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Synopsis

Individual molecule dynamics have been shown to influence significantly the bulk rheological and

microstructural properties of short-chain, unentangled, linear polyethylene liquids undergoing high

strain-rate flows. The objective of this work was to extend this analysis to a linear polyethylene

composed of macromolecules of a much greater length and entanglement density; i.e., a liquid

consisting of C400H802 molecules, with approximately ten kinks per chain at equilibrium, as

calculated by the Z1 code of Kr€oger [Comput. Phys. Commun. 168, 209–232 (2005)]. To achieve

this, we performed nonequilibrium molecular dynamics (NEMD) simulations of a model system

using the well-established potential model of Siepmann et al. [Nature 365, 330–332 (1993)] for a

wide range of Weissenberg numbers (Wi) under steady shear flow. A recent study by Baig et al.

[Macromolecules 43, 6886–6902 (2010)] examined this same system using NEMD simulations,

but focused on the bulk rheological and microstructural properties as calculated from ensemble

averages of the chains comprising the macromolecular liquids. In so doing, some key features of

the system dynamics were not fully elucidated, which this article aims to highlight. Specifically, it

was found that this polyethylene liquid displays multiple timescales associated with not only the

decorrelation of the end-to-end vector (commonly related to the Rouse time or disengagement time,

depending on the entanglement density of the liquid), but also ones associated with the retraction

and rotation cycles of the individual molecules. Furthermore, when accounting for these individual

chain dynamics, the “longest” relaxation time of the system was higher by a factor of 1.7, inde-

pendent of shear rate, when calculated self-consistently due to the coupling of relaxation modes.

Brownian dynamics (BD) simulations were also performed on an analogous free-draining bead-rod

chain model to compare the rotation and retraction dynamics of a single chain in dilute solution

with individual molecular motions in the melt. These BD simulations revealed that the dynamics of

the free-draining chain are qualitatively and quantitatively similar to those of the individual chains

comprising the polyethylene melt at strain rates in excess of Wi� 50, implying a possible break-

down of reptation theory in the high shear limit. An examination of the bulk-average properties

revealed the effects of the chain rotation and retraction cycles upon commonly modeled microstruc-

tural properties, such as the distribution function of the chain end-to-end vector and the entangle-

ment number density. VC 2015 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4903498]
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I. INTRODUCTION

The description of fast flows of macromolecular fluids has proven to be a difficult

challenge for rheologists. Many theories were proposed during the 20th century in

attempts to explain the rheological and microstructural responses of these complex

liquids under flow, but each invariably diverged from experiment at high strain rates,

regardless of their degree of success in the linear and weakly nonlinear viscoelastic flow

regimes (i.e., at low to intermediate values of the strain rate relative to a characteristic

relaxation time of the fluid). Many conjectures have been proposed for these discrepan-

cies at high strain rates, such as the failure of closure approximations, mode coupling

effects, a strain-rate dependent relaxation time, and many others, depending on the nature

of the specific model under consideration. The most basic reason for this near universal

failure of rheological models for high strain-rate flow is simply that all of the relevant

physical processes have not been incorporated self-consistently into the mathematical

constitutive equations that are presumed to describe the fluid response.

In the 21st century, reptation theory is widely considered to be the gold standard of

contemporary rheological ideology. The basic premise of this theory, originating from an

idea of de Gennes (1971), is that a macromolecular chain experiences snakelike diffusion

through contorted tubes formed by the surrounding chainlike molecules. The physical

constraints of these tubes mandate that the diffusional motion parallel to the polymer

backbone is greater than the motion perpendicular to it. This simple physical picture was

encoded into a descriptive theory of polymer dynamics under flow by Doi and Edwards

(1986) a decade later, and extensively developed over the next three decades—see

McLeish (2002) for a relatively recent exposition of the state of reptation theory. Today

it is almost universally viewed as the most fundamental and inherently accurate descrip-

tion of entangled polymeric liquid microstructural and dynamical responses to external

stimuli.

In spite of the wide acceptance and application of reptation theory, it possesses some

well-known deficiencies, most of which are primarily evident under the imposition of

high strain-rate flows. Whereas experiment and atomistic simulations have verified most

of the dynamical behavior predicted by reptation theory under equilibrium (no-flow) con-

ditions, and also for low and intermediate strain-rate flows, the consistency of this theory

with experimental data for high strain-rate flows has been incomplete and the applicable

physics is still not fully understood.

Recent evidence suggests that a flow-induced disentanglement of polymer macromole-

cules can occur at high strain rates in steady shearing flow. This reduction in interchain

constraints leads to the onset of individual molecular retraction and rotation cycles,

which occur within roughly oriented tubelike structures composed of the highly extended

surrounding chain molecules. This new phenomenon has been observed in nonequili-

brium molecular dynamics simulations of molten polyethylenes in the unentangled and

moderately entangled molecular-weight regimes (i.e.; polyethylenes up to C400H802)

[Kim et al. (2008a); Kim et al. (2008b); Kim et al. (2009, 2010); Kim et al. (2011); Baig

et al. (2010)]. This unexpected observation from atomistic simulations can possibly

explain the difficulties that manifest in reptation theory for high strain-rate flows, as

elucidated in this article.

II. BACKGROUND

Observations of the motions of individual chain molecules are crucial to further devel-

opment and refinement of rheological and topological models of the dynamics of
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polymeric liquids. Most past modeling efforts have been aimed at the description of the

evolution of bulk-averaged quantities, such as the conformation or stress tensors, under

the influence of an applied external flow field [Bird et al. (1987a); Bird et al. (1987b)].

These theories are applicable to chain liquids at low field strength, but their descriptions

of the rheological behavior tend to break down once the field strength drives the fluid

substantially beyond the linear viscoelastic regime. Unfortunately, the averaging proce-

dure implies a substantial reduction in the number of degrees of freedom of the

molecular-scale description, resulting in characteristic evolution equations for variables

(such as the conformation tensor or the extra stress tensor) that change on macroscopic

length and time scales but ignore the atomistic-scale dynamics. Consequently, any infor-

mation that is present on microscopic timescales is effectively removed from the final

evolution equations that describe the dynamical response of the chain liquid. This readily

explains why these bulk-averaged theories often break down in the nonlinear viscoelastic

regime where the timescales of the flow can become smaller than those associated with

the time evolution of the macroscopic variables. (Note that as strain rate is increased, its

reciprocal, associated with the characteristic timescale of the flow, decreases.) Many

examples of the failure of bulk-averaged models, especially at high strain rates, were

discussed by Larson (1988).

A large number of attempts have been made to extend the validity of dynamical equa-

tions for entangled polymers into the nonlinear viscoelastic regime [Bird et al. (1987b);

Larson (1988)]. The most popular model is the reptation-based theory of Doi and

Edwards (1986), wherein a generic chain is assumed to undergo snakelike motion within

a contorted tube formed by neighboring chains. Consequently, motion along the chain

contour is much less restrained than motion perpendicular to it. A characteristic timescale

is assigned to this motion, sd, which is called the “reptation” or “disengagement” time-

scale; conceptually, this is the time required for the chain to disengage from its original

tube. This timescale is generally some multiple of the fluid’s Rouse time, sR, under quies-

cent (no-flow) conditions. Although the most comprehensive versions of reptation-based

theories perform well at low shear rates ð _c < 1=sdÞ [Larson (1999)], and have recently

attained success at intermediate shear rates ð1=sd < _c < 1=sRÞ [Mhetar and Archer

(2000); Islam et al. (2003)], they still struggle to describe completely the rheology and

topology of entangled polymeric liquids at high shear rates where the associated time-

scales become relatively small ð1=sR < _cÞ [Teixeira et al. (2007)].

Until recently, light scattering and birefringence experiments were the primary means

for analyzing the orientational and configurational changes of polymer chains undergoing

flow; however, these types of experimentation are unable to resolve configurational

changes of individual polymer chains. Consequently, these measurement techniques were

restricted to examining bulk fluid properties and could not distinguish between phenom-

ena that occur over disparate length and time scales; however, this does not imply that

the dynamics of individual chain molecules do not affect the observed birefringence and

light scattering patterns.

Relatively recent direct visualization of individual polymer chains using video micros-

copy offered the possibility to explore the motions of individual chain molecules under-

going flow [Smith and Chu (1998); Smith et al. (1999); LeDuc et al. (1999); Teixeira

et al. (2005), Teixeira et al. (2007); Schroeder et al. (2005); Robertson and Smith (2007);

Harasim et al. (2013)]. These initial studies have seriously called into question many of

the assumptions used to model polymer flow dynamics. Smith et al. (1999) and LeDuc

et al. (1999) simultaneously examined dilute solutions of DNA, in which the dynamics

of individual, labeled chains were visualized under shear in the flow-vorticity plane

using video microscopy. These results demonstrated that the flexible polymer chains
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experienced both deformation and tumbling under shear, as a function of the

Weissenberg number (Wi ¼ sR _c). Schroeder et al. (2005), Teixeira et al. (2005), and

Teixeira et al. (2007) visualized and tracked individual configurational changes of fluo-

rescently labeled DNA solutions under steady shear flow in the flow-gradient plane for

concentrations ranging from dilute to highly entangled. These experiments again demon-

strated the tumbling and stretching dynamics of individual chains, which depended on

both Wi and concentration, but the evidence was more direct since the visualization was

carried out in the flow-gradient plane. They also demonstrated a quasiperiodic tumbling

of the individual DNA molecules in dilute solution at high Wi, with a characteristic fre-

quency for this rotation that scaled sublinearly with shear rate as Wi 0.62. For concentrated

DNA solutions, two distinct timescales were observed: The first associated with the chain

retraction dynamics (the short timescale), and the second possibly related to the dynamics

of constraint release and contour length fluctuations (the long timescale). The probability

distribution of chain extension broadened dramatically at high Wi from its approximately

Gaussian shape at low Wi, which is not typical of preaveraged bulk rheological theory.

Robertson and Smith (2007) used optical tweezers to measure the intermolecular forces

acting on a single DNA chain as exerted by the surrounding entangled molecules and

found three distinct timescales: The short timescale was determined as close to the theo-

retical value of the Rouse time, the long timescale was associated with the disengagement

time of reptation theory, and the intermediate timescale was speculated to be a second

reptative process that was correlated with the dynamics of the effective reptation tube

under shear. Harasim et al. (2013) examined dilute suspensions of semiflexible actin

filaments and observed distinct chain-end retraction and tumbling cycles of individual

molecules, book-ended by periods of maximum chain extension.

Despite the numerous successes of single-chain microscopy to date, experimentation

alone cannot resolve all of the outstanding issues that perplex rheologists at high Wi. The

primary limitation of these experiments is the small number of molecules that can be

effectively tracked simultaneously, which is especially true of dense polymer melts.

Atomistic or coarse-grained mesoscopic simulation of entangled polymeric liquids offers

a complementary perspective of individual chain dynamics under flow. In particular,

slip-link simulations with full-chain spatial coupling have been successful in accurately

predicting the linear and nonlinear shear rheology as well as single-chain dynamics of

fluids composed of entangled polymeric chains [Schieber et al. (2007); Dambal et al.
(2009)]; however, the accuracy of the predictions, particularly for very fast flows, i.e.,

ð1=sR < _cÞ, strongly depends on the assumed constraint renewal/release frequency

[Kushwaha and Shaqfeh (2011)]. Clearly, at high deformation rates the constraint

renewal/release frequency should depend on the deformation rate. This critical modifica-

tion to the state-of-the-art slip-link models requires detailed understanding of individual

macromolecule dynamics at high deformation rates. The experimental difficulty associ-

ated with tracking a sufficiently large number of single molecules in highly entangled

polymeric liquids makes nonequilibrium molecular dynamics (NEMD) simulations a

suitable method for determination of this critical information.

Nonequilibrium molecular dynamics is a common technique used to study flows of

chain molecules comprised of atomistically detailed particles or coarse-grained models,

such as bead-spring chains where each bead represents a center of drag resistance to the

surrounding flow and the spring represents a statistical segment of the atomistic chain.

Most NEMD flow simulations to date have focused on the determination of bulk rheolog-

ical and structural properties, whether performed for either atomistic [Mavrantzas and

Theodorou (1998); Moore et al. (2000); Mavrantzas and €Ottinger (2002); Baig et al.
(2006); Kim et al. (2008a); Baig and Mavrantzas (2009)] or coarse-grained [Kr€oger et al.
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(1993); €Ottinger (1996); Doyle et al. (1997); Kr€oger and Hess (2000); Schieber et al.
(2007); Venkataramani et al. (2008); Dambal et al. (2009); Kushwaha and Shaqfeh

(2011)] liquids. Although much new insight concerning the relationships between flow

kinematics, material properties, and microstructure has been gained from these studies,

this focus on bulk behavior at macroscopic length and time scales has resulted in

overlooking key microscopic information concerning the molecular-scale origin of the

bulk rheological and structural properties [Kim et al. (2009, 2010); Kim et al. (2011)], as

described below.

The primary advantage of NEMD simulation of an atomistically detailed polymer

chain over experiment is that every chain within the sample can be examined individu-

ally, not just those which were optically labeled and under view in the experimental appa-

ratus. This allows much more detailed information to be gleaned from the simulation

with respect to the experiment, as statistically meaningful correlations can be established

via ensemble averaging of the dynamical behavior of each individual chain. Also, simula-

tions are readily amenable to topological analysis, extending equilibrium properties such

as tube diameter, primitive path length, and number of entanglements to nonequilibrium

flow situations [Kim et al. (2008b)]. Certainly, bulk-averaged properties, such as the con-

formation and stress tensors, can still be calculated, but also with the ability to examine

the effects of short timescale individual chain dynamics upon them. Ultimately, more and

better information at the microscopic scale should lead to better rheological and micro-

structural models of polymeric liquids under flow. Indeed, recent simulations studies

wherein the short timescale phenomena have been examined and analyzed carefully have

already led to new insight regarding the effects of molecular-scale, segmental motions on

the dynamical flow response, as well as models that incorporate these phenomena

[Schieber et al. (2007); Dambal et al. (2009); Kim et al. (2010); Kim et al. (2011);

Kushwaha and Shaqfeh (2011)]; these recent insights are described in the succeeding

paragraphs.

Six years ago, Kim et al. (2008a), Kim et al. (2008b), and Kim et al. (2009) noticed

an apparent anomaly in the steady-shear behavior of a short-chain polyethylene

(C78H158) melt in a NEMD simulation; i.e., the probability distribution of the end-to-end

vector, R, which connects the two end units of the carbon chain, became bimodal at high

values of Wi. At low values of Wi, the distribution was essentially Gaussian with the

peak centered at approximately its equilibrium value of jRj, as expected, and this distri-

bution gradually widened and the peak shifted to higher values of jRj at intermediate Wi
with the increasing extension of the polymer molecules under flow, also as expected. At

high Wi, however, two peaks emerged, one associated with the continued deformation of

the molecules, which approached the maximum extension of the chains at high Wi, and a

second one that appeared at values of jRj that were actually smaller than the equilibrium

value [see Fig. 3 of Kim et al. (2009)]. Even more puzzling was the additional fact that

the macroscopic, ensemble-averaged conformation tensor displayed the expected behav-

ior at all values of Wi [Kim et al. (2011)]. This is an important point since a typical flow

birefringence or small-angle light scattering experiment indirectly measures the confor-

mation tensor and not the distribution of jRj. However, using the conformation tensor

calculated in the simulations, which very accurately resembles the experimentally deter-

mined one, produces a unimodal distribution when one examines its Eigenvalues and

Eigenvectors. In other words, a bulk-flow experiment cannot recognize other than the

usual unimodal distribution and is blind to the possibility of a multimodal distribution at

high Wi; hence an apparent example of the complementary use of experiment and atomis-

tic simulations. As a consequence, the presence of a bimodal distribution could have

gone unnoticed for many years.
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The problem with using the conformation tensor as a descriptor of the microstructural

state of a polymeric liquid is that it is a long-time ensemble average over the chainlike

molecules. Therefore, the short timescale dynamics of the chains are effectively averaged

out over an extended period of time. Furthermore, performing the ensemble averaging

over all chains tends to weight the highly extended chains more than those at the low end

of the jRj spectrum, thus emphasizing the “stretch peak” of the bimodal distribution at

high Wi.
To resolve the apparent anomaly of the bimodal distribution, it was ultimately neces-

sary to study the dynamical behavior of the ensemble of chains by looking at each chain

individually—something that cannot be done experimentally, especially in these dense

melts. In doing so, a new and unexpected insight was gained into the dynamic behavior

of these macromolecular liquids at short timescales, and how this behavior affects macro-

scopic bulk-flow properties. To understand the origin of the peak at low values of jRj, it

is necessary to examine the dynamics of individual chains as they undergo steady shear

flow. Kim et al. (2009) demonstrated that the cause of the bimodal distribution was asso-

ciated with the individual chains experiencing periods of high extension followed by

short excursions of rotational tumbling where the ends of a polymer chain passed each

other very closely, with an associated flip in the orientational angle. Consequently, it

became apparent that the low jRj peak of the bimodal distribution at high Wi was due to

the time-averaging of these fast quasiperiodic tumbling cycles, whereas the high jRj peak

quantified the highly extended chain configurations, which persisted over longer time-

scales than the relatively rapid rotation.

Ideally, the periodic nature of these tumbling events could be quantified by calculating

appropriate autocorrelation and cross-correlation functions of the end-to-end vector.

Therefore, Kim et al. (2009) examined the time correlation functions of the various com-

ponents of jRj, and found that at low values of Wi, these correlations all decayed monot-

onically, as expected, with a characteristic relaxation time that corresponded to the Rouse

time of this unentangled C78H158 liquid at equilibrium. However, at large Wi, these corre-

lations developed a damped oscillatory behavior that could be quantified by a power

spectral density calculation and characterized by two timescales, as defined by the

equation

hRaðtÞRbðtþ sÞi ¼ A exp ð�t=sconvÞ cos ð2pt=sabÞ; (1)

where A is a constant, sab is a characteristic timescale associated with the rate of rotation,

and sconv is a convective timescale of configurational decorrelation that corresponds to

the Rouse time when Wi lies in the range [0,1]. The characteristic times resulting from

Eq. (1) showed that the rotational timescales decreased as the frequency of the rotations

increased with increasing Wi. It was noted that the critical Wi where a breakdown of the

stress-optical rule occurred in prior simulations [Baig et al. (2007)] corresponded fairly

well to the critical Wi where the onset of rotational motion became evident [Kim et al.
(2009, 2010)]. The primary conclusion drawn from these prior results is that chain ends

undergo quasiperiodic fluctuations into the flow-vorticity plane during which they

can begin to experience anisotropic diffusion down the axis of “tubes” formed by the

surrounding, highly oriented chains.

It is worth noting that an analogous type of periodic rotational and diffusional motion

has been observed in simulations before [Aust et al. (1999); Aust et al. (2002); Doyle

et al. (1997); Venkataramani et al. (2008)]; these simulations have all invoked mesoscopic

models of bead-spring or bead-rod chains suspended at dilute concentrations in low

molecular-weight solvents where the model chains were free to maintain Jeffreys’-type

6 NAFAR SEFIDDASHTI, EDWARDS, AND KHOMAMI



tumbling orbits and stretch-recoil cycles without experiencing interference from surround-

ing chains. Edberg et al. (1987) also found evidence of molecular rotation and stretching

in NEMD simulations of small chain liquids (n-butane and n-decane); however, the simu-

lations of an analogous periodic behavior in the dense melts on relatively large n-alkane

chains, as described above, were quite unexpected.

Kim et al. (2008b) also examined the topological characteristics of the C78H158 liquid

and noticed that the least primitive path of the chain molecules was highly dependent on

Wi, experiencing an initial increase at low values of Wi, an apparent maximum corre-

sponding to the critical flow strength where chain rotation became significant, and a sub-

sequent decrease as the molecular tumbling cycles produced more tightly coiled chain

configurations on average, ultimately resulting in primitive paths that were shorter than

those of the equilibrium system. Furthermore, the number of entanglements per chain

was shown to decrease steadily with increasing Wi due to the uncoiling effect of the

highly elongated chain configurations that comprise the stretch peak of the bimodal dis-

tribution at any particular instant. The effective reptation tube diameter initially increased

at low Wi, followed by an apparent maximum and subsequent decrease with increasing

Wi. Once again, the maximum in the primitive path was clearly associated with the

critical value of Wi where chain rotation and retraction became a significant component

of the overall system dynamical response.

Kim et al. (2011) used the simulation results described above to develop and test a

stochastic model based on the ansatz of anisotropic chain diffusion through tubes formed

by surrounding, highly aligned chains. The polymer chains were mesoscopically modeled

as bead-spring chains, with a finitely extensible nonlinear elastic force law applied to the

springs. The basic principle in the bead-spring model is that chain segments composed of

many atomistic backbone units can be modeled collectively as a series of springs, each of

which characterizes the resultant forces of all the atomic constituents, with each spring

bounded between two beads that represent conceptual centers of frictional resistance with

the surrounding medium. Kim et al. (2011) applied a force balance over the bead-spring

chain to derive an anisotropic diffusion model under the primary hypothesis that at high

strain rates, when significant disentanglement occurs, the underlying dynamics of the

polymer chains resemble very closely the behavior that is observed for semi-dilute and

concentrated polymer solutions, as in visualization experiments [Smith and Chu (1998);

Smith et al. (1999); LeDuc et al. (1999); Teixeira et al. (2005); Teixeira et al. (2007);

Schroeder et al. (2005); Robertson and Smith (2007)]. This being the case, it is reasona-

ble to assume that mesoscopic models, such as the one described above, will provide an

accurate description of the individual molecular dynamics. Consequently, each chain is

surrounded by a mean-field of highly aligned chains that form an effective “tube” through

which a single chain can experience anisotropic diffusion that is enhanced in the direction

of the tube axis and inhibited perpendicular to the tube axis. In principle, this allows

chains in a mesoscopic Brownian dynamics (BD) simulation to recoil and rotate similarly

to the chains in the atomistic NEMD simulations.

The model described above was able to fit the standard rheological characteristic func-

tions (viscosity, first and second normal stress coefficients) and average molecular exten-

sions (magnitude of the end-to-end vector, etc.) of the atomistic NEMD simulations

quantitatively using a single adjustable parameter with a universal value. This value (0.6)

was slightly greater than the value of this ratio (0.5) derived by Doi and Edwards (1986)

for rigid rodlike molecules, which makes sense based on the stated hypothesis. More

importantly, however, was the fact that the model was able to describe quantitatively the

bimodal distribution observed in the NEMD simulations as well as the characteristic

timescales of the rotational motion [Kim et al. (2011)].
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Although the phenomenon of molecular rotation described above is very interesting,

its relevance to real-world polymer dynamics can be questioned since the simulated liq-

uid was composed of fairly short-chain polyethylenes with only 78 carbon units.

Macromolecules of this length are only faintly entangled, with an average of about one

entanglement per chain at equilibrium, whereas fully entangled polymer melts are gener-

ally considered to average 20–30 entanglements, and often many more. Consequently, it

is highly possible that increasing the number of entanglements per chain, not to mention

simply increasing the length of the chains, might hinder the type of anisotropic molecular

diffusion that was observed in the short-chain simulations. Therefore, longer chains were

examined in subsequent studies (C400H802) by Baig et al. (2010), where the chains aver-

age about five entanglements per chain under quiescent conditions; hence the macromo-

lecules can be viewed as moderately entangled from a reptation perspective. These

authors performed an extensive suite of NEMD simulations at Wi values ranging from 0

to 21 600 and calculated many bulk fluid properties via ensemble averaging, such as the

end-to-end vector distribution, rheological characteristic functions, the conformation ten-

sor, number of entanglements, least primitive path, molecular energies, and reptation

tube diameters. Essentially all of these results were qualitatively similar to those from the

C78H158 NEMD simulations, as described above. These results were rather surprising in

that all of the unusual behavior observed in the unentangled C78H158 simulations carried

over into the much longer moderately entangled C400H802 simulations. However, the lack

of focus on the dynamics of the individual macromolecules comprising the fluid left a

gap in the understanding of this moderately entangled polymeric liquid, which the present

contribution aims to fill. Specifically, the relationships between the bulk-averaged system

properties and the onset of chain rotation and retraction, as well as the associated coupled

timescales, were not elucidated in the prior work, and will be examined more critically

herein. Some of the results of Baig et al. (2010) will be reproduced in this article to retain

continuity, but the reader is referred to the cited paper for a complete presentation of the

prior work.

III. SIMULATION METHODOLOGY

A. Nonequilibrium molecular dynamics

The system studied in this work is a monodisperse C400H802 linear polyethylene melt.

The simulation conditions were adopted from a previous work on C400H802 by Baig et al.
(2010) in order to facilitate a comparison with their results. The rectangular simulation

volume contained 198 C400H802 chains, subject to periodic boundary conditions on all

sides of the box. The NVT simulations were performed at constant temperature (450 K)

and constant density (0:7640 g=cm3) corresponding to a well-established experimental

state point at atmospheric pressure. The dimensions of the simulation volume were

86.96 Å along the y (gradient) and z (neutral) directions and 318.8 Å along the x (flow)

direction. As the flow is in the x direction, this box dimension was set considerably larger

than the other two directions since under high shear the chains would stretch and orient at

a small angle with respect to the x axis. The maximum possible extension of the chains,

jRjmax, is approximately 515 Å when all bond dihedral angles are in the trans-

configuration while bond lengths and angles maintain their equilibrium values; therefore,

318.8 Å should be sufficient to minimize systems size effects that might occur during the

high shear simulations where significant degrees of chain extension and orientation can

be induced by the flow. An extended simulation box of dimensions (516� 68.5� 68.5 Å)

was also examined at Wi values of 1060 and 10 000 to ensure that individual chains could
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not extend through both ends of the simulation cell in the flow direction; results proved that

all measured properties were statistically unchanged from the original simulation cell.

The simulation box comprised 79 200 united atoms making up the 198 chainlike mole-

cules, which conformed to the Siepmann–Karaborni–Smit (SKS) united-atom potential

model [Siepmann et al. (1993)] except that the rigid bond between adjacent atoms in the

original model was replaced with a harmonic potential function; this is standard practice

in molecular dynamics simulations as use of this potential model alleviates integration

difficulties. The united-atom particles represent either -CH3 or -CH2- groups, depending

on location along the chain. All intermolecular and intramolecular potential functions

(bond-stretching, bond-bending, etc.) were the same as employed in many prior simula-

tion studies [Moore et al. (2000); Baig et al. (2006); Baig et al. (2007); Baig et al.
(2010); Baig and Mavrantzas (2009); Kim et al. (2008a); Kim et al. (2008b); Kim et al.
(2009, 2010); Kim et al. (2011)], with the only exception being the bond-torsional

potential

Utorð/Þ ¼
X3

m¼0

amðcos /Þm; (2)

where the bond-torsional constants were a0=kB ¼ 1010 K; a1=kB ¼ �2019 K; a2=kB ¼
136:4 K; and a3=kB ¼ 3165 K. Although Eq. (2) is the same as in the previous studies, the

values of a1=kB and a3=kB have the opposite signs to those used in most prior work; this

is because the program used in the present work defined the dihedral angle such that the

trans-configuration is located at 180� rather than at 0�.
The p-SLLOD equations of motion were used to perform the NEMD simulations,

which were maintained at a constant temperature of 450 K using a Nos�e–Hoover thermo-

stat [Nos�e (1984); Hoover (1985); Evans and Morriss (1990); Edwards and Dressler

(2001); Edwards et al. (2005, 2006); Baig et al. (2005)]. The full set of evolution equa-

tions for the system are can be found in several of the cited references. The upper limit of

strain rates examined is believed to be below the threshold where thermostat artifacts

begin to affect the system response [Travis et al. (1995); Baig et al. (2006)].

The equations of motion were implemented within the large-scale atomic/molecular

massively parallel simulator (LAMMPS) environment. Boundary conditions were peri-

odic at all box surfaces with a deforming simulation box in the x direction. The equations

were integrated using the reversible reference system propagator algorithm, r-RESPA, with

two different time steps. The long time step was 2.35 fs, which was used for the slowly

varying nonbonded Lennard-Jones (LJ) interactions. The short time step was 0.47 fs (one-

fifth of the long time step) for the rapidly varying forces including bond-bending, bond-

stretching, and bond torsional interactions. The relaxation time of the thermostat was set

equal to 0.235 ps in all simulations. Roughly the same range of shear rates was examined

as in the study of Baig et al. (2010); i.e., (4:59� 106 s�1 � _c � 9:63� 1010 s�1).

The topological analysis was performed using the Z1 code developed by Kr€oger

(2005), which reduces atomistic configurations to a primitive path network in which the

chains are not allowed to cross through each other as the algorithm simultaneously mini-

mizes the contour length of each polymer molecule [Karayiannis and Kr€oger (2009)].

This method uses geometrical methods rather than dynamical algorithms to minimize the

contour lengths of primitive paths in the most computationally efficient manner. The

code further defines positions of kinks along the three-dimensional primitive path of each

chain, which are assumed to be roughly proportional to the number of entanglements per

chain. Results of the code can be used to interpret other important reptative parameters,
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such as the effective tube diameter and entanglement strand length. The Z1 method has

been compared with other topological analysis techniques by Shanbhag and Kr€oger

(2007).

B. BD

BD simulations were also performed for a free-draining bead-rod chain to assess the

similarities and differences between single-chain dynamical behavior in the C400H802

melt and an analogous chainlike macromolecule in dilute solution under shear.

Simulations were performed using methods described elsewhere [Doyle et al. (1997);

Somasi et al. (2002); Kim et al. (2010)]. The linear C400H802 macromolecule was mod-

eled mesoscopically as a freely jointed chain of 32 beads separated by rigid rods 16.5 Å

in length, as discussed in Sec. IV of this article.

The BD simulations assumed a sum of three external forces acting on the beads, which

satisfied a conservation equation for each bead. These forces were the hydrodynamic

drag force, as described by Stokesian friction acting on the beads, a constraint force,

which maintains constant bond length (b) between adjacent beads, and a Brownian force

that describes collisions between neighboring beads. The resulting set of evolution

equations for the position vectors of the beads was solved using the iterative technique

developed by Liu (1989), which has been proven to be optimal for this size of chains by

Somasi et al. (2002).

The BD simulations were performed by matching the longest relaxation time of the

bead-rod model to the equilibrium value of 231 ns, as extracted from the atomistic equi-

librium simulation—see below for specific details. Equilibrium and flow properties were

calculated using long-time ensemble averages of 1000 replicated chain systems.

IV. RESULTS AND DISCUSSION

A. Quiescent properties

Simulation data of the autocorrelation functions of the unit and scaled end-to-end vec-

tors versus time of the C400H802 liquid under quiescent conditions are presented in Fig. 1.

The autocorrelation function of the i-th chain unit end-to-end vector, as expressed

in terms of the usual chain end-to-end vector, ui ¼ Ri=jRij, is represented as

huiðsÞ � uiðsþ tÞi, where s is an arbitrary reference time and the angular brackets denote

an ensemble average over all of the 198 chains in the simulated liquid. The autocorrela-

tion function of the scaled end-to-end vector is defined as h�RiðsÞ � �Riðsþ tÞi, where
�Ri ¼ Ri=hR2i1=2

is weighted with respect to the equilibrium value of hR2i ¼ 8482 Å2 as

determined from the simulation. Although the system relaxation times are usually devel-

oped in terms of correlation functions of either Ri or �Ri, we chose here to primarily use

ui, as did Baig et al. (2010). Our primary motivation for doing so is because the autocor-

relation function of ui weights each chain equally, rather than an unscaled end-to-end

vector that weights highly extended chains with longer values of jRij more heavily than

those with low extensions. This is important at the high values of Wi to be examined later

where the end-to-end vector can be quite small due to frequent rotation and retraction

cycles, which can reduce jRij to very small values, even less than the equilibrium value.

We simulated the liquid dynamics for a system composed of 198 chains for 1200 ns, a

factor of three higher than the timespan simulated by Baig et al. (2010), who used a simu-

lation of 54 chain molecules for the quiescent case [Baig (personal communication)];

given the nature of a calculation of the correlation function, our data should therefore be

inherently more accurate.
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The time correlation functions for our equilibrium simulation and that of Baig et al.
(2010) are presented in Fig. 1, where the latter data were generously shared with us by

Dr. Baig (personal communication). The present data decay exponentially to zero over

the long timespan of the simulation, whereas that of Baig et al. ends well short of total

decay. Because of this, there is some degree of error evident in the final 200 ns of

their data. Based on a fit of the Kohlrausch–Williamson–Watts (KWW) equation

[Larson 1999],

hui sð Þ � ui tþ sð Þi ¼ AK exp � t

sK

� �bK

" #
: (3)

Baig et al. estimated the longest system relaxation time to be 218 ns. In Eq. (3), s is an ar-

bitrary reference time and AK , sK , and bK � [0,1] are fitting parameters that allow an esti-

mation of the longest system relaxation time. The KWW equation is thus a stretched

exponential expression which allows a much better estimation of the longest relaxation

time of the system when only a limited amount of simulation data are available. Using

this expression, our estimate of the longest system relaxation time is 154 ns, which is sig-

nificantly lower than that of Baig et al.; however, given the extensive amount of present

data, there is no need to employ the KWW equation, and a sum of simple exponentials

can be used to estimate multiple system relaxation times, not just the longest one. Sums

of two and three exponentials gave very good fits to the data, and the relaxation times

determined via a least-squares fit are presented in the first two columns of Table I. (The

three-exponential fit is displayed in Fig. 1.) Based on the three-exponential fit, the relaxa-

tion times are calculated as 2.4, 28, and 231 ns. (Sums including additional exponential

functions, containing four and five functions, respectively, gave longest relaxation times

very near to 231 ns as well.) The longest of the these (231 ns) was used to calculate the

values of Wi used in the shear flow simulations for the range of shear rates stated above;

i.e., Wi 2 ½1:06; 22 250�. Note that the value of the relaxation time obtained from a fit of

the KWW equation (154 ns) drastically underestimates the actual longest relaxation time.

Based upon the value of 218 ns, Baig et al. (2010) reportedly examined the range of

FIG. 1. Autocorrelation functions of huiðsÞ � uiðsþ tÞi and h�R iðsÞ � �R iðsþ tÞi versus time under quiescent con-

ditions. Data are presented for the present simulations as well as those of Baig et al. (2010). The fit to the unit

end-to-end (ete) vector data set of the present work is given by a sum of three exponentials, whereas the fit to

the data set of Baig et al. is via the KWW equation.
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Wi 2 ½0:54; 21 600�; however, their value of the longest relaxation is sufficiently close to

our value such that the shift in the simulated data when plotted against Wi should be neg-

ligible, enabling direct comparisons between our results and those of Baig et al.
Figure 1 also displays the correlation function h�RiðsÞ � �Riðsþ tÞi of the scaled end-to-

end vector. A fit of a sum of two exponentials to the data yields characteristic timescales

of 18 and 228 ns, whereas a sum of three exponentials gives 2.9, 29, and 232 ns.

Comparing these values with those of Table I, it is evident that these timescales are very

close to those obtained from similar fits of the unit end-to-end vector autocorrelation.

The scaled vector correlation is slightly higher than that of the unit vector, which is

expected since the more highly extended chains are weighted more heavily in the scaled

vector calculation, although this effect is fairly small at equilibrium since the probability

of finding highly extended chains is very low. Most of the difference between the two

sets of data manifests in the prefactors of the terms in the exponential summations, not in

the characteristic timescales.

We hypothesize that the three relaxation times calculated using the unit end-to-end

vector correlation function in Table I correspond to actual physical processes of the

C400H802 liquid, as described by reptation theory. The smallest of these, 2.4 ns, corre-

sponds to the entanglement time, se, which is associated with the timescale for individual

chain segments to feel the confining constraints of the tube formed from the surrounding

chains. The intermediate timescale is associated with the Rouse time, sR, and the longest

relaxation time is associated with the disengagement time, sd , which is the time required

for the chain to escape from its initial tube. We can use deductions from reptation theory

to justify this hypothesis, as discussed below.

According to reptation theory of a Gaussian chain [Doi and Edwards (1986)], the

Rouse and disengagement timescales are governed by the expressions

sR ¼
nN2b2

3p2kBT
; (4)

sd ¼
1

p2

nN3b4

kBT a2
; (5)

where n is the friction coefficient of the identical beads, N is the number of beads per chain

(which is approximately the number of Kuhn steps for long chains), b is the Kuhn length,

and a is the step length of the primitive chain or, equivalently, the tube diameter. The

Kuhn length, as approximated by b ¼ hR2i=jRjmax, is determined directly from the simula-

tion as 16.5 Å, based on the equilibrium hR2i1=2
value of 92.1 Å. This value is slightly

larger than the 89.5 Å calculated by Baig et al. (2010); however, the two values are within

the mutual error tolerances of each other. Hence the number of Kuhn segments is

31.29� 31. Defining the radius of gyration as Rg, the ensemble average hR2
gi ¼ 1369 Å2.

TABLE I. The three relaxation times calculated from the autocorrelation function of the unit end-to-end vector,

ui, according to two and three-term series of exponential functions, segmental MSD data, and reptation theory.

Relaxation time Two-exponential Three-exponential MSD Theory

se (ns) — 2.4 2.6 5.1

sR (ns) 16 28 20 18

sd (ns) 225 231 279 273
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The number of steps in a primitive chain, or the number of entanglements per chain, is

defined as [Doi and Edwards (1986)]

Z ¼ hLi
a
¼ Nb2

a2
; (6)

where Z is the number of entanglements per chain and hLi is the average primitive chain

contour length, which was calculated using the Z1 code as 209 Å. The number of entan-

glements is given by the expression Z ¼ hLi2=R2, where we have defined R2 	 Nb2. This

will be assumed to be equivalent to hRi2¼ 8482 Å2. Accordingly, the number of entan-

glements is calculated using this expression as Z¼ 5.15, and hence the tube diameter is

40.6 Å from Eq. (6). This value of Z compares well with the experimental value of �4.9

reported by Fetters et al. (1999). Alternatively, a can be calculated according to

a ¼ bðNeÞ1=2
, where Ne ¼ N=Z is the number of Kuhn steps per entanglement strand,

which also gives 40.6 Å. These values compare well with the value of the step length of

the primitive path, as, for the same C400H802 liquid simulated by Stephanou et al. (2010)

as 39 Å, which they calculated according to Eq. (6) rewritten as as ¼ R2=hLi. These

values for a also compare favorably with the value of 36 Å determined experimentally

for a polyethylene at 413 K [Fetters et al. (2007)], and the value of Ne¼ 6.02 compares

reasonably well with the experimental value of 6.89 for the same liquid [Fetters et al.
(2007)].

The expression used to calculate the number of entanglements, Z ¼ hLi2=R2, is based

on the assumption that the chain primitive paths obey Gaussian statistics and that entan-

glement strands between “kinks” in the primitive paths are interpreted as Kuhn steps.

These assumptions break down under flow conditions as the chains deform and orient,

and hence the measure of the number of entanglements used above becomes ill-defined.

The Z1 code provides, besides hLi, an additional quantity, hZki, based on the number of

kinks along the three-dimensional primitive path of each chain, which in some unclear

way is proportional to the number of entanglements. Assuming that the kinks represent

junctures between entanglement strands, the average hZki is calculated by the Z1 code,

which is not restricted to Gaussian statistics and hence remains valid under flow condi-

tions. Everaers (2012) offered an explanation for the empirical evidence [including that

of Baig et al. (2010) and that presented below] which consistently suggests a proportion-

ality factor of approximately two. Consequently, we will use this quantity in Sec. IV B

describing the shear results rather than Z, and simply refer to it as the number of entan-

glements. Under quiescent conditions, hZki ¼ 9:91, which is about twice the value of Z.

It remains rather ambiguous, however, what exactly is the physical meaning of the con-

cept of an “entanglement.”

The ratio between sd and sR is expressed using Eqs. (4) and (5) as [Doi and Edwards

(1986)]

sd

sR
¼ 3Z: (7)

The friction coefficient can be estimated using the diffusion coefficient of the chain

center of mass, DG. For times t
 sd, the diffusion coefficient is given by [Doi and

Edwards (1986)]

DG ¼
kBT a2

3N2nb2
: (8)
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Using Eqs. (5) and (8), it is evident that

sd ¼
1

3p2

R2

DG
: (9)

Here, DG is directly proportional to the slope of the center-of-mass mean-square displace-

ment (MSD) versus time via [Doi and Edwards (1986)]

DG ¼ lim
t!1

1

6t
h RG tþ sð Þ � RG sð Þ
� �2i: (10)

It assumes the value of 1:0490� 10�11 m2/s based on the equilibrium simulation results

for t
 sd; see Fig. 2. The disengagement timescale is thus calculated to be 273 ns using

Eq. (9). The longest relaxation time obtained from the three-exponential fit (231 ns) is

within 15% of this value. According to Eq. (7), the theoretical value of Rouse time is

18 ns.

Characteristic times of the system at equilibrium can also be determined by analyzing

the segmental MSD versus time. This graph can also be used for calculation of other

characteristic times of the system. The segmental MSD is defined as uðtÞ ¼ hðrnðtþ sÞ
�rnðsÞÞ2i [Doi and Edwards (1986)], where rn is the position vector of the n-th monomer

(i.e., the n-th -CH2- unit). In order to minimize chain-end effects, only 50 monomers in

the middle of the chains were included in these calculations. Figure 3 shows the segmen-

tal MSD as a function of time. Four different regimes (three characteristic breaks) can be

observed in these plots. For a very short time, the segment does not feel the constraints of

the network and it is known that uðtÞ ¼ 2Nb2ðt =p3 sRÞ1=2 ffi a2 [Doi and Edwards

(1986)]. Therefore, the slope of a log-log plot is approximately 1/2 at very short times

such that the average segmental displacement is much less than the tube diameter.

According to Doi and Edwards (1986), the entanglement timescale, se, is related to the

segmental MSD as

uðseÞ ¼ 2Nb2ðse =p
3sRÞ1=2 ffi a2: (11)

FIG. 2. MSD of the chain center of mass versus time. The solid line corresponds to the best linear fit to data for

times much greater than the disengagement time.
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Substituting Eqs. (7) and (9) into (11) results in

se ¼
p
36

R2

DGZ3
: (12)

Using Eqs. (7) and (9), Eq. (12) can be expressed relative to the other system timescales

as

sd

se
¼ 12

p3
Z3 and

sR

se
¼ 4

p3
Z2: (13)

Accordingly, the theoretical value of se is 5.1 ns. The very short time dynamics (t < se)

are displayed in Fig. 3(a), where the initial slope is calculated to be 0.44 and then 0.34

for later times. The point where the slope changes is taken as corresponding to the entan-

glement time [Doi and Edwards (1986)]. Equation (11) indicates that the slope should

assume the value of 0.5 at very short times, which is somewhat higher than the value

indicated by the simulations.

For t > se, the motion of the segment perpendicular to the primitive path is restricted,

but the motion along the primitive path is free. It is known that uðtÞ ffi aðkBT b2t=nÞ1=4

FIG. 3. Short (a) and long (b) timescale segmental MSD versus time of the centermost chain atomic units.
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for se � t � sR and uðtÞ ffi aðkBT t=NnÞ1=2
for sR � t � sd [Doi and Edwards (1986)].

Hence, the segmental MSD versus time curve has a slope of 1/4 in the region se � t � sR

and a slope of 1/2 in the time region sR � t � sd . From Fig. 3(b), these slopes are 0.29

and 0.45, respectively, which approximate the expected values. For t � sd the dynamics

are governed by the reptation process, where the segmental MSD is known to follow

u tð Þ ffi kBT a2

N2nb2 t, indicating a slope of unit value [Doi and Edwards (1986)]. The slope, how-

ever, turns out to be 0.75, which is sublinear; we assume that this discrepancy is due to

the dynamical nature of the entanglement network.

The entanglement, Rouse, and disengagement times can be determined from the

breaks in the curves of Fig. 3. These are estimated to be 2.6, 20, and 279 ns, respectively.

The entanglement time matches very closely with the value of 2.9 ns estimated by

Stephanou et al. (2010) for this liquid using the same method of determination. These

authors did not report the Rouse time for this fluid, but they estimated the disengagement

time as 489 ns, which is significantly more than the value of 279 ns obtained from the

present simulations; however, our value compares well with that of 273 ns calculated

from reptation theory. The Rouse time of 20 ns also compares well with the value of

18 ns calculated according to tube theory.

In order to compare the dynamics of the C400H802 melt with those of an analogous

bead-rod chain in dilute solution, three parameters are needed to set the properties of the

bead-rod chain. Two of these have already been determined: N ¼ 32 and b ¼ 16:5 Å.

The final parameter, the friction coefficient, was set using the longest relaxation time of

the dense liquid simulation, which was 231 ns. The autocorrelation function of the end-

to-end vector can be expressed as [Doi and Edwards (1986)]

hR tþ sð Þ � R sð Þi ¼ Nb2
X

p¼1; 3;…

8

p2p2
exp � tp2

sl

� �
; (14)

where p is the Rouse mode and sl is the longest system relaxation time, which typically

takes on the meaning of the Rouse time, sR; however, once the system becomes reptative,

the longest relaxation mode (p ¼ 1) is associated with the disengagement time and the

second longest relaxation mode (p ¼ 3), can in some sense be viewed as a “Rouse time”

for an entangled, reptative system. This viewpoint is supported by the comparison with

reptation theory and the dense liquid data, as discussed above and presented in Fig. 3 and

Table I. Note that the data for the three-exponential fit from Table I appear to confirm

this; i.e., 231/28¼ 8.25� 9, as would be expected from Eq. (14). Accordingly, the fric-

tion coefficient can be calculated for an assumed value of sl according to [Doi and

Edwards, 1986]

sl ¼ sR ¼
nN2b2

3p2kBT
(15)

as 1:6� 10�11 N s m�1. Here, we must correlate the longest relaxation times of the two

systems to obtain the correct equilibrium responses, even though this amounts to the

Rouse time for the dilute solution and the disengagement time for the melt. With N, b,

and n thus specified, a BD simulation of the bead-rod chain solution was carried out

under quiescent conditions. The ensemble averages hR2i and hR2
gi were calculated as

8452 and 1442 Å2, respectively; these correspond to the values of 8482 and 1369 Å2

obtained in the melt simulation, as expected. A fit of the autocorrelation function

huðsÞ � uðsþ tÞi with a sum of two exponential functions, as shown in Fig. 4, revealed
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timescales of 16 and 226 ns. The longer of these corresponds well to the value of 231 ns

used to calculate n, demonstrating that the correct equilibrium dynamics have been incor-

porated into the mesoscopic bead-rod chain model. Note that the shorter timescale is the

same as the Rouse time determined by the two-exponential fit of the NEMD data (see

Table I), and lies in the rough neighborhood of 226 ns/9¼ 25.1 ns, which is the timescale

of the third relaxation mode predicted by Eq. (14) when p ¼ 3.

In summary, the principal timescales deduced in this section were presented in Table

I. As a whole, they appeared to be fairly consistent with each other over all methods of

calculation. They also demonstrated that the C400H802 melt simulated in this study

appears to be described fairly well by standard reptation theory at equilibrium, which is

somewhat surprising given the low number of entanglements per chain (5.15) that it

possesses; this places the liquid in the semientangled regime where reptation concepts

are not as well defined as in the fully entangled state. This is a fortunate occurrence, how-

ever, in that it will allow us to discern clearly the important changes away from reptative

behavior in Sec. IV B once sufficiently high shear rates have been attained.

B. Steady shear flow properties

The molecular dynamics and BD simulations described in Sec. IV A were extended to

nonequilibrium conditions for Wei 2 ½1:06; 22 250�. The primary focus of the present ar-

ticle is on the rotational dynamics of the individual chain molecules composing the dense

polyethylene liquid, which were not thoroughly examined by Baig et al. (2010).

Nevertheless, the prior results served to test the consistency of our results (and theirs), as

all of the bulk-average properties as functions of Wi reported by Baig et al. were repro-

duced quantitatively by the present suite of simulations; therefore, there is no need to

repeat all of these data in the following text. We will focus only on those bulk-average

properties whose characteristics are directly impacted by the individual chain rotation

and retraction dynamics to make clear the effect that these unexpected chain motions

have upon the macroscopic system properties.

The rotation and retraction cycles of individual chains comprising the C400H802 melt

are displayed in Fig. 5(a) for a single chain chosen at random for Wi¼ 10 600. As evident

from the plot, the chain is constantly experiencing both rotation and retraction of a quasi-

periodic nature, similarly to previous studies of short-chain, unentangled polyethylene

FIG. 4. Autocorrelation function of the unit end-to-end vector vs time of the BD simulation under quiescent

conditions and a fit using a sum of two exponential functions.
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C78H158 [Kim et al. (2009, 2010)]. During a typical period, the chain retracts from

a highly extended configuration ðjRj=jRjmax ! 1Þ to a tightly packed coil

ðjRj=jRjmax ! 0Þ, which is even more compact than the equilibrium average random coil

of jRj=jRjmax ¼ 0:18. At the minimum point of the period, the orientation of the chain

flips quickly as the chain ends pass each other at the instant of closest contact, after which

the chain quickly expands once more to a highly stretched configuration. Although

depicted for only a single random chain, the behavior of all molecules within the system

is essentially the same, providing a much richer dynamics to the flow response of this

melt than could have been imagined for this moderately entangled polymeric liquid.

Indeed, this behavior is very similar to that observed by Edberg et al. (1987) for very

short n-alkanes (butane and decane), where it would not be completely unexpected.

The periodic rotation and retraction cycles observed in the melt are very similar to

those that occur within a dilute solution of a free-draining, bead-rod chain undergoing a

high shear-rate flow. Figure 5(b) displays the dynamics derived from the BD simulations

of the mesoscopic analog of the polyethylene liquid at the same value of Wi (10 600) as

depicted in Fig. 5(a). Similar qualitative features can be noted, as well as essentially the

same quantitative values of the rotational period and average molecular extension and

compression. Hence the rotation/retraction dynamics of the polyethylene melt are provo-

catively similar to those of macromolecular dilute solution, which is quite surprising

given the moderately entangled nature of the dense liquid. This provides initial evidence

FIG. 5. Plots of the normalized end-to-end distance and orientation angle vs time for (a) a random chain in the

dense liquid NEMD simulation and (b) a bead-rod chain from the free-draining dilute solution BD simulation.

Both sets of data are for simulations at Wi¼ 10 600.
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that the entanglement network of the C400H802 liquid must be at least partially destroyed

by the shear flow.

Snapshots from a typical period of a random chain of the NEMD simulations at

Wi¼ 10 600 are displayed in Fig. 6(a). A rotational period begins by either one or both

chain ends diffusing backward along the backbone contour toward the center of the chain in

a hairpinlike configuration, forming a tightly packed coil, which grows in size as the other

chain end retracts toward the chain center. This compact molecular configuration then expe-

riences an almost instantaneous flip in direction of the end-to-end vector, after which each

chain end diffuses back along the molecular backbone until the chain is once again highly

extended. This hairpinlike diffusion of the chain ends along the molecular backbone clearly

requires an absence of interchain entanglements, and appears to possess the characteristics

of anisotropic diffusion through cylindrical tubes formed by neighboring highly stretched

chains, as hypothesized by Kim et al. (2009, 2010) and Kim et al. (2011).

Figure 6(b) shows similar configurations adopted by the bead-rod chain in dilute

solution as simulated by BD at the same value of Wi as above. It is evident that the

chain configurational rotation and retraction dynamics are very similar to those of the

polyethylene dense liquid, with the only minor differences being that the bead-rod chain

FIG. 6. Configuration snapshots of a randomly chosen single chain at various incremental time values from the

(a) NEMD and (b) BD simulations at Wi¼ 10 600. Setting the first configuration at a reference time of 0, snap-

shots correspond to time instants labeled as multiples of the longest system relaxation time (s¼ 2.03 ns for

NEMD and 2.88 ns for BD).
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configurations are more compact due to the lack of excluded volume interactions. These

snapshots serve to reinforce the evidence of the lack of entanglements in the melt at high

shear rates, since the observed configurations are very similar to those of the dilute solu-

tion. The remarkable similarity of dilute solution properties in a theta solvent and those

of a melt under quiescent conditions has been a hallmark of polymer theory for over sev-

enty years; it appears there is also a great deal of similarity under a strongly shearing

flow as well. At high shear rates, the polyethylene chains behave similarly to analogous

molecules in dilute solution, experiencing a mean-field force that acts through isotropic

drag on statistical Kuhn segments of the atomistic chain.

The configurational behavior observed above at Wi¼ 10 600 is rather straightforward

to interpret due to the similarities with dilute solution behavior, as described above, and

also due to the very high applied shear rate which places the system response well within

the Wi range where the chain dynamics are dominated by the rotation and retraction

cycles and all entanglements have essentially been destroyed—see below. At intermedi-

ate Wi, the configurational dynamics are more difficult to interpret since chain stretching

is still playing a competing role in dictating the systems response and the entanglement

network has yet to be completely annihilated.

Figure 7 shows plots of the rotation/retraction cycles of the chains within the melt and

solution at Wi¼ 106. Several features are obvious in contrast with Fig. 5 at Wi¼ 10 600.

FIG. 7. Plots of the normalized end-to-end distance and orientation angle vs time for (a) a random chain in the

dense liquid NEMD simulation and (b) a bead-rod chain from the free-draining dilute solution BD simulation.

Both sets of data are for simulations at Wi¼ 106.
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First, the degree of chain stretching at the apex of the rotational cycle is much lower at

Wi¼ 106, as expected. Nevertheless, the rotational motion at Wi¼ 106 is as readily appa-

rent as it was at the higher value of Wi. Also, the rotational cycles are far less regularly

periodic than at Wi¼ 10 600. Furthermore, the timescale of the rotation is two orders of

magnitude higher than at the higher value of Wi, and the molecules remain in their

stretched state for much longer portions of the overall periodic cycle.

Figure 8(a) presents configurational snapshots of random chain at a number of time

increments at Wi¼ 106 for both the dense liquid and dilute solution simulations. There

are some subtle yet crucial differences between the configurational dynamics at this value

of Wi compared to the much higher value of Fig. 6. Most apparent is the fact that neither

the atomistic chain nor the bead-rod chain experiences nearly as great of a degree of

extension at the apex of its rotational cycle. However, another subtle difference is that

the atomistic chain does not fully collapse at the moment of the orientation angle flip, as

at the higher Wi number, whereas the bead-rod chain experiences essentially the same

configurational collapse to a very compressed structure at the middle of its cycle.

Furthermore, the motion of the atomistic chain no longer resembles that of a collapsing

and extending structure, but appears to move linearly along the chain backbone like a

FIG. 8. Configuration snapshots of a randomly selected single chain at various incremental time values from the

(a) NEMD and (b) BD simulations at Wi¼ 106. Setting the first configuration at a reference time of 0, snapshots

correspond to time instants labeled as multiples of the longest system relaxation time (s¼ 48.8 ns for NEMD

and 61.9 ns for BD).
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rope passing over a pulley, or as if diffusing around some internal obstacles. One hypoth-

esis is that at this lower value of Wi there still exist a significant number of entanglements

such that the atomistic chains are forced to diffuse around the obstructions of neighboring

chains. In the BD simulations of the dilute solution, however, there are by default no

entanglements to impede the segmental motion, and hence the bead-rod chain experien-

ces the same diffusive motion regardless of the value of Wi.
The dynamics of the dense liquid and dilute solution can be quantified by determining

the characteristic times of the system responses, which now include a rotational timescale

that characterizes the period of the tumbling/retraction cycles of the chains. The first

timescale is associated with the longest timescale of the liquid at equilibrium, which we

formerly referred to as the disengagement time. As Wi is ramped up, it is clear that the

idea of a reptation or disengagement timescale becomes ambiguous as the entanglement

network within the fluid relaxes and ultimately vanishes completely. Consequently, for

the remainder of this article we will refer to this timescale simply as the longest relaxa-

tion time, even though later on the rotational timescale will actually be larger than this

quantity. These relaxation timescales can be determined using autocorrelation functions

of various components of the unit end-to-end vector and fitted to known functions, as we

discussed above for the quiescent fluids. At low values of Wi, we used a two-exponential

summation to determine the longest and Rouse timescales, whereas for Wi in the strongly

nonlinear viscoelastic regime, we used the single exponential function with an embedded

cosine dependence [analogous to Eq. (1)] to fit the longest and rotational timescales.

At Wi¼ 1 and 10, the autocorrelation functions, huiðsÞ � uiðsþ tÞi, of the dense liquid

and the dilute solution decay monotonically in a qualitatively similar fashion to those of

the quiescent fluids, as shown in Figs. 1 and 4. For Wi� 50, however, the autocorrelation

functions of both liquids display an initial monotonic decrease with time, but then pass

below the zero axis and then experience a damped oscillation that eventually decays to

zero over about two time periods of the cycle. This behavior is shown in Fig. 9 for both

liquids, as well as the fits to this data using Eq. (1), at Wi¼ 106 and 10 600.

The longest relaxation times of the dense liquid and dilute solution are displayed in

Fig. 10 as functions of Wi. At Wi¼ 1 and 10, this timescale does not change appreciably

from the two-exponential fit of either liquid under quiescent conditions (225 and 235 ns,

respectively—see Table I). This is the behavior expected from classical reptation theory

of the disengagement time, which appears to remain valid well into the nonlinear visco-

elastic regime, at least up to Wi¼ 10. In the linear viscoelastic regime (up to Wi¼ 1), the

second timescale of the melt and solution remain approximately constant at 19 and 14 ns

(based on a two-exponential fit), respectively, compared to the equilibrium values of 16

and 18 ns. As the shear rate is increased into the nonlinear regime, the Rouse time of the

melt has decreased to 6 ns at Wi¼ 10, whereas that of the solution has essentially disap-

peared from the system response leaving only a single exponential decay.

For Wi> 10, both sets of data show a precipitous drop which becomes even more pro-

nounced for Wi> 1000 where power-law fits provide slopes of� 0.73 for the melt and

�0.66 for the solution. Somewhere within Wi � [10, 50], the concept of a disengagement

time begins to lose relevance; the longest timescale takes on more of a meaning in the

sense of a characteristic time for decorrelation of the molecules’ configurational states

due to the rotation and retraction cycles of the chains. In other words, it defines a time-

scale over which the chain configurations decorrelate within the tumbling periods that

they experience. The NEMD and BD data essentially display the same qualitative trends,

but there is a quantitative difference between the two data sets as the melt relaxation

times are slightly but consistently shorter than those of the solution. The same trend was

noticed by Kim et al. (2010), who argued that the bead-rod chain configurations in dilute
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FIG. 9. Plots of the autocorrelation function of the unit end-to-end vector vs time at Wi¼ 106 and 10 600 for

the atomistic (NEMD) and bead-rod (BD) chain liquids and fits to the data using Eq. (1).

FIG. 10. The longest system relaxation time for the atomistic (NEMD) and bead-rod (BD) chain liquids as func-

tions of Wi. For Wi> 1000, the slopes of power-law fits are �0.73 and �0.66, respectively. Also shown are data

of Baig et al. (2010).
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solution would decorrelate over a longer timescale since the tumbling cycles would be

more regular because the bead-rod chains do not experience topological constraints due

to either entanglements or excluded-volume interactions, as occur within the dense

liquid.

Figure 10 also displays the data for the longest relaxation time of Baig et al. (2010)

for the C400H802 melt. The results are qualitatively similar between their melt system and

ours; however, their relaxation times are consistently a factor of 1.7 less. If we had used

simply a stretched exponential of the form of Eq. (3) to fit our data, our relaxation times

would have been quantitatively very close to those of Baig et al. Therefore, it is our inter-

pretation that the lower values of these authors are due to the neglect of the rotational

timescale, as appearing in Eq. (1). It is apparent that there is some degree of coupling

between these two relaxation times (i.e., longest and rotational), and that these two quan-

tities describe different facets of the same configurational dynamics. We will discuss this

issue more thoroughly below.

The rotational timescale derived from Eq. (1) has been plotted versus Wi in Fig. 11.

This timescale is essentially undefined for Wi< 50, and then becomes clearly discernible

in the autocorrelation curves, such as those in Fig. 9, for all greater values of Wi for the

melt and for Wi� 100 for the solution. These timescales are rather high at low Wi, with

values of several hundred nanoseconds, which are greater even than the equilibrium dis-

engagement time of 231 ns. Both the melt and the solution again exhibit power-law

behavior, but in this case the slopes are nearly identical; i.e., �0.78 and �0.80 for the

melt and solution, respectively. The rotational timescale of the melt is slightly higher

than that of the solution at intermediate Wi, although the results are within statistical error

of each other at low and high Wi. Similar behavior was observed by Kim et al. (2010) for

a C78H158 liquid. A higher rotational timescale implies that the rotation and retraction

period is longer, and hence it is to be expected that the entangled melt would exhibit

larger timescales than the unentangled solution. In the regime where the melt is experi-

encing a high rate of entanglement destruction, therefore, its characteristic time is

higher than that of the solution because there remain a small but significant number of

constraining entanglements. However, once the entanglement network has been com-

pletely destroyed, one might expect the two timescales to be quantitatively the same. We

will discuss this issue in more detail later on.

FIG. 11. The rotational timescales for the atomistic (NEMD) and bead-rod (BD) chain liquids as functions of

Wi. For Wi> 1000, the slopes of power-law fits are �0.78 and �0.80, respectively.
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It is natural to wonder how the dynamics of the rotational cycles are affected by the

vorticity of the macroscopic flow field. This is a difficult question to address, however.

Figure 12 displays plots of the rotational frequency, defined as the reciprocal of the rota-

tional timescale described above. Also shown in this figure is the rotation rate of the mac-

roscopic velocity field, as quantified by half of the applied shear rate. Both the melt and

the solution exhibit rotational frequencies that are two orders of magnitude slower than

the rate of macroscopic rotation at all values of Wi. The slopes of the melt and solution

curves are 0.88 and 0.80, respectively, as compared to a unit slope of the macroscopic

rotation rate. Although it is most likely the macroscopic rotation of the fluid that induces

the diffusion of the chain ends, thus beginning their rotation/retraction cycles, it is evi-

dent that the diffusive motion of the chain segments is not directly influenced by the rota-

tional timescale of the shear flow, although there is some correlation between the two

processes. Whatever the connection may be, there is strong evidence that the melt and

dilute solution experience the same mechanism, given the high degree of quantitative

similarity exhibited by their rotational timescales.

Figure 13 quantifies the differences between the longest and characteristic rotational

periods by examining their ratios of melt timescales over solution timescales. The point

to emphasize here is that both ratios are very close to unity, irrespective of the value of

Wi. There are some minor, discernible trends in the data, which were discussed above,

but for the most part, this plot displays clearly the similarity between the dynamics of the

atomistic macromolecule and the bead-rod chain.

The ratio of the rotational period to the longest timescale is displayed in Fig. 14 for

both the melt and dilute solution. The ratio for the melt is higher than that of the solution,

but not significantly so in light of the multiplication of statistical uncertainty associated

with forming the ratios. The melt data are fairly scattered, but not over a wide range of

values; its trend, however, is clear in that this ratio decreases with increasing Wi. In the

zero-shear limit, the rotational timescale goes to infinity, whereas the longest relaxation

time assumes its equilibrium value of 231 ns. The data for the dilute solution are qualita-

tively similar, although much more precise than that of the melt, presumably because of

the clearer, more periodic nature of the tumbling cycles when compared to the melt. The

decreasing trend indicates that the longest relaxation time decreases at a slower rate than

the rotational period, which could be due to the fact that the configurational correlation

quantified by the longest relaxation time persists to a greater extent for chains undergoing

FIG. 12. Rotational timescales of the melt (NEMD) and dilute solution (BD) versus Wi compared to the macro-

scopic fluid rotation rate, as quantified by half the vorticity.
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the higher frequency rotational cycles at larger values of Wi, where the rotational cycles

displayed by the autocorrelation function of the unit end-to-end vector are much more

clearly defined.

Given the periodic rotational dynamics of the individual molecules comprising the

polyethylene melt, it is natural to wonder how this unexpected behavior affects the bulk-

average properties of the liquid. In general, there are several physical effects that take

place under imposition of conditions of high shear that occur simultaneously once a criti-

cal value of Wi has been achieved. These are chain deformation, chain orientation, and

chain rotation/retraction. At low shear rates, only the chain orientation changes dramati-

cally, but once well within the nonlinear viscoelastic regime, the orientation of the poly-

mer chains remains relatively constant whereas the chain deformation and then rotation

play increasingly important roles in determining the bulk-average properties of the

liquid.

First, we examine the topological characteristics of the dense C400H802 melt to provide

insight later into how rotational chain dynamics affect bulk-average fluid properties.

FIG. 14. Ratios of the rotational periods with respect to the longest relaxation times for the melt (NEMD) and

dilute solution (BD).

FIG. 13. The longest relaxation and rotational timescales are compared by taking ratios of those of the melt

with respect to those of the dilute solution.

26 NAFAR SEFIDDASHTI, EDWARDS, AND KHOMAMI



Figure 15 displays topological data for the dense liquid as obtained by applying the Z1

code to the data of the NEMD simulations. Figure 15(a) presents data for hZki, which we

will refer to as the “number of entanglements per chain,” as a function of Wi. At low Wi,
the number of entanglements decreases very slowly as the chains deform mildly from the

random coil configurations they occupy at equilibrium. At Wi¼ 1, hZki ¼ 9:5, which is

very close to the quiescent value of 9.91. As the shear rate enters the nonlinear

FIG. 15. Plots of topological features (a) average number of entanglements per chain, (b) average primitive

path length, and (c) effective tube diameter versus Wi for the dense liquid NEMD simulations calculated via

two different formulae.
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viscoelastic regime, the decrease in hZki becomes more significant due to the high degree

of strain stretching and aligning (see below) that occurs in this shear flow region. In

essence, as the chains stretch and orient in response to the flow field, entanglements are

destroyed in proportion to the elongational state of a given chain. Apparently, the uncoil-

ing process eliminates many of the entanglements, allowing the chains to glide by each

other more freely, ultimately resulting in a shear-thinning viscosity. This decrease

becomes very dramatic once inside the range where chain rotation and retraction begins

to occur at Wi� 50. It thus appears that there is a critical value of hZki at which point the

system dynamics change from flow-aligning to rotational, which appears to be approxi-

mately 5 and occurs at Wi� 50. This value of Wi is consistent with that obtained from

the timescale analysis presented above. At very high shear rates, hZki levels out at about

1.3 entanglements per chain, implying that the entanglement network within the flowing

liquid has essentially been completely destroyed. Furthermore, the distribution of hZki
values is extremely narrow around this value, indicating that practically all chains are

effectively completely disentangled. The same qualitative behavior for hZki was first

observed in shear flow by Kim et al. (2008b) for C78H158 and later by Baig et al. (2010)

for C400H802.

Figure 15(b) is a plot of the average primitive path length versus Wi for the dense

liquid. For Wi< 1, hLi increases slowly from its quiescent value of 209 Å as the chains

slowly begin to stretch out in response to the imposed shear field. The magnitude of this

response increases dramatically once Wi has entered into the nonlinear viscoelastic

regime of severe chain stretching, and then even more dramatically once Wi crosses over

into the rotational dynamics regime at Wi� 50. This steep increase continues up to

Wi� 1000 as chain stretching and chain rotation begin to compete with each other to con-

trol the overall average value of hLi: The chain elongation acts to increase hLi, whereas

the chain rotation tends to shrink it as the chains recoil and compress due to the elimina-

tion of entanglements. Up to Wi� 1000, the dramatic increase in the chain elongation

more than offsets the slowly rotating dynamics of the individual chains; however, for Wi
greater than 1000, the chain rotation occurs with sufficient frequency to enable it to com-

pete effectively with chain stretching for dominance of hLi. At very high Wi, the chain

rotation and retraction cycles are so fast and frequent that the rotational dynamics domi-

nate hLi, causing it to decrease substantially with Wi at high shear rates. As in the case of

hZki, the same qualitative behavior for hLi was first observed in shear flow by Kim et al.
(2008b) for C78H158 and later by Baig et al. (2010) for C400H802.

The tube diameter is fairly constant within the linear viscoelastic regime, as depicted

in Fig. 15(c): It increases only slightly from its quiescent value of about 40 Å. Once into

the nonlinear viscoelastic regime, and ultimately into the rotational dynamics regime, it

increases dramatically as the number of entanglements is reduced due to chain stretching

and aligning. After the entanglement network has been completely destroyed at very high

Wi, the tube diameter plateaus at a value of about 240 Å since it cannot grow further

because hZki has attained its minimal value. [Using the definition of a based on Eq. (6),

with Z ¼ hLi2=R2.] At these high shear rates, the chains are rotating more or less inde-

pendently of the chains surrounding them. A similar behavior for a was observed in shear

flow by Kim et al. (2008b) for C78H158 and by Baig et al. (2010) for C400H802. The diam-

eter of the tube formed by surrounding stretched chains may somehow control the size of

the compressed coil required to initiate a flip in the end-to-end vector orientation, but

this is difficult to determine from the simulations; unfortunately, the average radius of

gyration is dominated by the stretched chains, making a quantitative analysis of chain

compression during the rotation and retraction cycle problematic.
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The data for the tube diameter discussed above are based on Eq. (6) with

Z ¼ hLi2=R2, which is strictly valid only for Gaussian statistics near equilibrium; i.e.,

a ¼ hRi2=hLi. Therefore, as Wi becomes significant, this expression probably becomes

inaccurate. In Fig. 15(c), we also present data for the tube diameter based on the formula

a ¼ hLi=hZki, which is based solely on topological features of the chain liquid that should

remain valid at high Wi. As expected, the two quantities asymptote to the same value of

about 40 Å at equilibrium, but the latter definition of the tube diameter plateaus at a lower

value of roughly 200 Å. This is probably a better indicator of the variation of the tube

diameter with shear rate, although the concept of a reptation tube probably breaks down

once the entanglement number has been reduced to a sufficiently low value and the exact

value of this quantity becomes meaningless.

The ensemble average orientation angle of the end-to-end vector with respect to the

flow direction (in the flow-gradient plane) is displayed in Fig. 16 as a function of Wi. In

the case of the dense liquid, the orientation angle drops precipitously from its zero-shear

limiting value of 45� in the linear viscoelastic regime, and then decays toward 0� as Wi
passes into the nonlinear viscoelastic regime where dramatic molecular stretching occurs.

It continues its rapid decrease once within the Wi range where chain rotation and retrac-

tion begin to manifest in the system response to the shear field (50<Wi< 500), and then

saturates at a small, positive value of approximately zero as Wi grows larger than 1000

into the regime where chain rotation dominates the liquid’s dynamical response. As

evident from Fig. 5(a), the rotating chain end-to-end vectors are almost always pointed

very close to the flow direction, even during the chain retraction phase, except for very

brief intervals in which the vector flips orientation by approximately 180�. Consequently,

at any instant most molecules are oriented in the same direction, and hence it would be

very difficult to find evidence of molecular rotation from measures of the average orienta-

tion angle alone; i.e., the observed data actually track very well that which would be

expected from any typical rheological model exhibiting a flow-aligning microstructure.

Nevertheless, since the molecules remain aligned in the flow direction for most of their

rotational cycles, an opportunity is provided for tube formation as well as entanglement

slippage, provided the average molecular extension is high enough.

Also shown in Fig. 16 is the orientation angle of the chains in dilute solution, h, which

is based on the definition of the ensemble average of the unit end-to-end vector dyadic

product, huiuii and calculated according to the Eigenvector associated with its principal

FIG. 16. Orientation angle vs Wi for the dense liquid (NEMD) and dilute solution (BD).
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direction. This angle also drops rapidly from the zero-shear limit of 45� as Wi increases,

approaching a high shear limit of 0�. Although qualitatively similar, the decrease in this

case is more rapid at intermediate shear rates than in the case of the melt since the dilute

solution is devoid of entanglements, allowing the chains to orient toward the flow direc-

tion at lower Wi than the dense liquid. However, once the entanglement network within

the melt has been almost completely destroyed, both the dilute solution and the dense

liquid display the same high shear limiting value of the orientation angle.

The mean-square of the end-to-end vector, hR2i, of the dense liquid as a function of

Wi is displayed in Fig. 17. At low values of Wi, it increases very slowly from its quiescent

value of 8482 Å2 within the linear regime, and then more rapidly once within the nonlin-

ear viscoelastic regime of Wi> 1. As the chains elongate, the number of entanglements

diminishes as well, allowing even further elongation with increasing Wi. Once within the

regime where rotational effects begin to compete with chain extension, the dramatic rise

in hR2i begins to abate, ultimately plateauing off and then starting to decrease at very

high Wi. [This high shear-rate decrease is more obvious in the NEMD simulations of

C78H158 of Kim et al. (2009).] The maximum extension of the chains under shear,

roughly 65 000 Å2, occurs at about Wi¼ 10 000 and is well below the value of the fully

extended chain of 265 225 Å2, and is thus only 25% of the value of the completely

stretched molecule. The reason for this is now apparent: Once the number of entangle-

ments has been reduced substantially, there is no barrier to rotational motion and the

chains spend much of their retraction cycles in configurations with much lower end-to-

end vector magnitudes, which reduces the average value of hR2i substantially even

though the chains do occupy nearly fully extended configurations for a brief part of the

rotational periods.

Also displayed in Fig. 17 is the mean-square of end-to-end vector of the bead-rod

chain versus Wi as calculated from the BD simulations. As in the case of the dense liquid,

the bead-rod chain extends very slowly within the linear viscoelastic regime, tracking

very closely the value of hR2i of the dense liquid. Once within the nonlinear viscoelastic

regime, however, it increases much more rapidly than hR2i of the dense liquid, which is

due to the fact that the chain in dilute solution is completely free of entanglements and is

easily stretched, whereas the melt still contains a significant number of entanglements

FIG. 17. Mean-square of the end-to-end vector versus Wi for the dense liquid (NEMD) and dilute solution

(BD).
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per chain at these values of Wi. The hR2i of the dilute solution eventually attains a

maximum at about 80 000 Å2 as the rotational dynamics begin to counterbalance the

configurational stretching effect, and then for higher Wi hR2i continuously decreases. As

the number of entanglements in the dense liquid decreases to a negligible value, the hR2i
values of the bead-rod chain and the atomistic liquid once again become comparable.

The probability distribution function of the magnitude of the end-to-end vector is dis-

played in Fig. 18(a) for a number of Wi. The exhibited behavior is very intriguing, having

first been identified for dense polyethylene melts in the case of C78H158 by Kim et al.
(2009). At equilibrium and within the linear viscoelastic regime, the distribution is

approximately Gaussian, as one would expect for a typical flow-aligning polymeric liquid

model. However, once within the nonlinear regime, the distribution begins to widen

toward the longer chains, and eventually a second peaks forms which quantifies the prob-

ability of finding highly stretched macromolecules. At the same time, the first peak shifts

backward toward values even smaller than the quiescent value, indicating that more

compressed chain coils than are present at equilibrium. Furthermore, the distribution is

very spread out at high shear rates, overall, indicative of a system of chains with a wide

FIG. 18. Probability distribution of the magnitude of the end-to-end vector versus jRj for (a) the dense liquid

and (b) the dilute solution at various values of Wi.
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distribution of configurations. It has been recognized before [Kim et al. (2009, 2010);

Baig et al. (2010)] that the first peak of the distribution is associated with the rotational

and compressional states of the rotating chains at the reorientation point (i.e., where the

end-to-end vector angle flips), whereas the second peak is determined by the highly

stretched configurations of the chains at the apex of their cycles. The rather wide spread

of the distribution at high Wi renders average measures of extension and orientation, such

as hR2i of Fig. 17, practically meaningless.

Figure 18(b) shows the probability distributions for the dilute solution at the same val-

ues of Wi as presented in Fig. 18(a). The observed behavior is remarkably similar at all

values of Wi, with the possible exception of Wi¼ 100, where the distribution is signifi-

cantly more spread out for the bead-rod chain system than for the melt. We believe that

this is a result of the fact that the bead-rod chain is completely free of entanglements,

whereas the chains in the dense liquid are still constrained by roughly six entanglements

per chain (according to the Z1 code), which significantly restrict their ability to elongate

more substantially.

V. CONCLUSIONS

At first glance, the rotational dynamics observed in the dense liquid simulations were

quite unexpected given the number of perceived entanglements per chain in the equilib-

rium system, which was approximately five. It is hard to imagine how a network of

chains with so many entanglements could exhibit the type of rotational motion described

above until one examines how the number of entanglements varies with increasing Wi.
As evident from Fig. 15(a), the number of entanglements decreases dramatically with Wi,
ultimately approaching a negligible value for very high Wi. The mechanism is now clear:

As the shear rate increases, the chains stretch and align in the flow direction, which elimi-

nates the majority of entanglements and provides effective tubes for molecular recoil and

rotation, similarly to the short-chain macromolecules of C78H158 examined by Kim et al.
(2009, 2010). Furthermore, it is worth pointing out that the onset of this behavior occurs

at a fairly low Wi value, somewhere between 10 and 50 for the C400H802 melt, well within

the range of process operations. As the flow strength increases, these individual chain

rotation/retraction cycles increase in frequency as the number of entanglements declines.

At equilibrium and low values of Wi within the linear and weakly nonlinear viscoelastic

regime, reptation theory appears to work well for describing the dynamical features of

the rheological behavior of the melt, which is generally the flow-aligning behavior one

would expect from most rheological theories. However, as Wi obtains a value between 10

and 50, the constituent molecules begin to experience rotation and retraction cycles that

compete with the average, flow-aligned configurational state, and the net effect of this

balance between the two physical mechanisms is a region where the motion of a given

molecule resembles fairly well those of a single chain experiencing anisotropic diffusion

within a tube formed by its neighboring chains; such an idea was developed into a meso-

scale model by Kim et al. (2011), as described in Sec. II. At very high Wi (>1000), the

motion of the chains becomes essentially that of a single chain in dilute solution experi-

encing isotropic drag from the surrounding solvent molecules. Hence the analogy

between dilute solutions of macromolecules in a theta solvent and dense polymer melts

at equilibrium again becomes relevant at high strain rates. Overall, for the C400H802

liquid under investigation, we conclude that there are essentially three regions of flow

behavior: a reptative region for Wi � [0, 10], a region of anisotropic segmental diffusion

for Wi � [50, 1000], and a third region of behavior resembling that of a dilute solution at

higher Wi.
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