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Abstract In this study, we present details of the stress—
optical behavior of a linear polyethylene melt under shear
using a realistic potential model. We demonstrate the
existence of the critical shear stress, above which the
stress—optical rule (SOR) begins to be invalid. The critical
shear stress of the SOR of this melt turns out to be 5.5 MPa,
which is fairly higher than 3.2 MPa at which shear thinning
starts, indicating that the SOR is valid up to a point well
beyond the incipient point of shear thinning. Furthermore,
contrary to conventional wisdom, the breakdown of the
SOR turns out not to be correlated with the saturation of
chain extension and orientation: It occurs at shear rates well
before maximum chain extension is obtained. In addition to
the stress and birefringence tensors, we also compare two
important coarse-grained second-rank tensors, the confor-
mation and orientation tensors. The birefringence, confor-
mation, and orientation tensors display nonlinear
relationships to each other at high values of the shear
stress, and the deviation from linearity begins at approxi-
mately the critical shear stress for breakdown of the SOR.

Keywords Birefringence - Stress—optical rule - Shear -
Nonequilibrium molecular dynamics -
Linear polyethylene melt

Introduction
Optical measurement of the anisotropy of materials has

proven to be very informative and useful in characterizing
the structure and stress of molecular crystals (Vuks 1966;
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de Jong et al. 1991) and as a noninvasive tool in the study
of rheology of polymeric fluids (Morrison 2001; Janeschitz-
Kriegl 1983). There are generally two types of birefrin-
gence, form birefringence and flow birefringence. The
former originates from the difference in the intrinsic
(average) polarizability between the solvent and polymer,
and the latter from anisotropic orientation of polymer chain
bonds induced by the flow (Doi and Edwards 1986).
Accordingly, form birefringence is expected to make a
significant contribution to the total birefringence in dilute
polymer solutions, providing us with information about the
nonspherical shape of polymer aggregates in solutions.
However, it can be ignored in concentrated polymer
solutions or melts, for which flow birefringence is the
dominant effect. Because flow birefringence is directly
determined by a preferred orientation of molecules (bonds)
in space under an externally imposed flow field, it would,
in general, depend on specific polymers (and possibly their
molecular weights), the detailed kinematics of the flow
(type and strength), and system conditions (such as
temperature and density).

An important application of birefringence to the rheol-
ogy of polymer melts under flow comes from the
supposition that there exists a certain relationship between
the anisotropy of birefringence and that of stress, that is, the
stress—optical behavior. A well-known fact is that there
exists, under a wide variety of conditions, a linear
relationship between the stress tensor o and the real part
of the refractive index tensor, or “birefringence tensor,” n,
which is the so-called stress—optical rule (SOR), An=CAo.
Here, C is called the “stress—optical coefficient” and the
birefringence An is the difference between the principal
components of the real part of the refractive index tensor.

To date, there are numerous experimental works exam-
ining the SOR. One of the first detailed experimental
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studies of the stress—optical behavior of amorphous
polymers was carried out by Matsumoto and Bogue
(1977) using polystyrene melts at temperatures above the
glass transition temperature 7, These experiments were
conducted under both isothermal and nonisothermal con-
ditions. The polymer samples were uniaxially elongated
using a mechanical-optical apparatus. They obtained a
master stress—birefringence curve on which all the data
from both isothermal and nonisothermal conditions were
superimposed. They reported that the SOR began to fail at
stress values larger than about 1 MPa.

Since then, more extensive experimental studies of the
SOR have been performed using more elaborate elonga-
tional stress—optical apparati (Muller and Froelich 1985;
Inoue et al. 1991; Kotaka et al. 1997; Okamoto et al. 1998;
Venerus et al. 1999). Muller and Pesce (1994) observed
significant deviations from the SOR at temperatures near 7,
in both polystyrene and polycarbonate melts undergoing
uniaxial elongation. They reported that at high temperatures
(i.e., above T,+20 K), the stress—optical behavior of the
polymer melts was independent of temperature and strain
rate in the nonlinear regime as well as the linear regime
where the SOR is valid. Inoue et al. (1996) investigated the
stress—optical behavior of several vinyl polymers from the
glassy to the rubbery regions through dynamic birefrin-
gence measurements.

Recently, incorporating an optical measurement device
into an advanced elongational rheometer developed by
Meissner and Hostettler (1994), Venerus et al. (1999)
carried out a very careful stress—optical study and re-
examined the stress—optical behavior of polystyrene melts
under uniaxial elongational flow at sufficiently high
temperatures, above 7,+60 K. They reported that C of the
polystyrene melt was 4.8x10°° Pa~' and that the critical
stress for the breakdown of the SOR was roughly 1 MPa.
These results are in good agreement with other previously
reported values (Muller and Froelich 1985; Janeschitz-
Kriegl 1983). They also observed that C decreases with
increasing extensional stress, consistent with many existing
results. Some time ago, Kotaka et al. (1997), however,
reported the opposite behavior of polystyrene melts (but not
polyethylene melts) that C increases with increasing
extensional stress. In this regard, Venerus et al. (1999)
speculated that in the experiments of Kotaka et al. (1997)
with polystyrene melts, a necking process might have
developed, causing the measured stress to decrease while
the birefringence was not sufficiently relaxed.

More recently, also using polystyrene melts under
elongation but with narrow molecular weight distributions,
Luap et al. (2005) reported that the critical stress of the
SOR was about 2.7 MPa, independent of temperature and
strain rate, and it corresponded to a Weissenberg number

We = /17> approximately equal to 3. (The temperatures
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employed in their study were above T,+40 K.) They also
showed that the SOR was valid well into the strain-thinning
region of nonlinear flow behavior. By comparing theoret-
ical predictions with existing experimental findings, Van
Meerveld (2004) analyzed the effect of the molecular
weight distribution on the critical stress value for break-
down of the SOR, based on the idea that deviations to the
SOR were effectively determined by the number of
stretched chains in the melt. In the meantime, Cormier
and Callaghan (2002) applied another new experimental
technique, which combines rheometry with magnetic
resonance imaging spectroscopy, to measure segmental
alignment in polymer melts under shear flow. Because it
is expected to become more and more advanced in the
future, this technique seems to be very promising in the
rheo-optical study of polymer melts under various flows.
On the theoretical side, Palierne (2004) demonstrated that
the full Doi—Edwards reptation model predicts the failure of
the SOR at large shear strains, although a restricted version
using the so-called independent alignment approximation
still guarantees that the SOR is valid.

There have also been a few computer simulation studies
of the stress—optical behavior of polymer melts. Kroger et
al. (1993, 1997) investigated the stress—optical behavior of
polymer melts under shear (Kroger et al. 1993) and uniaxial
elongation flow (Krdger et al. 1997) using a multi-bead
anharmonic-spring model. They reported the breakdown of
the SOR at high strain rates for both types of flows. More
realistic potential models have been employed in simulation
studies of polyethylene melts under uniaxial elongation by
Gao and Weiner (1994) using molecular dynamics simu-
lations, and later by Mavrantzas and Theodorou (2000a, b)
using their advanced Monte Carlo technique (the so-called
end-bridging Monte Carlo simulation). Mavrantzas and
Theodorou (2000b) observed the change of C with chain
length, with a plateau value obtained for chain lengths
greater than Cyo0Hgos.

Much of the previous work (both experiments and
simulations) on the stress—optical behavior has been
performed with uniaxial elongational flow rather than shear
flow. It seems to be mainly due to an experimental difficulty
in achieving sufficiently high shear stress values to observe
the failure of the SOR because of undesirable side effects
such as melt fracture, nonuniform birefringence distribution
because of frictional heat production, and parasitic birefrin-
gence near the optical windows (Janeschitz-Kriegl 1983).
This might have led people to think that the SOR would be
valid for shear flow, although Kroger et al. (1993) reported
the failure of the SOR in the case of the multibead spring
melts under shear. Therefore, a definitive statement con-
cerning the breakdown of the SOR of polymer melts under
shear flow seems to be necessary at this point, which has
motivated the current work. To this end, computer
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simulations are thought to be the most appropriate tool at
present because the shear stress (or equivalently shear rate)
employed in simulations can be much higher than that in
practical experiments.

Another point worthy of investigation is the customary
view that the SOR is likely to break down at very high
stresses because of the saturation of chain extension and
orientation (Treloar 1975; Morrison 2001; Janeschitz-Kriegl
1983). In fact, owing to its intrinsic kinematics, elonga-
tional flow makes chains become much more extended and
oriented than shear flow. That is, in shear flow, chains are
not likely to be stretched to such a high degree as in
elongational flow, partly because of the rotational nature of
shear. Therefore, the breakdown of the SOR under shear
would not necessarily imply that the customary view is
correct. This aspect is also considered in this study.

Herein, we further investigate the relationship between
the birefringence and two structural properties that have
been regarded as very important in a coarse-grained level of
description (Beris and Edwards 1994): One is the confor-
mation tensor ¢ and the other the orientation tensor u. It is
easily seen from their definitions that the two are closely
related to each other:

3(RR)

C:m, (1)

u=3(7rr), (2)

where R and 7 represent the chain end-to-end vector and
unit vector along the chain end-to-end direction, respec-
tively. Notice that the two tensors become the unit second-
rank tensor at equilibrium. It might be thought that the
birefringence tensor would be proportional to the confor-
mation and orientational tensors at all strain rates. However,
as we will see later in this article, this is not necessarily
true.

Theoretical background for birefringence studies

To calculate the birefringence tensor of anisotropic materi-
als, we first need to calculate the polarizability tensor of the
system directly from the simulation and then the birefrin-
gence tensor from the calculated polarizability tensor using
an appropriate theoretical formula. For isotropic materials,
an exact formula exists, which is called the Clausius—
Mossotti equation (see Eq. 9 below). Under quiescent
conditions, this equation is adequate; however, under flow,
the system of chain molecules will become anisotropic. For
anisotropic materials, to the authors’ knowledge, there does
not seem to have appeared in the literature (before 2000) an
exact generalized tensorial formula, although there have

appeared several derivations of certain approximate formula
applied in the study of molecular crystals (Vuks 1966;
Urano and Inoue 1976; de Jong et al. 1991). Moreover,
Mavrantzas and Theodorou (2000a) presented an aniso-
tropic version of the exact formula, but no derivation of it
was given in their article. In this study, we offer a
derivation of this expression for anisotropic media, for
completeness. The generalized Clausius—Mossotti tensorial
formula for anisotropic materials reduces to the conven-
tional Clausius—Mossotti equation for isotropic systems. We
will also present in detail a procedure to calculate the
polarizability tensor of molecules making use of their bond
polarizability through a local coordinate transformation.

A derivation of the Clausius—Mossotti equation
for anisotropic media

For easier comprehension of the anisotropic derivation
below, we first derive the Clausius—Mossotti equation for
isotropic materials. Consider a linear dielectric medium
consisting of spherically symmetric nonpolar atoms (such
as argon), or molecules (like methane). The polarization
vector (dipole moment per unit volume) P of a linear
dielectric material is proportional to the local electric field,
denoted by E:

P=c¢px. E. (3)

In this expression, & is the permittivity of a vacuum with
the value of 8.854 x 10712 C2(N'm?)”' and Y. is the
electric susceptibility. In linear dielectric materials, y. is
equal to e, — 1 = ¢/gp — 1, where € is the permittivity of
the material and &, is called the relative permittivity or the
dielectric constant of the material (Griffiths 1999). The
induced dipole moment of molecule i, denoted by p;, is
written as

pi = a;Ey, (4)

where «; is the polarizability of molecule i and E,
represents the applied electric field. Because we are
currently dealing with identical and spherically symmetric
molecules, we can simply designate p,=p and «o,=« (it
should be noted that the polarizability « should be, in
general, regarded as a second-rank tensor for nonsymmetric
molecules, as shown for anisotropic materials below). Note
that for these spherical molecules, p and E, lie in the same
direction.

E will be, in general, different from £, because at any
point in space, there would be not only £, but also an
induced electric field, denoted by E4. This field results from
the induced dipoles inside an infinitesimally small (but still
macroscopic in the sense that it contains many molecules)
volume of interest. Consequently, E=F,+Fy4. It should be
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also noted that in this material, £4 would lie in the opposite
direction to E,.

Suppose that there are N molecules in a small volume V
of interest. If we take Vas the local volume of the material,
E, in this volume will be the electric field including both
the externally applied field and the field induced by only
the dipoles outside the volume. In other words, E, is the
electric field due to everything except the dipoles inside
the volume. (It might also be possible to take E, as a field
due to everything except the molecule under consider-
ation.) For the number density of molecules N = N/V in
the volume under consideration, the polarization can be
written as

PR o P R 5
*;Zpif7*NP*N0! a- (5)
i=1

In this equation, the second equality comes from the
assumption that every molecule is identical and spherically
symmetric and therefore has the same dipole moment. To
derive the relationship between « and Yy, or &, we need to
know the induced electric field E4 because of the molecules
inside the volume under consideration. It is well known that
the field created by the dipoles is (Griffiths 1999)

P ~
380 360

E,, (6)

where Eq. 5 was used for the second equality. Therefore, the
local electric field E is then

E—Ey+Eq— <I—M)Ea. (7)
380

If we substitute Eq. 7 into Eq. 3, the polarization is
expressed in terms of E, as

Na
P= 1 ——E, . 8
(1= 30 ) ®)

By a direct comparison of Egs. 5 and 8, after some algebraic
operations, we arrive at the well-known Clausius—Mossotti
equation,

3¢9 (e — 1
“—W(Mz)' ®)

Furthermore, when the magnetic effect is neglected, &, is
equal to n?, and Eq. 9 is written as

0_350 I’lz—l
_1:, n+2)

Equation 10 is called the Lorentz—Lorenz equation in optics.
For anisotropic materials consisting of identical but
nonspherical molecules (such as carbon dioxide), the

(10)
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polarizability and electric susceptibility are no longer scalar
quantities but second-rank tensors, which we shall denote
by a and Xe. Accordingly, the expression for P, corre-
sponding to Eq. 3, is written as

(11)

Furthermore, the equation corresponding to Eq. 4 is
given by

P:gox_e-E.

pi:&'Ew

(12)

Because we are dealing with identical but nonspherical
molecules, the polarizability tensor of each molecule with
respect to a fixed frame of reference will be, in general,
different than those of other molecules, depending on its
orientation in space. Moreover, in this material, p; would, in
general, not lie in the same direction as F,. Because both p;
and ¢; are different for various molecules, it seems to be
reasonable to use an averaged quantity for each of them.
Taking a summation of Eq. 12 over all the molecules in V
and dividing by N, we obtain

(13)
Whe{/e we have intr}s)duced the averaged quantities with

pEZpi/NandgEZa,-/N.
i=1 =l

p:% 'Eaa

Using Eq. 13, the polarization is written as

N
P:;pi:@:]\wfp:]\wfa-E (14)
Vv V = v
Therefore, the electric field induced by the dipoles is
P N
Es=——=——0a-E,. 15
d 380 380 g ( )

The local electric field E is then

E:Ea'i‘Ed:({_:;ig)'Ea, (16)

€0

where [ is the second-rank unit tensor. Putting Eq. 16 into
Eq. 11, the polarization is found to be

N
P= A L—=— - E,. 17
E0Xe <: 30, g) a (17)
Eliminating P from Egs. 14 and 17, we arrive at
[]\N/geoxe- <1Ng> VE, = 0. (18)
= 2L = 3507

Because E, is arbitrary, the term within the square brackets
must vanish. After some manipulation, we finally arrive at
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the following relationship between the polarizability and
susceptibility tensors for anisotropic materials:

3e -1
g=70<&+3£) “Xe (19)
N & Xe
3 -1
2 ) (ami)
AR &1

To obtain this expression, we used the tensorial equation
Xe = & — L Equation 19 is the generalized Clausius—
Mossotti (tensorial) formula of linear dielectric materials.
If we put & = n-n in Eq. 19 in the absence of a magnetic
effect, we obtain the generalized form of the Lorentz—
Lorenz equation in optics,

_ﬁ nen _1‘ nen— .
==Hara) (22 (20

lis

Equation 20 is used in calculating the birefringence
tensor in this study. Again, Eq. 19 was presented (without a
derivation) in the article by Mavrantzas and Theodorou
(2000a).

A local coordinate transformation used in calculating
the polarizability tensor

To calculate the polarizability tensor of the molecules by
summing each contribution of the bonds, it is convenient to
choose a local Cartesian coordinate system (represented by
lowercase letters) attached to each bond (Bower 2002). As

Fig. 1 Schematic diagram (/eff) X
of the laboratory coordinate
system (represented by XYZ)
and the local coordinate system
(represented by xyz) attached to
a bond. The x-direction is locat-
ed along the bond. The arrows
in the picture (right) represent
the velocity field, which is non-
zero only in the X-direction. The
velocity gradient and neutral
directions are the Y- and Z-

shown in Fig. 1, the X- and Y-axes in the laboratory frame
of reference (represented by uppercase letters) are chosen to
be the flow and the velocity gradient directions, respective-
ly, and the Z-axis is the neutral direction. In the local
coordinate system, the x-axis is located along the bond
direction, the y-axis is perpendicular to the x-axis and lying
in the X=Y plane, and the z-axis (orthogonal to both the x-
and y-axes) is determined by taking the cross product of the
x- and y-axes.

Using these reference frames, we need to find the
orthogonal transformation matrix between the laboratory
and the local coordinate systems. First, the unit vector in
the x-direction, denoted by %, is expressed in terms of the
unit vectors (¥,7, Z) in the laboratory coordinate system:

% = cos OX +sinfcos ¢pY 4 sin 0 sin ¢Z. (21)

Next, because 2y is lying in the X-Y plane, it can be
expressed as

7 =aX +bY . (22)

Using its orthogonal relationship with ¥ and the unit length
of its magnitude, a and b are

a = Fsing;b = £cos . (23)

Let us choose a = —sin¢ and b =cos¢. z is then
determined as

Z =% xJ = —cosfcos pX — cos O sin pY + sin 627 (24)

directions, respectively

v
N

Ny <
A\ 4
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The transformation between the two coordinate systems is
thus expressed in matrix form as

y|=M-1ly| (25)
z VA
where
cosf  sinf cos ¢ sin @ sin ¢
M=| 0 —sin¢ cos ¢ . (26)
sinf —cosfcos¢p —cosf sing

(a)XYZ = MT : (a)xyz ‘M
(cos? O)a, + (sin’ 0) ey
= | (sin@ cos O cos @) (ap — )

(sinf cos fsin ) (o, — )

(sin @ cos 6 cos @) (cp — vr)
(sin” @ cos® @)y, + (sin® ¢ + cos? O cos? ) oy

(sin® @'sin ¢ cos @) (ap — v

Denoting the longitudinal (x-direction) and transverse (y-
and z-direction) polarizabilities of a bond by o, and «,
respectively, the polarizability tensor of each bond is in
diagonal form in the local coordinate system:

ap 0 0
(@y. =10 a 0. (27)
0 0 (o7}

Therefore, the polarizability tensor in the laboratory
coordinate system is

(sin cos 6 sin¢) (ap — o)
(sin” @'sin ¢ cos @) (ap — v
(sin” @'sin® ¢) oy, + (cos? ¢ + cos? Osin” @) oy
(28)

Before we discuss the simulation methodology, we
would like to point out that we have chosen to neglect the
C—H bond altogether in calculating the birefringence tensor
in this work. We did this because the potential model used
herein (described in the next section) to model the linear
polyethylene melt is a united-atom model, which treats
groups of atoms (in this case, CH, and CHj; groups).
Although some scholars (Gao and Weiner 1994; Mavrantzas
and Theodorou 2000a) have included the C—H bonds in
their calculation of the birefringence by assuming the trans-
state of these bonds along the chain backbone, such
treatments are still approximate and perhaps inconsistent
with the united-atom model. Therefore, to maintain the
consistency with the potential model employed in the
simulations, we have decided to ignore C—H bonds and
only consider C—C bonds in this work. This choice is not
considered to be overly restrictive because all the properties
can be still calculated without any corrections, except the
absolute value of the stress—optical coefficient C. In other
words, the only weak point because of the neglect of C—H
bonds lies in obtaining a quantitative estimate of C. In this
regard, we should also note that there does not even seem to
exist as yet universally accepted values of the experimental
bond polarizabilities for C—C and C—H bonds (Treloar
1975). Therefore, our choice is reasonable, as it does not
affect the main purpose of this study and substantially
reduces the computational cost of the simulation (by not
including every atom explicitly). The bond polarizabilities
of the C—C bond employed in this work were obtained from
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Table 9.5 of Bower (2002): a, =10.8 x 10~*' and
a =28 x 10 Fm2.

Simulation methodology
Equations of motion

The melt studied in this work is CsoH 5, which is sufficient
in length to see the flow effect on birefringence and, at the
same time, computationally feasible across a broad range of
shear rates. With this melt, we have performed NVT
canonical nonequilibrium molecular dynamics (NEMD)
simulations using the SLLOD equations of motion for a
homogeneous shear flow (Evans and Morriss 1990). To
maintain a constant temperature, we employed the Nosé—
Hoover thermostat (Nosé 1984a, b; Hoover 1985). The
equations of motion are given by

qia = Pia + i VI/,
Miq
: Ps
Pia = Fia —Pia* Vv — SPia>
0
S (29)
Q )

P = ZZZ—’Z—DN]{BT,

1 a
where subscripts i and a are used as indices of molecular
and atomic number, respectively. The quantities p;, and ¢;,,
respectively, denote the momentum and position vectors of
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atom a in molecule i. F, is the force on atom a in molecule
i of mass m;,. D represents dimensionality, V' the system
volume, N the total number of atoms, T the absolute
temperature, and kg the Boltzmann constant. ¢ and p,,
respectively, are the coordinate- and momentum-like vari-
ables of the Nosé—Hoover thermostat, and Q (=DNkgTr %)
is the mass parameter of the thermostat. (7 is the char-
acteristic frequency of the thermostat.) In shear flow,

Vv = (30)

S 2-O
S O O
S O O

where ¥ is the applied shear rate. The equations of motion
were numerically integrated using a modified version
(including the velocity field terms [Cui et al. 1996a]) of
the reversible reference system propagator algorithm
(r-RESPA), originally developed by Tuckerman et al. (1992).

Potential model

We employed the well-known Siepmann—Karaborni—Smit
united-atom model developed by Siepmann et al. (1993) for
the bond-bending, bond-torsional, and interatomic interac-
tions, but replaced the rigid bond by a flexible one for the
bond-stretching interaction. This potential model has been
successfully applied in NEMD simulations of various chain
lengths of polyethylene melts under shear (Cui et al. 1996b)
and planar elongation flow (Baig et al. 2005, 2006).

To avoid unnecessary repetition, we briefly present the
main features of the potential model. The bond-stretching,
bond-bending, bond-torsional, and interatomic Lennard—
Jones (LJ) interactions, respectively, are given by

1

Vaell) = 5 ke (1 = leq)’, (31)

Vben<9) = %kben (9 - eeq)zy (32)
3
Vtor(d)) = Z am(cos d))m; (33)
m—0
and
o Oap\ 12 Oab\°
o s ()" - (22)') o

The parameter ratios kg/kg and kyen/kp are equal to
452,900 K/A? and 62,500 K/rad?, respectively, and ao/kg=
1,010, a,/kg=2,019, a,/kg=136.4, and as/kg=-3,165 K.
The equilibrium bond distance is lq=1.54 A, and the

equilibrium bond angle is 0.q=114°. For the L] interactions
between different atoms (say, a and b), the Lorentz—
Berthelot mixing rule was employed as €,,=(£,&,)"* and
oap = (04 + 0p)/2, with the energy and size parameters
&/kg and o being 47 K and 3.93 A for the CH, united-atom
and 114 K and 3.93 A for the CH;. The cutoff distance of
the LJ interactions used in this work was 2.50cys.

Simulation conditions

We employed 120 molecules of CsoH;p, in a rectangular
box, enlarged in the X-direction, with dimensions (Xx YxZ)
of 93x45x45 A’ The X-dimension was chosen to be
sufficiently large to avoid any undesirable system-size
effects at high shear rates where chains are quite extended
and oriented in the flow direction. The temperature and
density were chosen as 450 K and 0.7438 g/cm®. We used
18 different shear rates covering a large range of dimen-
sionless shear rates, ﬂ'y(moz/e)l/z =0.0005 — 1.0 in re-
duced units (this corresponds to = 2.1 x 107 —4.3x
10" s7! in real units).

The lowest value of the shear rate is regarded as very
small (although still high in practical experiments) in typical
NEMD simulations, considering that the longest relaxation
time (the so-called Rouse time) of the system A was equal to
500 ps (Baig et al. 2006). Consequently, the inverse of A
(regarded as an approximate critical shear rate for the onset
of shear-thinning behavior) is 0.0047 in reduced units,
below which a large effect of Brownian motion of particles
makes it difficult to measure the response of system to the
flow field. (This will be discussed in more detail later in
“Results and discussion”.) Furthermore, it usually takes a
much longer simulation time to reach a steady state as shear
rate decreases. Despite these difficulties, we chose such low
strain rates to observe in more detail the linear stress—optical
behavior over a wide range of shear rates. Therefore, to
obtain statistically reliable results for low shear rates, we
performed very long simulations, i.e., 70 ns at the lowest
shear rate. In applying the r-RESPA integrator, two different
time steps were used: the large time step of 2.35 fs was
employed for intermolecular LJ interactions and the small
time step of 0.235 fs for the bond-stretching, bond-bending,
bond-torsional, and intramolecular L] interactions.

Results and discussion

There are only four nonzero independent components of the
stress tensor ¢ in simple shear flow, as represented by Eq. 30:
these are o, 0y, 0., and oy, (Morrison 2001). This
situation also applies to the other tensors examined in this

@ Springer



Rheol Acta (2007) 46:1171-1186

1178
0.01 ; , , ,
n(Pas) i a
|
1
B oo |
% ] = |
T |
%
0.001 | e 1
1 N
%
} e
| £
! EN
} 7(m0-2 /8)1/2
0.0001 1 I . )
0.0001 0.001 0.01 0.1 1 10
1e-10 ; , ; ;
ﬁ i b
|
1e-11 | I E
¢ ‘”‘I’m@%
1e-12 lPI (Pasz) } e 4
| e
| (=]
1 %%
1e-13 | ! .
| (S
1
| o
1e-14 | | oy .
|
| y(mo?/e)"?
1e_15 1 I 1 1
0.0001 0.001 0.01 0.1 1 10
1e-10 T T T T T T
3 c
1e-11 s i |
l |
|
|
1e-12 | ) §%% .
—\Pz (Pas ) } o
|
1e-13 b ! O 4
| =3
| @
! &
1e-14 | I |
} e
} }'/(m()'z/é‘)”2 e
1e-15 - ' ' )
0.0001 0.001 0.01 0.1 1 10

Fig. 2 Plots of the steady-state material functions vs shear rate: a
shear viscosity 7, b the first normal stress coefficient ¥, and ¢ the
second normal stress coefficient W,

article, namely, the conformation tensor E, the orientational
tensor u, and the birefringence tensor n. Furthermore,
experimentally, we can only measure the difference
between the normal (or diagonal) components of the stress
tensor but not their absolute values (Bird et al. 1987).
Therefore, in simple shear flow, we consider only three
independent measurable physical quantities (or “character-
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istic functions”) of the stress tensor (and the other tensors,
¢, u, and n, as well): o — o), , 0y, — 0., and o,,. The
corresponding three steady-state material functions in
simple shear flow are defined as

n = O—xy/;y; gpl = _<0xx - O—}’)’)/;}/z; d—/2 = _(Uyy - Uzz)/;yz'
(35)

First, we examine the three material functions, which are
displayed in Fig. 2. Consistent with many existing
experimental results (Morrison 2001; Bird et al. 1987), all
three properties show shear-thinning behavior with increas-
ing shear rate, after a plateau in the linear regime at low
shear rates. The dotted line vertically drawn at the reduced
shear rate of 0.004 in each part of the figure represents the
boundary between the linear and nonlinear regimes. This
value of the shear rate appears to agree well with the
theoretically predicted one (i = 1/A) at which the Weissenberg
number (We = )ry) is equal to unity and nonlinear
characteristics of material properties begin to appear. This
trend has been observed for many polymeric systems—see,
for example, Chapter 2 of Bird et al. (1987). One method to
find the characteristic time A is to observe the time
correlation function of the end-to-end chain vector, by
means of which we have determined A=500 ps (Baig et al.
2006). Using the calculated value of A, the critical shear
rate for shear-thinning turns out to be 0.0047 in reduced
units (7("102/ €)|/2>, which is very close to the boundary
value of A'/(maz /e)'* =0.004 directly obtained from the
material functions. The other vertical line (represented by
the dashed line) drawn at (mo? /) 2 — 0.01 indicates an
approximate boundary between the linear and nonlinear
stress—optical behavior between the stress and birefringence
tensors. That is, it turns out that the linear SOR appears to
be valid up to '7(m02 / 5) 12 0.01, after which, it appears
to fail, as shown in Fig. 8. (This behavior will be
considered in detail later.) Therefore, we inserted these
vertical lines in most of the figures presented in this
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Fig. 3 Plots of the mean square chain end-to-end distance and the mean
square chain radius of gyration with respect to shear rate
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Fig. 4 Plots of the three independent properties of the stress tensor o
as functions of shear rate: a 0,,—0,,, b 0,,~0-., and ¢ oy,

manuscript for a clear understanding where each data point
lies (i.e., whether it lies in the linear or nonlinear regimes
with respect to shear-thinning or the SOR).

In Fig. 3, we present two important structural quantities,
the mean square chain end-to-end distance and the mean
square chain radius of gyration, denoted by (R%.) and

Ré , respectively. As shear rate increases, the chains

become more and more aligned in the flow direction with

Fig. 5 The same as Fig. 4 for the conformation tensor

an anisotropically elongated shape. This results in the
increase in both <R§te> and <R§> with shear rate, as shown
in the figure. However, at high shear rates, i.e.,
y(mo? /e)]/ > 0.1, both quantities appear to decrease with
shear rate. A similar behavior has also been observed by
Cui et al. (1996b) in their study using the short alkane
chains C;gH,, C;¢Hz4, and C,4Hso, under shear. This
phenomenon can be explained in a dynamic sense, adopting

a mean-field concept of restricting the chain dimensions at
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Fig. 6 The same as Fig. 4 for the orientational tensor u

high strain rates because of a large number of molecular
collisions between atoms, which was originally proposed
by Moore et al. (2000) and discussed by Baig et al. (2005).
(Readers who are interested in the details on this issue are
referred to these papers.)

Another interesting point is to compare the values of
(R%.) shown in Fig. 3 and that of the fully extended chain
with the equilibrium bond length and angle in the all-trans
state. (RZ,) of the fully stretched chain is calculated as
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4,007 A. Thus, even the highest value, (R%,)=1,338 A®
observed at 7(m02/5)1/2 = 0.1, is found to be only about
one third of that at the fully stretched state. Therefore,
chains do not reach their maximum extensions in shear
flow. This is interesting because (as mentioned earlier) the
SOR has been customarily thought to become invalid
because of the saturation of chain extension and orientation
(Janeschitz-Kriegl 1983; Treloar 1975). However, as indi-
cated by the dashed line in the figure and directly shown in
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Fig. 8, the failure of the SOR begins at a fairly low strain
rate without even being close to the maximum chain
extension.

Figures 4, 5, 6, and 7 show the three independent
properties (xx—yy, yy—zz, and xy components) of the stress,
conformation, orientation, and birefringence tensors, in that
order, as functions of shear rate. In conjunction with the
material functions shown in Fig. 2, the two normal stress
differences and the shear stress shown in Fig. 4 appear to
increase monotonically with increasing shear rate, which is
consistent physically. However, the degree of increase for
each property is observed to vary with shear rate, as
revealed by its degree of shear-thinning behavior in Fig. 2.
Notice that the yy—zz component of stress is shown to be
statistically less reliable, compared with the xx—yy and xy
quantities. (In fact, as will be shown below, this is also true
for the other second-rank tensors.) Keeping this behavior in
mind, we examine the variation of the conformation tensor
with respect to shear rate, which is shown in Fig. 5.
Initially, all three quantities appear to increase with
increasing shear rate. At high shear rates, however, both
Zm — Eyy and Eyy — ZZZ do not increase any further but
reach asymptotic values. Furthermore, Exy is observed to
reach the maximum point around "y(mcfz / 5)1/ 2 =0.01 —
0.02 (which approximately coincides with the critical shear
rate of the SOR) and then decreases with increasing shear
rate. From the quantitative analysis of the results, this
seems to occur mainly because of the relatively larger
decrease in c,, than the increase in c,, above the critical
shear rate. (However, there seems to be other effects
operating as well, such as a nonuniform distribution of the
azimuthal angle in Y-Z plane.) Comparing with the results
of the stress tensor shown in Fig. 4, it is evident that a linear
relationship between the stress and conformation tensors
can be realized only at low shear rates, and nonlinear
behavior occurs at high shear rates (see Fig. 10). Similar
phenomena are also observed for the orientational tensor u,
which is shown in Fig. 6. This result can be understood
through the close relationship between ¢ and u under the
(plausible) assumption of a fairly narrow (approximately
Gaussian) distribution of the chain end-to-end distance.

We also examined the three components of the birefrin-
gence tensor, which were calculated using Eq. 20 and are
presented in Fig. 7. All three quantities appear to increase
rather quickly with shear rate, up to the critical shear rate
around (mo? / e)l/ > = 0.01. After that, all of them appear
to increase relatively slowly and display asymptotic
behavior at high shear rates. This behavior is quite different
from that of the other tensors. Considering all the above
results for the four tensors, we would not expect a simple
linear relationship between any two of them.

The plots of the birefringence vs stress tensor are
presented in Fig. 8. Because the yy—zz quantity shown in

Fig. 8b experiences large fluctuations, we examine only the
xx—yy and xy quantities. It is apparent from the figure that
there is a clear, linear relationship between n and o up to
7(mo’2 / 5)1/ ? = 0.01, at which point, the shear stress and
the first and second normal stress differences are 5.5+0.2,
6.5+0.3, and 1.4+0.2 MPa, respectively. (Also note that the
onset of shear-thinning behavior [represented by dotted
line] occurs at —0,,=3.2+0.1 MPa, 0,,~0,,=2.2+£0.2 MPa,
and 0,,~0..=0.5+£0.2 MPa.) These results appear to be
consistent with the experimental findings for the critical
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Fig. 9 Linear regression of data of n vs o at low shear rates where the
SOR is valid: a and b calculate the stress—optical coefficient C based
ON Ny Ny, VS 0y—0,, and ny, Vs o, respectively, and ¢ shows the
slope of n,,—n,, vs o, We present the stress optical coefficient as the
average value between the two quantities from a and b. (The value
from the yy—zz quantity was not taken into account because of its
rather large statistical uncertainty, relative to the others.)

tensile stress of the SOR under uniaxial elongation flow
being of the order of megapascals (Janeschitz-Kriegl 1983;
Luap et al. 2005). As mentioned earlier, considering an
experimentally known fact that it is very difficult to find the
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Fig. 10 The same as Fig. 8 for the conformation tensor, c, and the
stress tensor o at various sheaNr rates: a Cyc — Cy, VS. Oy — Oy,
b ¢y, — ¢ vs. 0y, — 0, and ¢ ¢y, VS. Oy

critical stress of the SOR for polymeric materials for shear
flow, the present result of the critical shear stress
(=5.5 MPa) of linear polyethylene melt of CsqH;g, is of
potential value from both experimental and theoretical
viewpoints.

Using the above results between n and o, we can extract
the stress—optical coefficient C of the present system, for
which only data at shear rates of y(ma/ a)l/ ? <0.01 should
be used. The results are shown in Fig. 9. As mentioned
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Fig. 11 The same as Fig. 8 for the birefringence tensor n and the
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above, because of the relatively large uncertainty in the yy—zz
quantity, we have calculated C using only the xx—yy and xy
quantities. As shown in Fig. 9a and b, the slope is found to
be (1.37£0.1)x107° Pa™' for xx—yy and (0.89+0.3)x
107 Pa' for xy. If we average these two values, the
stress—optical coefficient C for CsoH;o, at 7=450 K and p=
0.7438 g/em’ is estimated as (1.13+£0.4)x107° Pa '. This
value is of the same order of magnitude as the experimen-
tally reported value of 2.35x107° Pa~' for a high molecular
weight, high-density linear polyethylene melt at 7=423 K
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Fig. 12 Comparison of the orientation angle x as a function of shear
rate between , u, n, and o

(Janeschitz-Kriegl 1983). As mentioned before, this quanti-
tative difference might be largely due to the neglect of C—H
bonds. We also report the slope of n,—n, vs —0o,, in
Fig. 9c. The slope of 1.82+0.2 agrees fairly well with the
theoretical value of 2 under the SOR.

Figure 10 shows the change of ¢ with respect to 0. As in
Fig. 8 for n vs o, there appears to be a fairly linear
relationship between ¢ and o in both the xx—yy and xy
quantities up to a shear rate of y(mo” /<) 1~/2 =0.01. With a
further increase in shear stress, ¢, —c,, and c,, —c..
eventually seem to reach certain asymptotic values, and ny
appears to even decrease after passing through a maximum.

In Fig. 11, we make a similar comparison between n and c.
It might be thought at first that » would be strictly
proportional to c, regardless of shear rate, because this
tensor represents the inherent microstructure of the melt.
However, as seen in the figure, such a linear relationship
appears to be valid only up to "y(moz/e)l/z =0.01,
represented by the dashed line. This is particularly clear in
Fig. 1lc for the xy quantity, where a sudden directional
change occurs at 7(m02/€)1/2 = 0.01. This result implies a
definite difference between the fine-grained property (n)
and the coarse-grained property ¢) in the highly nonlinear
regime. It is interesting to note the exact match between the
critical shear rate of the SOR and that of 1 vs c.

As another important physical property, the orientation
angle x is plotted as a function of shear rate in Fig. 12 for
each tensor. The orientation angle has been calculated
through the eigenvector analysis: the eigenvector
corresponding to the largest eigenvalue of each tensor is
the director, and y is the angle between the director and the
flow direction (Allen and Tildesley 1987). As seen in the
figure, in general, x appears to be different for each tensor,
except for ¢ and u (thus indicating the narrow Gaussian
distribution of the end-to-end distance). In other words, the
principal frames of reference are observed to be different
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Fig. 13 Plots of a (zz-)y)/(xx-yy) and b the equilibrium shear
compliance as functions of shear rate between c, u, n, and o

between the various tensors. This difference becomes larger
with increasing shear rate, in particular, above the critical
shear rate of the SOR. While x (also called the extinction
angle) of the birefringence continues to decrease with
increasing shear rate and eventually approaches an asymp-
totic value of about 12° at high shear rates, those of ¢ and u
asymptote to smaller values of about 5°. In contrast, x of
the stress tensor initially decreases with increasing shear
rate, but appears to pass a minimum value and then
increases slightly. Afterwards, for high shear rates, it seems
to approach an asymptotic value of 27°, which is quite
different than those of other tensors.

Lastly, we plot the ratios among the three independent
quantities for each tensor in Fig. 13. As shown in Fig. 13a,
the qualitative behavior of the ratio between the xx—yy and
yy—zz quantities of each tensor with varying shear rate
seems to be similar. However, the quantitative results
appear to vary significantly. In Fig. 13b, J, = (xx — yy)/
2(xy)* |, which is called the shear compliance for the stress
ensor, 1s plotted as a function of shear rate. J, appears to be
constant at relatively low shear rates but can change
dramatically at higher shear rates. More specifically, while
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J. of the conformation and orientation tensors appear to
increase with shear rate and seem to approach asymptotic
values at very high shear rates, J. of the stress tensor
continues to decrease with increasing shear rate. In contrast,
J. of the birefringence appears to pass through a maximum
at an intermediate shear rate. The quantitative value of J, of
the stress for this melt is roughly equal to 1.1x1077 Pa™".

There have recently appeared in the literature some
detailed discussions of the effect of the glassy stress on the
breakdown of the conventional SOR (Osaki and Inoue
1996; Inoue et al. 1999, 2000). This can be readily un-
derstood from a modified equation for the SOR, as
described in the above references,
Al’l(t) = CrAor + CgAog. (36)
Herein, the subscripts R and G represent the rubbery and
the glassy contributions to the stress tensor, respectively.
This glassy contribution is, however, expected to be very
small in the present polyethylene system for several
reasons, as follows.

First, Inoue et al. (1999) investigated four relatively
short-chain polystyrene melts in the range of M,,=1,050-
10,500g/mol, and in the later dynamic birefringence study
(Inoue et al. 2000), only the shortest polystyrene sample
with M, =1,050g/mol was employed. This chain length
corresponds to only one Kuhn segment of a polystyrene
chain. In contrast, based on the existing experimental
results of the mean-squared end-to-end distance, the Kuhn
segment of linear polyethylene melts is estimated to contain
approximately ten methylene groups (see, for example,
Flory 1969). Therefore, each molecule of CsoHjq»
employed in the present study would consist of five Kuhn
segments, which correspond to polystyrene melts of M=
5,250g/mol. In addition, it was reported by Inoue et al.
(1999) that polystyrene melts with M,,>5,000g/mol can be
well fitted by the multibead-spring (Rouse) model. Further-
more, one must take into account that linear polyethylene
chains are much more flexible than polystyrene chains,
which supports the notion that the glassy contribution in the
present system would be much weaker. Second, as shown
by Inoue et al. (1996), for polystyrene melts, the (planar)
phenyl side group attached to the main chain backbone
apparently magnifies the glassy contribution. Such a side
group is entirely absent in linear polyethylene chains.
Third, whereas the highest temperature used for the shortest
polystyrene melt (M,=1,050g/mol) in Inoue et al. (2000)
was only 7,+30 °C, the temperature imposed in our system
was 177 °C (450 K), which is even higher than the melting
point of HDPE, T,,=135 °C (=T,+300 °C, assuming
T,=—120 °C, as reported in some of the literature). At this
very high temperature, the glassy contribution is surely
even more negligible.
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As a consequence of the above statements, the break-
down of the SOR in the present study should not be
interpreted as the effect of the glassy-stress contribution,
but as the true deviation from the linear relationship
between structural and rheological responses to strong flow
fields. In a sense, we might even consider the deviation of
the SOR with increasing shear rate as caused by the
increase in a ‘glassy-like’ contribution coming from an
effective ‘freezing’ behavior of relatively longer relaxation-
time modes in response to the applied flow field. A
quantitative description of this consideration might be quite
informative to this subject. On the other hand, it would be
very interesting in a future study to investigate the general
trend of the glassy contribution to the birefringence using
linear/nonlinear polyethylene melts of various chain lengths
(and the side-chain length in the case of nonlinear
polymers) over a wide range of temperatures.

Conclusions

In this article, we presented in detail the results of a
simulation-based examination of the stress—optical behavior
of a linear, short-chain polyethylene melt, CsoH,¢,, under
shear. We have presented a derivation of the generalized
Clausius—Mossotti formula for anisotropic media. Four
important second-rank tensors, the stress tensor, birefrin-
gence tensor, conformation tensor, and orientation tensor,
were calculated directly from simulations at various shear
rates and compared with each other. We summarize below
several main conclusions drawn from the present work.

A linear relationship between the stress and birefrin-
gence (SOR) appears to be valid up to a certain shear rate
well beyond the incipient point of shear thinning. In the
present system, the critical shear stress for shear thinning
and the breakdown of the SOR were found to be 3.2 and
5.5 MPa, respectively.

The slopes of the birefringence vs stress curves appeared to
decrease with increasing stress for all three quantities (xx—yy,
yy—zz, and xy), consistent with many existing experimental
results (Matsumoto and Bogue 1977; Janeschitz-Kriegl
1983; Venerus et al. 1999).

The orientation angles obtained from each of the four
tensors (o, n, Z, and u) were shown to be close to each
other at low strain rates but became more and more distinct
as shear rate increased. This implies that the principal frame
of reference of each tensor does not coincide with that of
the other tensors, in general (except for ¢ and u), thus
indicating a narrow Gaussian distribution of the chain end-
to-end distance.

Rather surprisingly at first, even n and ¢ (also u as well)
were shown to be nonlinear at high shear stress values. The
critical stress value for the onset of nonlinearity was

approximately the same as that at which breakdown of the
SOR occurred.

The customary view that the SOR breaks down because
of the saturation of chain extension and orientation was
demonstrated to be incorrect under shear because the failure
of the SOR was observed to occur at a much earlier stage in
both chain extension and orientation. Specifically, the chain
extension at the point of breakdown of the SOR was about
27% of the full extension (see Fig. 3) and the orientation
angle of the birefringence was 23°.
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