the
redictions of the models with the simulation data. Figure 1 shows the prediction of each
odel for the conformation tensor under PCF. The results for c̃xy, which are directly

elated to the shear viscosity, are shown in Fig. 1�a�. As expected, both the UCM and
ouse models are shown to predict data in the linear regime only, which is readily
nderstood from Eqs. �A3� and �A10� for these models, respectively. However, as two-
arameter models without any fitting parameters, their predictions for the linear data are
till reasonably good and considered useful in practical applications. A noticeable thing in
ig. 1�a� is that, quantitatively, the Rouse model shows an excellent prediction, much
etter than the UCM model. It has been noted previously that the Rouse model works
urprisingly well for short-chain molecular systems �Kremer and Grest 1990�. This ap-

˜
arent result leads to an important conclusion: Comparing cxy in Eqs. �A3� and �A10�, it
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629PROPERTIES OF CHAIN MOLECULES
s seen that � in the UCM model is quantitatively not the same as that in the Rouse
odel, but is different by a factor of �4/
2��p:odd1 / p4��0.41�. That is, ��UCM� is equal

o approximately 0.41	��Rouse�. From the result shown in Fig. 1�a�, it would be rea-
onable to conclude that � in the Rouse model, and not � in the UCM model, represents
he “true” primary relaxation time of the physical system. 	In fact, such an excellent
rediction of the Rouse model is also observed in other short chain systems, such as

10H22 and C24H50 �Baig �2005��
.
Now let us look at the predictions of the nonlinear models in Fig. 1�a�. The EWM

odel is seen to predict the nonlinear behavior of c̃xy to some extent, but does not
erform well quantitatively. Over the range of shear rates examined herein, the end-to-
nd extension of the hexadecane chains changes by approximately 50% from the equi-
ibrium value �Baig et al., 2005b�. The EWM model underestimates the degree of mo-
ecular extension for these short chains. Although it is possible that the concept of a
onformation dependent relaxation time might apply well to longer chain polymers, for
hort chains, it appears that the relatively small value of the maximum possible chain
xtension is incompatible with the required degree of change in the relaxation time.

The best prediction of c̃xy over the whole range of shear rates is produced by the
ENE-p model. This is quite remarkable since there are no fitting parameters in this
odel. It is seen from this result that the non-Gaussian behavior of chains represented by

he parameter b in the FENE-p model plays an important role in correctly predicting the
hysical phenomena of this short-chain system under flow. Another point worthy of
onsidering in Fig. 1�a� is that the FENE-p model has the capability to predict the

˜

IG. 1. Comparison between the model predictions and simulation data for the conformation tensor versus
hear rate under PCF: �a� c̃xy, �b� c̃xx, �c� c̃yy, and �d� c̃zz. The circles and lines, respectively, represent the
imulation data and the model predictions: the UCM model �the dashed-dotted lines�, the Rouse model �dotted
ines�, the EWM model �short-dashed lines�, the FENE-p model �long-dashed lines�, and the Giesekus model
solid lines�. Notice that �c� and �d� appear to have fewer lines due to the overlap between lines.
oncave shape of cxy, passing through a maximum at an intermediate shear rate. Here, we
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630 BAIG et al.
hose the FENE-p maximum extension length to be that of the chain in the extended
ig-zag conformation, with all bonds and bond angles at their equilibrium values. Of
ourse, b would be larger if the bonds and bond angles were stretched out further, but the
alue chosen seems to give an accurate description of the FENE dynamics.

Although it is not as good as the FENE-p model, the Giesekus model is shown to
redict c̃xy reasonably well. However, considering that the initial slope of the predicted
urve is almost the same as that of the UCM model, the apparent discrepancy of the
iesekus model is presumed to come mainly from the choice of � in the UCM model

ather than its physical basis. �This argument seems to be understandable by considering
n the figure that a slight change of the initial slope of the curve would make the Giesekus
rediction as good as the FENE-p.� At higher shear rates, the Geisekus model exaggerates
he extension of the chains; however, the qualitative features are well described. This
ends credence to the concept that anisotropic chain alignment gives rise to an anisotropic

obility tensor: As the chains stretch and align under increasing flow strength, they
xhibit enhanced molecular extension/compression relative to undeformed molecules.
gain, however, it seems that the hexadecane molecules experience a much smaller

nisotropic effect due to the relatively short length of the chains.
The model predictions for c̃xx are shown in Fig. 1�b�. According to Eqs �A3� and

A10�, both the UCM and Rouse models predict a quadratic dependence of c̃xx on the
hear rate. Quantitatively, however, the prediction of the Rouse model for the data in the
inear regime in Fig. 1�b� is seen to be excellent and much better than that of the UCM

odel. The FENE-p model again appears to be the most satisfactory in predicting the
onlinear behavior of c̃xx. Notice, however, that the FENE-p model does not predict unity,
ut �b−3� /b of c̃xx �in fact, c̃yy and c̃zz as well� for �̇→0, which is readily understood
rom Eq. �A17�. The reason for this discrepancy is that the definition of the dimensionless
onformation tensor, Eq. �1�, is inconsistent with the FENE-p model. For this model, the
orm of the dimensionless conformation tensor which should be applied to the simulation
ata is

c̃ = � 3

R0
2� R0

2

�R2�eq
− 1
RR� . �2�

ote that this expression reduces to Eq. �1� when R0 is relatively large compared with
�R2�eq�1/2, i.e., for long-chain molecules; hence, this discrepancy is only noticeable for
mall molecules, such as hexadecane. To simplify the discussion henceforth, and to keep
he number of figures at a minimum, only Eq. �1� is applied to the simulation data;
owever, the reader should mentally shift the FENE-p simulation data accordingly.

For c̃yy and c̃zz, shown in Figs. 1�c� and 1�d�, respectively, both the UCM and Rouse
odels predict unity. Therefore, nonunit values of c̃yy and c̃zz are considered as nonlinear

iscoelastic properties. For c̃yy, the EWM model predicts unity, as do the linear models.
he Giesekus model, however, is shown to predict qualitatively the decrease of c̃yy with

ncreasing shear rate, but does not do so quantitatively. Overall, the FENE-p model
ppears to provide the closest description of the degree of decrease of c̃yy as a function of
hear rate up to intermediate values. �This is more apparent after mentally shifting up c̃yy

y the factor �b−3� /b.� For c̃zz, all models except the FENE-p predict unity for c̃zz,
egardless of the value of shear rate. The FENE-p model predicts not only the nonunit
alue of c̃zz, but also the overall nonlinear behavior, fairly well. Notice from Eq. �A17�,
owever, that the FENE-p prediction for c̃yy is the same as that for c̃zz, which leads to a
ero-value of the second normal stress coefficient, as discussed below.
Summarizing, while the linear viscoelastic behavior of the conformation tensor under
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631PROPERTIES OF CHAIN MOLECULES
CF is predicted very well by the Rouse model, the overall linear and nonlinear behav-
ors are best predicted by the FENE-p model. This is rather remarkable, considering that
here are no fitting parameters in the FENE-p model. The Giesekus model appears to be
airly satisfactory, although not as good as the FENE-p model. In contrast, the EWM
odel does not appear to be very good, compared with the other two nonlinear models.
Now, let us look into the model predictions for the steady-state material functions

nder PCF. As shown in Fig. 2�a�, the zero-shear viscosity appears to be reasonably well
redicted by the UCM model. However, a more satisfactory result quantitatively is
chieved by the Rouse model, which again demonstrates the superiority of the Rouse
odel to the UCM model in predicting the linear viscoelastic properties of chain mol-

cules. Despite the fact that the UCM model is considerably worse than the Rouse model
n predicting c̃xy, its prediction for the zero-shear viscosity appears to be better than one
ould have expected from Fig. 1�a�. This apparent contradiction stems from the cancel-

ng effect between two “incorrect” parameter values, � and n, in the UCM model. Recall
hat ��UCM�=0.41 ��Rouse�. Taking into account the difference between the �’s in the
wo models, the comparison of the shear viscosity between Eqs. �A4� and �A11� shows
hat n in the UCM model is different from that in the Rouse model by a factor of about
. The quantitatively correct prediction of the Rouse model for both c̃ and zero-shear
iscosity proves that both � and n in the Rouse model are the correct values, but those in
he UCM model are not. Now, it can be understood that the apparently good prediction of
he zero-shear viscosity by the UCM model has occurred due to the canceling effect
etween � and n with factors of approximately 0.4 and 2, respectively. However, even
ith the canceling effect, the UCM model still results in a larger value of the zero-shear
iscosity by a factor of 12/
2 than the Rouse model. �This can be noticed in Fig. 2�a��.

IG. 2. Comparison between the model predictions and simulation data for the steady-state material functions
n PCF: �a� Shear viscosity, �b� first normal stress coefficient, �c� second normal stress coefficient, and �d� the
atio of second to first normal stress coefficients. The symbols and lines represent the same quantities as in Fig.
. Note that all models except the Giesekus predict a vanishing second normal stress coefficient.
Regarding the shear-thinning behavior in Fig. 2�a�, neither the EWM nor the Giesekus
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632 BAIG et al.
odels satisfactorily describes either the zero-shear viscosity or the degree of shear
hinning. An excellent prediction is observed by the FENE-p model for both the linear
nd nonlinear regimes, although there appears to be a little discrepancy at high shear
ates.

In Fig. 2�b�, we plot the first normal stress coefficient, �1, versus shear rate. The
ouse model prediction for �1 in the linear regime still appears to be quite impressive.

n contrast, the prediction of the UCM model seems to be quantitatively less satisfactory,
lthough the order of magnitude is still reasonable. This result provides further evidence
f the above-mentioned canceling effect in the prediction of the zero-shear viscosity by
he UCM model.

The most difficult material function to predict is the second normal stress coefficient,

2, which is shown in Fig. 2�c�. It should be noted that all the models except the
iesekus predict zero values of �2. As shown in Fig. 2�c�, the Giesekus model can
redict not only a nonzero value of �2, but also the overall behavior of �2 versus shear
ate reasonably well. Another impressive capability of the Giesekus model is seen in Fig.
�d�, where it predicts the ratio of the two normal stress coefficients fairly well. 	Note
hat it is generally known experimentally, for long-chain molecules, that −�2 /�1 is
etween 0.1 and 0.4 �Doi and Edwards �1986��
.

Overall, the best prediction of the material functions under PCF is that of the FENE-p
odel. However, it should be emphasized that the quantitative prediction of the linear

iscoelasticity by the Rouse model is truly remarkable. Also, a reasonably good predic-
ion by the Giesekus model for −�2 /�1, as well as �2, seems to further support the
ignificant role of the effect of anisotropic drag under flow.

Now let us turn to the model predictions for PEF. Figure 3 shows the results for the

IG. 3. Comparison between the model predictions and simulation data for the conformation tensor vs elon-
ation rate under PEF: �a� c̃xx, �b� c̃yy, and �c� c̃zz. The symbols and lines represent the same quantities as in Fig.
.

onformation tensor. As in the case of PCF, the Rouse model shows excellent predictions
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633PROPERTIES OF CHAIN MOLECULES
or all the components of c̃ in the linear regime. The UCM model appears to give
ualitatively, but not quantitatively, correct results for the linear data. All the nonlinear
odels appear to correctly predict the qualitative behaviors of c̃xx and c̃yy, but the best

greement with the simulation data is observed with the FENE-p model. Notice in the
gure that, as in the case of PCF, the FENE-p model predicts that all of the diagonal
omponents go to �b−3� /b in the limit of low strain rate—see Eq. �A19�. An important
bservation is that all the models except the FENE-p predict unity for c̃zz, as shown in
ig. 3�c�. The FENE-p model appears to give fairly good predictions well up to the

ntermediate range of elongation rates, although the slope at the highest elongation rates
ppears rather steep.

In Fig. 4, the two elongational viscosities �Baig et al. �2005b��, �1 and �2, are plotted
ersus elongation rate. The Rouse model again very well predicts the linear viscoelastic
roperties, much better than the UCM model. �Both models predict tension-thickening
ehavior for �1 in the nonlinear regime.� The EWM and Giesekus models capture the
ension-thinning behavior of �1 correctly, although the quantitative predictions are not
ery good. �Note that the Giesekus model predictions are continuous over the entire strain
ate regime studied, but that the slope of the curves changes dramatically around a
imensionless strain rate of about 0.01.� On the contrary, the FENE-p model predicts a
ension-thickening behavior for �1, rather than the tension-thinning. This is considered to
e a disadvantage of the FENE-p model. It is interesting to note, as shown in Fig. 4�b�,
hat the tension-thinning behavior of �2 is captured by all of the models, even by the
inear ones. Also note that in the limit of small strain rates, the simulation data demon-
trate that the zero-shear-rate viscosity �Fig. 2�a�� is equal to �1 and �2, in agreement
ith Newtonian fluid mechanics.
Overall, the predictions of nonlinear viscoelastic models for PEF do not appear to be

s good as those for PCF. This is probably due to the severe stretching that occurs in
longational flow for this rather short n-alkane. Nevertheless, the Rouse model still ap-
ears to predict very well the linear viscoelasticity of PEF, as well as that of PCF.

Now let us discuss the relationship between the stress tensor, �, and the conformation
ensor, c̃. In the present work, all models except the FENE-p model assume a linear
elationship between � and c̃. This linear relationship derived from the study of rubber
lasticity assuming affine deformation of solid rubber under an external force. It has also
een derived for polymer solutions or melts assuming the Gaussian chain approximation

˜

IG. 4. Comparison between the model predictions and simulation data for the steady-state material functions
or PEF: �a� first elongational viscosity and �b� second elongational viscosity. The symbols and lines represent
he same quantities as in Fig. 1.
or the end-to-end vector of chains or chain segments. In Figs. 5 and 6, c is plotted versus
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. As shown in Fig. 5 for PCF, the linear relation appears to be valid only at small strain
ates, i.e., in the linear regime. Overall, the simulation data appear to be qualitatively of
he FENE-p type, Eq. �A15�, rather than the straight line of Eq. �A1�; i.e., the non-
aussian effect becomes more significant with increasing shear rate. In order to better
nderstand this behavior, the predictions from the Rouse and FENE-p model are included
n the figures. The predictions of both models for the linear regime are shown to be
xcellent �although the prediction of the FENE-p model for c̃xx− c̃yy seems less satisfac-
ory than for c̃xy�. Furthermore, the FENE-p appears to perform reasonably well even for
he nonlinear regime. This result seems to explain to some extent why the FENE-p model
redicts PCF very well. We conjecture that this result would be valid �at least qualita-
ively� even for long-chain molecules as well.

The relationship between � and c̃ for PEF is shown in Fig. 6. Again, both models are
bserved to predict the linear data very well. Here, however, even the FENE-p-type
elation between � and c̃ does not seem to be valid in this flow. This result may explain
artially why the FENE-p model did not show such a good performance for PEF, as it did
or PCF. Therefore, it can be concluded that a simple relationship �either linear or the
ENE-p type� between � and c̃ would not be valid in general for arbitrary flows.

It is interesting to consider the simulation data for the relationship between stress and
onformation, with respect to the recent work of Bach et al. �2003� and Luap et al.

IG. 5. The relationship between the conformation and stress tensors for PCF: �a� c̃xy vs �xy and �b� c̃xx− c̃yy vs

xx−�yy. The circles and lines, respectively, represent the simulation data and the model predictions: the Rouse
odel �dotted lines� and the FENE-p model �long-dashed lines�. Here, numerical values of components of the

tress tensor are written in terms of the reduced units �� /�3�.
2005�. These groups showed that the tension-thinning regime of elongational viscosity
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xtended well beyond the failure of the stress-optical relation, and so also for the onset of
on-Gaussian chain stretching. Simulation data in Figs. 5 and 6 point to the same behav-
or, and open the possibility of examining the stress-optical relationship more thoroughly
hrough simulations in the future.

It is also interesting to examine the above results in light of the work of Keunings
1997� concerning the Peterlin approximation of the kinetic theory FENE Model. In the
ENE model, the extra stress tensor is given by the equation

� = nK� RR

1 − R2/R0
2� . �3�

eunings noted that the FENE-p configurational distribution function is always Gaussian.
his property is not satisfied in our simulations �Baig et al. �2005b��, and is a potential
ource of the discrepancy between the FENE-p Model and the simulation data presented
bove. It would be insightful to test this hypothesis by calculating the FENE stress
irectly from Eq. �3�, without the preaveraging introduced in the FENE-p expression of
q. �A15�. Unfortunately, this calculation is too computationally intensive for us to
erform reliably, since the denominator in Eq. �3� causes large fluctuations, especially as
he chains extend under flow. Indeed, since we assumed that R0

2 is based on a chain in the
ully-trans conformation, it is even possible in the simulation to have a negative
enominator—as the chain can acquire an extended conformation longer than R0. Our
alculations of � using Eq. �3� appear to give more accurate descriptions of the simula-
ion data than the FENE-p stress tensor, but we chose not to report them due to the large

FIG. 6. The same as in Fig. 5 for PEF: �a� c̃xx− c̃yy vs �xx−�yy and �b� c̃zz− c̃yy vs �zz−�yy.
tatistical uncertainty inherent to them. We hope to address this issue further in the future,
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636 BAIG et al.
ither through much longer computations to obtain better statistics, or thorough a more
horough analysis of the non-Gaussian character of the configurational distribution func-
ion. A more meaningful value of R0 would also help to alleviate the fluctuations in the
enominator of Eq. �3�.

Figure 7 depicts the comparison between the model predictions and simulation data
or the orientation angle of the chains in PCF. �Note that in PEF, all model predictions
nd simulation data are 0° for all strain rate values.� All models except the EWM model
ive reasonably good predictions for this quantity. This is another sign of the inapplica-
ility of the EWM model to short-chain molecules. The best prediction appears to be
chieved by the FENE-p model.

. SUMMARY

In view of the results presented above, the following conclusions are evident.

Based on the results in PCF, ��UCM� and n�UCM� are equal to approximately 0.4
	��Rouse� and 2	n�Rouse�, respectively. The excellent agreement for � and n be-
tween simulation data and the Rouse model suggests that � and n in this model should
be considered as the true �longest� relaxation time and the “accurate” chain concentra-
tion of the system, respectively.
The nonlinear viscoelastic models appear to perform better for PCF than PEF. The
reason for this is that the degree of chain stretching and orientation is much more
severe in PEF than in PCF, thus exaggerating differences between various degrees of
alignment.
The EWM model does not appear to be particularly well suited for describing the
rheological and structural properties of short-chain molecular fluids. This is due to the
small change in the molecular size, relative to the large change in the relaxation time
induced by the model.
Overall, the good performance of the FENE-p model for predicting nonlinear vis-
coelastic properties, particularly for PCF, seemed to indicate a significant role of the
finite extensibility parameter, b, in short-chain dynamics. Also, the reasonable predic-
tions of the Giesekus model—for �1, �2, and even −�2 /�1—seem to imply the
physical significance of the anisotropic drag force under flow for short-chain systems,

IG. 7. Comparison between the model predictions and simulation data for the orientation angle of chains in
CF. The symbols and lines represent the same quantities as in Fig. 1.
although the extension of the chains is exaggerated.
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637PROPERTIES OF CHAIN MOLECULES
The well-known linear relationship between c̃ and � in polymer rheology, which only
incorporates the Gaussian intramolecular entropic effect, does not seem to be valid for
systems of short-chain molecules in arbitrary flows, even when the molecules are not
fully stretched. For PCF, the FENE-p type equation, Eq. �A15�, appears to be qualita-
tively valid for the relationship between c̃ and �. For PEF, however, even the FENE-p
type equation does not appear to be valid. In general, a more complicated relationship
must apply for arbitrary flow conditions.
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PPENDIX: PRESENTATION OF THE MODEL EQUATIONS

The UCM model contains two parameters, � and n. The evolution equation of c̃ and
he relation between c̃ and � in the UCM model are given by �Beris and Edwards �1994��

ĉ̃�
 = −
1

�
�c̃�
 − ��
�; ��
 = nkBT�c̃�
 − ��
� , �A1�

here the upper-convective derivative, ĉ̃�
, is defined as

ĉ̃�
 �
�c̃�


�t
+ v���c̃�
 − ��v�c̃�
 − c̃����v
. �A2�

n deriving the steady-state solutions for each model, it is useful to recognize that, in
artesian coordinates, there are only four nonzero-independent components of c̃ �c̃xx, c̃yy,

zz, and c̃xy� for PCF, and three such components �c̃xx, c̃yy, and c̃zz� for PEF. By solving
q. �A1� for PCF at steady state, the four nonzero components of c̃ are found to be

c̃xx = 1 + 2�2�̇2; c̃yy = 1; c̃zz = 1; c̃xy = ��̇ . �A3�

rom Eqs. �A1� and �A3�, the material functions are found to be

�shear��̇� =
�xy

�̇
= nkBT�; �1��̇� =

�xx − �yy

�̇2 = 2nkBT�2; �2��̇� =
�yy − �zz

�̇2 = 0.

�A4�

imilarly, the three components of c̃ and material functions for PEF are

c̃xx =
1

1 − 2��̇
; c̃yy =

1

1 + 2��̇
; c̃zz = 1, �A5�

�1��̇� =
�xx − �yy

4�̇
=

nkBT�

�1 − 2��̇��1 + 2��̇�
; �2��̇� =

�zz − �yy

2�̇
=

nkBT�

1 + 2��̇
. �A6�

The Rouse model �a bead/spring chain model, where N beads are connected to each
ther through N−1 Hookean springs� also contains two independent parameters, � and n.

or N=2, the Rouse model reduces to the UCM model. The solutions of the conformation
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638 BAIG et al.
ensor and material functions can be found more easily by working in terms of the normal
oordinates �see Chapter 4 in Doi and Edwards �1986� for details�. The constitutive
quations of c̃ and � are

c̃�
 =
48

Na2 �
p:odd

�

�Xp�Xp
�; ��
 = n�
p=1

�

kp�Xp�Xp
� − n�
p=1

�

kBT��
, �A7�

here a is the bond length between adjacent beads. The quantity �Xp�Xp
� is found by
olving the evolution equation

�

�t
�Xp�Xp
� =

1

�p
�2kBT��
 − 2kp�Xp�Xp
�� + ��v��Xp�Xp
� + ��v
�Xp�Xp�� . �A8�

ere, Xp denotes the pth-normal mode and �p=2N� for p=1,2 ,3 , . . ., �0=N�, where �
epresents the friction constant of a bead, and p:odd represents p=1,3 ,5 , . . .. The

pth-mode spring constant, kp, and relaxation time, �p, are defined as

kp =
6
2kBT

Na2 p2; �p =
�p

kp
=

�N2a2

3
2kBT

1

p2 =
�

p2 , �A9�

here � ���N2a2 / �3
2kBT�� represents the longest relaxation time among the modes.
olving Eq. �A8� for �Xp�Xp
� in PCF and substituting the results into Eq. �A7�, the
onformation tensor is found to be

c̃xx = 1 +
4


2�2�̇2 �
p:odd

1

p6 ; c̃yy = 1; c̃zz = 1; c̃xy =
4


2��̇ �
p:odd

1

p4 . �A10�

sing Eqs. �A7� and �A10�, the material functions are

�shear��̇� =

2

12
nkBT�; �1��̇� =


4

180
nkBT�2; �2��̇� = 0. �A11�

imilarly, the steady-state solutions of c̃ and material functions for PEF are

c̃xx =
8


2 �
p:odd

1

p2 − ��̇
; c̃yy =

8


2 �
p:odd

1

p2 + ��̇
; c̃zz = 1; �A12�

�1��̇� =
nkBT

2
��

p=1

�
p2

�p2 − ��̇��p2 + ��̇�
; �2��̇� =

nkBT

2
��

p=1

�
p2

p2 + ��̇
. �A13�

The EWM model has the same form of the constitutive equations �Eq. �A1�� of c̃ and
as in the UCM model. However, in this model, � is not a constant, but a function of c̃:

� = �0�1

3
tr c̃
k

. �A14�

he steady-state solutions of c̃ and � are easily found by replacing � in the solutions of
he UCM model with � of Eq. �A14�.

As a modified version of the UCM model, the FENE-p model contains three param-
ters; �, n, and b. The constitutive equations of this model are given by

ĉ̃�
 = −
1

�
� b

b − tr c̃
c̃�
 − ��

 ; ��
 = nkBT� b

b − tr c̃
c̃�
 − ��

 . �A15�
he reduced length parameter, b, is defined as
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b =
K

kBT
R0

2 =
3R0

2

�R2�eq
, �A16�

here R0 represents the maximum allowed chain length. Taking R0 as a fully stretched
hain length with an equilibrium conformation, the calculated value of R0 is 19.37 Å for
exadecane. �R2�eq calculated from simulations is 219.5 Å2. Putting these values into Eq.
A16�, it is found that b=5.13. This value of b is used for predicting the conformation
ensor and material functions for PCF and PEF. Therefore, it should be emphasized that
here are no fitting parameters in this model. By solving Eq. �A15�, the conformation
ensor and material functions for PCF are

c̃xx =
b − tr c̃

b
�1 + 2�2�̇2�b − tr c̃

b

2� ; c̃yy = c̃zz =

b − tr c̃

b
; c̃xy = ��̇�b − trc̃

b

2

,

�A17�

���̇� = nkBT��b − tr c̃

b

 ; �1��̇� = 2nkBT�2�b − tr c̃

b

2

; �2��̇� = 0. �A18�

imilarly, the solutions for PEF are

c̃xx =
1

� b

b − tr c̃
− 2��̇
 ; c̃yy =

1

� b

b − tr c̃
+ 2��̇
 ; c̃zz =

b − tr c̃

b
, �A19�

�1��̇� =
nkBT�b�b − trc̃�

�b − 2��̇�b − tr c̃���b + 2��̇�b − tr c̃��
; �2��̇� =

nkBT�b�b − tr c̃�
b + 2��̇�b − tr c̃�

. �A20�

As the last nonlinear model in this work, the Giesekus model also contains three
arameters; �, n, and �. The parameter �, as an empirical constant, determines the
trength of the anisotropic drag force in system. In order to avoid an aphysical result and
ot violate certain thermodynamic criteria, � should lie within the range 0���1 �Beris
nd Edwards �1994��. The conformation tensor evolution equation of the Giesekus model
s �Beris and Edwards �1994��

ĉ�
 = −
1

�
��1 − ����� + ��c̃�����c̃�
 − ��
�; ��
 = nkBT�c̃�
 − ��
� . �A21�

otice that for �=0, the Giesekus model reduces to the UCM model. For PCF, Eq. �A21�
esults in three coupled equations that must be solved simultaneously;

�1 − 2��c̃xx − 2��̇c̃xy + ��c̃xx
2 + c̃xy

2 � = 1 − �; �1 − 2��c̃yy + ��c̃xy
2 + c̃yy

2 � = 1 − �; c̃zz = 1;

�1 − 2��c̃xy − ��̇c̃yy + ��c̃xxc̃xy + c̃xyc̃yy� = 0. �A22�

hus, the material functions also need to be solved numerically. For PEF, Eq. �A21� gives
ise to two uncoupled equations;

�1 − 2� − 2��̇�c̃xx + �c̃xx
2 = 1 − �; �1 − 2� + 2��̇�c̃yy + �c̃yy

2 = 1 − �; c̃zz = 1,

�A23�
rom which the material functions are obtained.
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