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The viscous properties of polymeric liquids and the underlying microscopic distribution 
function for the segment orientations are investigated by a Fokker-Planck approach. The 
solution of the Fokker-Planck equation depends on the alignment of chain ends under shear 
flow, which is usually disregarded. However, it has been inferred from nonequilibrium 
molecular dynamics (NEMD) computer simulations that it is nonzero. Since the viscous 
properties depend critically on the magnitude of this end alignment it has been taken into 
account in the theoretical description. This turns out to be crucial for the plateau region and 
the high frequency behavior of the complex viscosity. The results are in good agreement with 
experimental data. Furthermore a significant chain length dependence of the viscous behavior 
is found. 

1. Introduction 

Rheologica l  consequences  of  the concepts  of  " tube  const ra in t"  and " rep ta -  
t i on"  in t roduced  by Edwards  [1] and de Gennes  [2] for  the dynamics  of  

po lymer ic  melts  and concent ra ted  po lymer  solutions have been  invest igated by 

Do i  and Edwards  [3] and by Curtiss and Bird [4]. It  is the purpose  of  this 

article to present  results for  the viscoelasticity as expressed in terms of  the 
f r equency  dependence  of  the viscosity or  the loss- and s torage modul i  based on 
a modif ied repta t ion model .  Point  of  depar ture  is the F o k k e r - P l a n c k  equat ion  

for  the segment  or ienta t ion based on a bead- rod  model .  A one-dimensional  
diffusion (reptat ion)  of  chains th rough  their tubes and or ientat ional  diffusion of  
segments  are taken  into account  as damping  mechanisms.  A n  equat ion  of  
change  for  the a l ignment  tensor  is derived,  which, in t u r n ,  is associated with 

the  friction pressure tensor.  Besides a s tat ionary solution of  this equat ion,  
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subject to the Doi-Edwards boundary condition, i.e. random orientations of 
the end segments of a chain, an alternative solution is presented which takes 
into account the alignment of chain ends under (oscillatory) shear flow. The 
finite alignment of the chain ends is substantiated by nonequilibrium molecular 
dynamics (NEMD) computer simulations. The frequency dependence of the 
viscosity, obtained by the modified dynamic model, is in better agreement with 
experimental data than that based on the Doi-Edwards boundary condition. 

This article is organized as follows: starting from the freely jointed bead-rod 
chain model as an idealization of the molecules in a polymeric fluid, we 
introduce a distribution function for the orientations of segments within one 
chain. The connection between segment orientation and the friction pressure 
tensor is taken to be in accordance with the stress optical law which involves 
the (2nd rank) alignment tensor. An equation of change for the alignment 
tensor is obtained from a kinetic equation which takes into account a reptation 
model damping term and orientational diffusion of segments in addition to the 
contributions which stem from an external flow field. In the case of oscillatory 
shear flow, the differential equation for the alignment tensor is solved with 
arbitrary boundary conditions, i.e. we made no restrictions for the alignment of 
chain ends. The analytical solution yields the frequency dependency of the 
complex viscosity and we show that it reduces to the expression given by Doi 
and Edwards if the chain ends are restricted to be non-aligned. After some 
general remarks on the NEMD method, we discuss the dependency of the 
anisotropic components of the alignment tensor on both the flow field and the 
position within the chain which can be compared with the theoretical result. 
Since the effect of flow-induced alignment of chain ends is confirmed, we 
discuss its consequence for the complex shear moduli, the width of a plateau 
region and the asymptotic frequency behavior. We also compare our result 
with experimental data on polymeric melts and concentrated solutions and give 
the expressions how to predict the molecular weight dependency of the 
viscoelastic behavior and how to extract the few theoretical parameters from an 
oscillatory shear flow measurement. 

2. Theory 

2.1. Connection between the segment orientation and the friction pressure 
tensor 

The macromolecules of a polymeric liquid are idealized as freely jointed 
bead-rod chains where the direction of the link between two neighboring beads 
is characterized by the unit vector ti. The label s (with 0 ~< s ~< L where L is the 
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length of the chain) marks the position of a specific segment. The orientation of 
the segment at the "position" s is determined by the orientational distribution 
function f = f(t ,  s, ft), which, in general, also depends on the time t. With the 
normalization j" f d2~ = 1, the average (~b) of a function qJ = qJ(li) is, as usual, 
given by 

(~0) = f ~Of d2ti. (1) 

Notice that (~0), in general, depends on t and s. Here, the (2nd rank) 
alignment tensor 

a = ( ~ - f f )  ( 2 )  

is of particular importance. The symbol..~77 refers to the symmetric traceless 
part of a tensor, e.g., one has ~ a - ~ = l ( a b + b a ) - l a . b 8  for the dyadic 
constructed from two vectors a and b; 8 is the unit tensor. A viscous flow gives 
rise to a flow alignment [5-7] which can be detected optically via its ensuing 
birefringence. The alignment, in turn, affects the viscous flow [7,8] and 
consequently the friction pressure tensor p contains a contribution Pa associ- 
ated with the alignment, more specifically, 

P = -2~7iso~' + Pa,  (3) 

L 

Pa = - 3 n k B T R l o  I f a (t, s) ds ,  
0 

(4) 

where ~iso is the "isotropic" viscosity for a = 0 and ~, is the symmetric traceless 
part of the velocity gradient tensor (shear rate tensor). In (4), n and T are the 
bead number density and the temperature of the liquid and 10 is the effective 
length #1 of a segment of the polymer chain, i.e., lo 1 J'~ ds = N where N is the 
number of beads in one chain. The relation between Pa and a which has been 
derived by Giesekus [8] and used by Doi and Edwards [3] is a limiting 
expression for long and thin segments which corresponds to R = 1 in eq. (4). In 
general the factor R occurring in (4) is the ratio of two transport coefficients 
[7,10]. For a comparison with expressions given in refs. [7,10] it should be 
noticed that the alignment tensor used there differs from (2) by a factor 

• 1 For a quantitative analysis, the effective length l o stands for a persistence length or the length 
of a Kuhn element, viz. the bead distance, and cannot be replaced by the distance between 
neighboring monomers within one chain. See [9]. 



M. Krrger, S. Hess / Viscoelasticity of polymeric melts 339 

(15/2) 1/2. Curtiss and Bird [4] replaced the factor 3R by 1 and presented 
additional contributions to Pa associated with the "link tension" which are 
similar to those derived from constraint forces within the chain [11]. These 
terms are disregarded here. 

An equation of change for a and consequently Pa can be derived from the 
kinetic equation for the distribution function f to be considered next. 

2.2. Kinetic equation 

The kinetic equation for f = f( t ,  s, ~) is written as 

- t o .  ( r f )  + ( 5 )  
at 

with 

0 d 
~ : =  li x ~-~ = u x (8 - t i l i )  • Ou (6) 

In (5), to := ½V x v is the vorticity associated with the flow field v, and T, 
which stems from the orienting torque exerted by the flow, is given by 

T := ~R.S~( uu : 1,) ,  y : =~--O-'. (7) 

The coefficient R depends on the "shape" of a particle [5,7,10]; u = 10ti is the 
vector between neighboring beads. The term ~ ( f )  describes the "damping",  
which guarantees that f approaches the isotropic distribution f0 = (4rr) -1 in the 
absence of orienting torques. The kinetic equation of Peterlin and Stuart [5] for 
solutions of rod-like particles (where the variable s is not needed) is of the 
form (5) with (6), (7) and 

~ ( f )  = ~ o r ( f ) -  w*~2f , (8) 

where w stands for the orientational diffusion coefficient. With an additional 
torque caused by a mean field taken into account in (7), such a kinetic 
equation has also been applied to the flow alignment of liquid crystals [10]. The 
reptation model damping term of Doi and Edwards [3] can be written as 

cq 2 

~ ( f )  = ~rep ~- DOs--- 5 f ,  (9)  

with a translational diffusion coefficient D. This term describes the change of 
the orientation of the segments caused by a one-dimensional diffusion of a 
polymer chain through its " tube" .  
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We now consider the general case where both mechanisms of diffusion are 
taken into account, i.e. we set 

~ ( f )  = ~rep + ~or" (10) 

The  equivalence of the diffusion equation of Bird et al. [12] (19.3-26) and 
the Fokker-Planck equation (5) in the case of long and thin segments (R = 1) 

follows with the identity: 

0__. [(Vv)* • ~ - (Vv)* : ~ ] f  
0/i 

= - ( v v ) '  : ,~ ~ f + [(vv)* : aal  3 + ,~. ~ f 

= - t o .  ~ f -  ..~. ( T f ) .  (11) 

Instead of the two independent  diffusion coefficients D and w, Bird introduces 
a reptation coefficient e '  and a time constant Aaird, which are related to the 
diffusion constants mentioned above (for comparison with the present no- 

tation): 

W L 2 
E' - ABird -- - -  . (12) 

Dlo 2 + w ' D + wl 2 

The theory of Doi and Edwards [3] hence follows in a special case, the 
"repta t ion limit", where the orientational diffusion is more hindered than the 

one-dimensional diffusion, i.e. 

L 2 

E' = w = 0 and }kBird ' '-~ /~Doi = - D -  , (13) 

where ADo i is the time constant of the Doi and Edwards model. 
An equation of change for the alignment tensor which is associated with the 

pressure tensor, cf. (4), is stated next as it can be obtained from the kinetic 

equat ion (5). 

2.3. Equation o f  change for  the alignment tensor 

Multiplication of (5) with ~-~ and integration over fi yields an equation for 
the second rank tensor a, 

0 ~.-1 
~-~ + - D a = ~RT + " ' ,  (14) 
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with z = (6w) -1. The dots stand for terms involving products of a with the 
vorticity to and the shear rate tensor T, as well as a term which couples a with 
an alignment tensor of rank 4. These terms can be inferred from [10]; they are 
of importance for the non-Newtonian viscosity and the normal pressure 
differences [7,8,12]. For an analysis of the frequency dependence of the 
viscosity in the Newtonian regime, these terms can be disregarded. 

The complex viscosity "~a ~ 77(0) )  = 7 7 ' - - i ~ 7 "  of a viscoelastic medium can be 
determined by measurements under an oscillatory shear flow (or deformation), 

T ~ e  -i~t (15) 

The relaxation of the material causes a phase shift 6 between the (complex) 
stress p and the deformation ~,, which is related to the complex viscosity 
(tan 6 := ~7'/*1"), or alternatively, to the storage (G')  and loss modulus (G") via 
G = G'  + i G " : =  ito~. With the ansatz 

a = 2R 'yC,  (16) 

the scalar function C = C(to, s), which has the dimension of time, obeys the 
equation 

( z - '  - i t o ) C -  O - -  OzC = 1, (17) 
Os 2 

according to (14). The desired viscosity can be inferred from (4) and (16) with 
the solution C of (17). 

2.4. Frequency dependence o f  the viscosity 

The boundary condition proposed by Doi and Edwards [3] and also used by 
Curtiss and Bird [4] and 0t t inger  [13] are random orientations for the chain 
ends, i.e., 

f (s  = O, ti) = f (s  = L, li) = 1/4";r for all t imes. (18) 

This implies a = 0  and consequently C(to, s = O ) =  C(to, s = L ) = 0  (for all 
frequencies to). 

We introduce a model which takes into account the property of chain ends to 
participate in the flow alignment of the complete chain. Working out this 
modification, we set 

C ( t o ,  s = O) = C ( t o ,  s = L )  = T e n d ,  (19) 

f 
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in order to introduce a corresponding parameter %nO with dimension of time, 
which is limited (1 o. 1 <5/(2R1~,1)) according to the possible values of the 
alignment tensor a, and frequency-dependent in full generality. The physical 
evidence for such an anisotropic behavior under viscous flow will be shown in 
section 2.5 by use of NEMD computer-simulation results. The restriction (18) 
was helpful to solve (5) in a closed form [3,4], but with a side glance on (14) 
we can cancel the strong condition (18) at the end segments to derive the 
alignment tensor and hence the flow properties. 

It is worth pointing out that the solution of (17), evaluated subject to the 
boundary condition (18) or (19) with %.0 = 0, reproduces the viscosity of Doi 
and Edwards. 

The solution of (17) subject to (19) is 

C(to, or) = h{1/z 2 + (1/z  2 - g)[tanh(½z) sinh(trz) - cosh(crz)]} , (20) 

where the variable or = L-is with 0 ~  < or ~< 1 and A : =  /~Doi is used; z is given by 

z := ~/~'-lh - iwh (21) 

and 

g := re.d h - l  (22) 

is the dimensionless parameter for the chain ends, which determines the 
characteristic features of C. 

From (4) and (16) one infers 

Pa = - - 2 ~ . r ,  (23 )  

where the viscosity '~a(O)) associated with the alignment is given by 

1 

• /a(o~) = G a f C d c r ,  
0 

(24) 

with the "al ignment" shear modulus 

G a = 3 R 2 N n k a  T ,  (25) 

which, for R = 1, reduces to the expression given by Doi [3]. Now insertion of 
(20) into (24) yields, with the simplified notation r /=  ~Ta, 
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*/(to) = G a A [ 1  + (g  1 )  2tanh(½z)] 
- -  Z _1" 

(26) 

Limiting expressions for z--->0 and z--->~ are */--->GaA(l+g) and 
*/---> G a A ( 2 g z - l +  z-2), respectively. For a situation (e.g., a dilute solution) 
where the orientational relaxation rate ~.-1 is much larger than the diffusional 
relaxation rate A -1, the latter asymptotic expression leads to the Maxwell 
model type expression ,/(to)= Ga(1 -ito~') -~, which does not involve )t ~ D -1 

For polymeric melts and highly concentrated solutions where the reorienta- 
tional motion is strongly hindered, one expects the opposite situation, viz. 
~ - 1 ~  A-1. The pure reptation model considered in [3,4] corresponds to 
r-~A---> 0 and consequently z---> y with 

y : =  ( - i t o A )  1/2 = (1 - i)O ~'2 O := ½toA (27) 

In this case (26) reduces to 

'7('o) = */DE[/-/oE(to) + / L . d ( t o ) ] ,  (28) 

with the Doi-Edwards viscosity 

*/DE = 1 a a } [  = ~ N n k B T A  ( 2 9 )  

and the dimensionless damping functions 

HOE = 12 -1 [1-- 2 tanh( ly) ]  , (30) 
Y Y 

24 
Hen d = g - -  tanh(½y). (31) 

Y 

The index 'end' labels a term, which vanishes for g = 0, and represents the 
influence of flow-aligned chain ends on the frequency behavior of the viscosity. 
Decomposition of the coefficient //DE into real and imaginary parts according 
to H = H '  + i l l "  yields 

H D  E = 6O-3/2(sin h ~'~1/2 - -  s i n  $ ' ] 1 / 2 ) 8  , 

H~E = 6~-111 - g21/E(sinh g-j1/2 + sin g]I/2)]B, 

B := (cosh ~'~ 1/2 _{_ COS ~ -~1 /2 ) - I  • 

(32) 

Although it is not obvious at first glance, the result (32) is equivalent to the 
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series expression 

H = ~ Ha 1 (33) 
odda 1 -- itoA~ ' 

with H~ = 967r-aot -4, A~ = "tr-2ot-2A, which has been derived by Curtiss and 

Bird [4]. 
Despite the fact that (29) is very appealing since the reptation model leads in 

a rather plausible way [3,4] to a dependence of the viscosity on the degree of 
polymerization N (or equivalently on the molecular weight) which is close to 
the experimentally observed behavior, the frequency dependence as given by 
(32) or (33) is not satisfactory. The decrease of the real part of the viscosity 
with increasing frequency, e.g., is in most cases by far not as strong [12] as the 
/2-3/2 decrease predicted by (32). This deficiency is overcome by the additional 
term He, d in (28), which involves the factor g, cf. (31), which characterizes the 
alignment of the chain ends. 

Nonequilibrium molecular dynamics (NEMD) computer-simulation results, 
which show that this end alignment is indeed nonzero, are discussed next. 

2.5. N E M D  simulation 

The NEMD computer simulations have been performed (with a Cray-XMP) 
for chains with 32 beads in systems with a total number of 128 (resp. 512) 
beads in a simulation cell with periodic boundary conditions, in order to avoid 
boundary layer effects. The equations of motion of Nto t beads with mass m 
have been integrated numerically by a (5th order) Gear-predictor-corrector 
algorithm. The Lennard-Jones potential 

~ b = ~ b L j = 4 , [ ~ r }  - forr~<2.5o " and ~b=0 f o r r > 2 . 5 o - ,  
(34) 

is increased by a factor 100 for the interaction between those beads, which are 
nearest neighbors in one chain. The characteristic energy ~ and the typical 
molecular length o-, together with the mass m of a bead, are, as usual, used to 
express all physical quantities in reduced units. The volume V of the basic 
periodicity box is determined by Nto t and the bead number density n = Ntot/V. 
The temperature T is kept constant by rescaling the magnitude of the peculiar 
velocities. Additional constraints are imposed in order to simulate a plane 
Couette flow, 
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with the  veloci ty v in the x-direct ion and its gradient  in the y-di rec t ion;  

Ov x 
7 =  Oy 

is the shear  rate.  T he  quant i ty  o f  interest here  is the al ignment  tensor  

(35) 

a(s, t ) :  = ( '-~> , (36) 

specifying the or ienta t ion of  a segment  at posit ion s within a chain. For  a plane 

Coue t t e  geomet ry ,  only 3 o f  the 5 independen t  componen t s  are nonzero ,  viz. 

a+ = (t~xt~r> , a _ = ½ < f t x f t x - f t y ~ y > ,  a 0 = < a 2 - 1 > ,  (37) 
which depend  only on  s and 3, in the s tat ionary regime and have been  extracted 

f rom the N E M D  simulation. In  o rder  to show the nonvanishing aniso t ropy of  
the  whole  chain under  shear  flow, we plot ted  the componen t s  of  a against the 

relat ive posi t ion or -- s / L  within the chain for  a set o f  shear  rates  in fig. 1. The  

finite values of  the componen t s  a k (k = + ,  - ,  0) for  or = 0 and tr = 1 imply the 

f low-induced a l ignment  of  the chain ends. 
A quant i ta t ive  compar i son  of  the NEMD-s imu la t i on  result  for  the real 

quant i ty  a+(7 ,  tr) with our  calculation of  the complex  c o m p o n e n t  a+(ta,  tr) of  
the  a l ignment  tensor ,  cf. (20) with (16),  is possible by general izing the 

C o x - M e r z  rule [14]: 

(38) 

loga+ [ loga_ log-a0 [ 
o. T .y,- = 1 T 

7 ''d = 1 /..-m÷***++*****++**'++÷+-,,/ 

-1' "÷1'+~'++++~'÷+'++++'÷'>¢'~'~'÷" : [ i l t ' l ' t ' f " ' ~ '  W" fl''~.+÷+ f'b"~'÷~.. "r~'d = 0.1 '÷"÷'("÷"t ',t fl+++ :;:::o: '~0~tf,~.tif{l t {d'#'+~'''a = 0"1 ' ÷ ~ ' ' ~ ' ' [ : : ' [ ' t '  # ÷#÷÷+¢'÷'>""¢" -,{.H.,. 
-2' '~'~ rT~'d = 0.01 '~,  ~''~ O'r'd = 0"01'{'~'{~ t' 1 

-3 
0 O" ---------m'- 1 ~  O" - -  0 - -  0 r ~ 1 

Fig. 1. NEMD computer-simulation data of the alignment tensor components ak (k = +, - ,  0) (eq. 
(37)) as functions of o- for a stationary plane Couette geometry with various shear rates y. The 
variable ~r denotes the relative position of a segment vector u within the chain. The finite values of 
the a k at ~r = 0 and tr = 1 imply a flow induced alignment of the chain ends. 
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which has been experimentally verified [15]. The suitable generalization for the 
alignment tensor is 

a+(y, o - ) -  y la+(o~---> y, o')1, (39) 

since - together with our result (16), (20) for the alignment t ensor -  the stated 
proportionality (39) leads to the numerical validity of the Cox-Merz rule (38) 
if the quantity g is small, i.e., g ~ l .  This follows from the approximative 
relation (take C from eq. (20)) 

f fu l (40) 

The dependence of the alignment tensor component a+(% or) on both the 
shear rate and the relative position within one chain for three values of g have 
been plotted in fig. 2. For g ~ 0, the behavior is similar to the observation 
made by NEMD-computer simulations (see fig. 1). 

The pronounced alignment of chain ends under shear flow we have already 
detected in a "small" system, e.g. in a periodicity cell with 4 chains, built up by 
32 beads, where the crossover from Rouse- to reptation dynamics, as studied 
numerically by Kremer and Grest [16], has not been reached. However it is 
conjectured that the alignment of the end segments is also of crucial impor- 
tance for longer chains. The NEMD computer simulations show a smooth 
dependence of the alignment on the segment position o- (see fig. 1) and thus do 
not support the assumption of an approximate freedom of the orientations of 
the end segments, made in refs. [3,4,12,13]. 

r e d .  

log ~ -4- 

20 

-zq " ols " ~ . . . .  o15' ' ' 

A7 = 0.1 

10 

1 

A7 = 0.1 

g = l  
' ' ' 0 1 5  " " 

Fig. 2. The dependency of the alignment tensor component  a~ d as defined on the lhs of (39) on 
the relative position within one chain or, the parameter  g and the dimensionless shear rate has been 
computed theoretically from eqs. (16), (20), (39). The NEMD-computer  simulation result (see fig. 
1) is consistent with the calculation only for a nonvanishing parameter  g which is associated with 
the flow-induced alignment of the chain ends. 
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Notice that for shear rates greater than an "inversion" shear rate, the 
alignment tensor component  a+ for an end-segment of a chain (or = 0 or tr = 1) 
is greater than a+ in the centre of a chain. The dependence of this shear rate 
Tiny on the parameter  g can be calculated from (20) by solving the equation 
C(0, "Yinv)= C( 1 , Yinv) for ")/in v. Its existence is not in contradiction with a 
preferred alignment of the middle parts of a chain in the direction of the flow 
velocity, i .e. ,  a maximum of the component  a at cr = 0.5. To detect the 
" inversion" shear rate, whose existence is in sharp contradiction to the 
assumptions made by several authors (see section 2.4 or compare with the plot 
"g  = 0" in fig. 2), we consider enlarging our N E M D  simulation to longer 
chains. Then  it will be possible to determine g and its dependence on the chain 
length from NEMD-simulation data at low shear rates by comparing the 
strength of alignment at the chain ends with the strength of alignment in the 
middle parts of the chains. 

In section 2.6 we will discuss the dependence of g and the time constant h on 
the chain length as obtained from an experimental result. 

Results for the components  a and a 0 from N EMD  simulations in fig. 1 show 
that the shear rate dependence of the corresponding normal pressure differ- 
ences (resp. the viscometric functions, (see (4)), based on a Fokker -Planck  
approach,  should be calculated more carefully as was done before,  since the 
condition (18) for the chain ends leads to vanishing components a_,  a 0 for 
S =  o - = 0 .  

2.6. The effect o f  flow-induced alignment of  chain ends 

As a next step. we will discuss the features of the storage (G ' )  and loss (G") 
modulus as given by 

G = G' + iG" := iron/, (41) 

with 77 from (28). The complex shear modulus G (41) includes the quantity %nd 

for the chain ends, introduced by (19). After  a remark about the limiting 
expressions for low and high frequencies, we will show how to determine the 
parameter  %,d, the time constant A and the shear modulus G a from experimen- 
tal data in section 3. For  a quick overview, we will calculate the interrelation 
between %.a or alternatively g and the width of the plateau region. 

F rom a Taylor  series of the hyperbolic function in (30), (31) follows 

lim G ' =  G a l (  1 + g)(toA) 2 , (42) 
to--~0 

l im G " =  G a ( 1  -t-g)(toA) 1 . (43) 
to---~0 
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For high frequencies to, the analytic expressions are 

l im G' = Ga[(1 - 8g,o)X/2 g(o-)/~) 1/2 -f- ~g,0]  , 

lira G" = a a [ ( 1  - t~g,o)V~ g( toA)  ' /2  + t~g,OV~ ( t o ~ ) - l ' 2 ]  • 

(44) 

(45) 

Here, ~ stands for the usual Kronecker symbol. A nonvanishing anisotropic 
parameter g leads to a qualitative change in the frequency behavior of 
polymeric melts. 

In distinction to the Doi-Edwards theory (g = 0), for high frequencies the 
presented modification predicts one region, where both moduli display the 
same characteristics, independent of g = g(to), and another (plateau) region, 
where the storage modulus is nearly constant within a frequency range, which 
depends only on g. In a wide region of frequencies, the assumption of a 
constant value of g leads to a good approximation, as we have substantiated 
from NEMD-simulation results. The experimental data of various authors are 
described very well even for the simple case, where g is constant (but material 
dependent), cf. section 3. From a microscopic point of view, the possibility of 
(physical) chain ends to align under shear flow is connected with the time 
~'end = gA, as stated in (19). For A see (12) and (13). Its dependence on the 
molecular weight is discussed in [12]. Therefore we expect a characteristic 
viscous scenario for a variation of the molecular weight (resp. the chain length 
N),  because g strongly affects the physical behavior of the viscosity. The 
molecular weight dependence, found e.g. by Onogi et al. [17], can be 
interpreted by setting A - -  N 34. A fit of the experimental data is consistent with 

Fig. 3. The shear moduli G '  and G" as functions of the frequency to for various values of the 
parameter g, cf. eq. (41) and (28). 
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Fig. 4. The phase shift 6 between (complex) stress and deformation as functions of the frequency to 
for various values of the parameter g. 

g ~ N -2"4, which implies %nO- N1 ([18] #2 and eq. (50)). For the meaning of 
the plateau in G' and a discussion of the results, obtained by Onogi et al., see 
Larson [19]. 

For a plot of G' (G") see fig. 3; the phase shift 6 for different values of g is 
shown in fig. 4. Notice that the curves G' and G" tend to overlap with 
increasing values for the shear frequency. The positive slope of G' and G" at 
high frequencies to follows here without the recourse to "glassy relaxation 
modes", as suggested by Ferry [20]. 

3. Comparison between theory and experiments 

In this section it is shown how the theory describes the experimental results 
and how one can extract the physical quantities of interest. 

Following the textbook of Larson [19], we compare experimental data, 
obtained for polymeric melts and concentrated solutions, with theoretical 
results, obtained by de Gennes [21], Doi [22] and with our result. In order to 
test the validity of our predictions over a wide range of frequencies which 
includes the full plateau region, we have chosen first a set of experimental 
data, presented by Ferry (data from Masuda et al. [24]). Together with the 
measured values in fig. 5, we give both the theoretical curves according to (41) 
and (28), which take into consideration the proposed anisotropy of chain ends, 
and the results obtained by Doi and Edwards [3], Curtiss and Bird [4,12], de 
Gennes [21] and Doi [22]. There are three basic theoretical quantities: g, A and 
G a, needed to calculate the theoretical curves shown in fig. 5; for their specific 

~,2 See section 3, fig. 7 for the width of the plateau region, and Larson [19] section 4.3.2 for 
discussion of the data. 
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Fig. 5. Comparison of theory and experiment for the loss and storage moduli. The experimental 
measurements by Masuda, Kitagawa, Inoue and Onogi [24] have been performed on a monodis- 
perse polysterene melt (M w = 215000). The moduli are functions of shear rate reduced to a 
reference temperature of T red= 160°C by a factor a x. The (upper) traced lines pertain to the 
theoretical parameters G a = 1.7 x 106 dyn c m  72, A = 260 s and 7on d = gA = 1 s in (31). The theoreti- 
cal curves for g = 0 corresponding to the results of Doi and Edwards [3], Curtiss and Bird [4], and 
de Gennes [21] are also shown. The calculation of Doi [22] takes into account fluctuations in the 
length of the "primitive chain". 

va lues  see  the  f igure cap t ion .  In  the  f igure we do  no t  c o m p a r e  ou r  resul t  wi th  

t h e o r e t i c a l  a p p r o a c h e s ,  which  involve  a la rge  set o f  p a r a m e t e r s ,  e .g.  r e l a xa t i on  

f r e q u e n c y  analysis .  

T h e  set  of  quan t i t i e s ,  which cha rac te r i ze  the  e x p e r i m e n t a l  da ta ,  a re  

s chema t i ca l l y  d rawn  in fig. 6. O n l y  two of  the  four  f r equenc ies  to', to", tos and  tor 

a r e  i n d e p e n d e n t .  

D u e  to  the  g e o m e t r y  of  fig. 6 the  iden t i ty  

O) r 

2 (46) tos = (to,)2 

ho lds  t rue .  T o  test  the  set of  m e a s u r e d  charac te r i s t i c  f r equenc ies ,  (46)  is 

he lpfu l .  T h e  few s teps  to  ca lcu la te  all the  theo re t i ca l  quant i t i es  wi th in  the  given 

a p p r o a c h  can  he in fe r r ed  f rom (41) ,  (28) and  fig. 6: 

1 - (6to"ltos) ' /2 - 1 , (47) 

tos* = 10 (1 + lEg) (48) 
(1 + 10g) ' 

G,G_~I  _ 12 (1 + 10g) (49) 
10 ( l + 1 2 g )  2 '  



M. Kr6ger, S. Hess / Viscoelasticity of polymeric melts 351 

G~ 

/ • 

G" G' 

I J 

G' 

log G 

log~ 

W tt OJ Ws O)r 

Fig. 6. Schematic plot of the real and imaginary part of the complex shear modulus explains the 
important quantities which characterize the frequency dependence. At higher frequencies, G ' -  
tOo, G"-- to-1 is expected but not displayed in fig. 6. 

with the experimental  plateau modulus Gs. For a quick overview and in order  

to get a feeling for the connection between the new quantity g and the width of 
the plateau region ( t o t -  cos), respectively the relation between the two fre- 
quencies to" and tos, we have plotted both curves in fig. 7. For  the dimension- 
less ratio tor/to~, which also measures  the width of the plateau region and can be 
extracted f rom a given experimental  result with bet ter  accuracy than the 

difference t o r -  to~, we get 

log tor 5 -2 (1 + 12g) 3 (50) 
% - 144  g ( 1 +  1 0 g )  " 

The present  theory can also be applied to concentrated polymer  solutions. In 
fig. 8 experimental  data of Holmes  et al. ([25] or see Larson [19]) for three 
different concentrations are compared  with our result. Again an excellent 

6. ( - [ 

log(w~ - w,)1 

4 

3 

/ 
~ /  

-3 -2.5 -2 -I.5 -I -0.5 

-I 

-2 

; -3 

-4 

~gg 

Fig. 7. The (dimensionless) length of the plateau region (tOr -- tO,)A and the ratio to"/to, of the 
characteristic frequencies defined through fig. 6 as functions of the parameter g. 
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Fig. 8. Comparison of theory and experiment for the loss and storage moduli versus frequency for 
polysterene of molecular weight 267 000 dissolved in chlorinated diphenyl at the concentrations c 
shown (in gm/cm 3) (from Holmes, Kusamizu, Osaki and Ferry [25]). The three traced lines 
pertain to the theoretical parameters: G a = (80 000[55 000[450) dyn/cm 2, ,~ = (0.8[0.17810.01) s, 
re.d = (0.0410.01210.05) s for c = (0.34610.28110.0124). 

agreement between experiment and theory can be obtained. For the values of 
the chosen g, h, G a see the figure caption. 

4. Concluding  remarks 

In this paper, it has been demonstrated that a Fokker-Planck approach with 
appropriate boundary conditions for the chain ends can be applied to study the 
rheological properties of fluids composed of long chain molecules. Computer 
simulations [23] can yield some new insight into the dynamic processes in 
polymeric liquids and substantiate a modification of a well known theory. We 
have introduced a material dependent quantity "/'end with dimension of time for 
the alignment of chain ends, including the physical or chemical peculiarities of 
a given polymeric fluid. The presented method can be applied to predict a 
change in the viscoelastic behavior for polymeric melts and concentrated 
solutions during a variation of the flexibility of chain ends and the time 
"constant" A, which is connected with the molecular weight. Even for very 
high frequencies, when the parameter for the alignment of chain ends Ten d 
(with dimension of time) should tend to be frequency dependent, the excellent 
agreement with experimental results, found on the basis of the Fokker-Planck 
description, provides undoubted evidence about the validity of this method. 

Our result for the complex viscosity- combined with the Cox-Merz rule 
[14]- yields a shear rate dependence of the non-Newtonian viscosity, which 
qualitatively agrees well with the experimentally observed shear thinning. The 
empirical Cox-Merz rule is not needed if one extends the present approach to 
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the nonlinear flow regime. This seems to be feasible and will then allow a 
similar comparison between theory and measurements of the viscosity and the 
normal pressure differences. 
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