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ABSTRACT: To describe complex systems deeply in the nonlinear regime, advanced formulations of
nonequilibrium thermodynamics such as the extended irreversible thermodynamics (EIT), the matrix model,
the generalized bracket formalism, and the GENERIC (= general equation for the nonequilibrium
reversible—irreversible coupling) formalism consider generalized versions of thermodynamic potentials in
terms of a few, well-defined position-dependent state variables (defining the system at a coarse-grained level).
Straightforward statistical mechanics considerations then imply a set of equalities for its second derivatives
with respect to the corresponding state variables, typically known as Maxwell’s relations. We provide here
direct numerical estimates of these relations from detailed atomistic Monte Carlo (MC) simulations of an
unentangled polymeric melt coarse-grained to the level of the chain conformation tensor, under both weak
and strong flows. We also report results for the nonequilbrium (i.e., relative to the quiescent fluid) internal
energy, entropy, and free energy functions of the simulated melt, which indicate a strong coupling of the

second derivatives of the corresponding thermodynamic potential at high flow fields.

1. Introduction

Since Onsager’s pioneering work' on irreversible phenomena
back in 1931, thermodynamics began to describe a wide variety of
dissipative processes (e.g., diffusion, heat and electric conduction,
viscous relaxation, chemical reactions, dielectric relaxation) and
their coupling (leading, e.g., to electrokinetic, thermoelectric,
thermokinetic, and other effects) by assuming a linear relation-
ship between the generalized thermodynamic (or driving) forces
and the resulting fluxes. Onsager’s reciprocal relations, which
were later generalized by Casimir,” were derived based on the
classical principle of microscopic reversibility at equilibrium and
the so-called regression hypothesis (namely that the dissipation
mechanism accompanying natural fluctuations is the same both
at equilibrium and under nonequilibrium conditions). Following
Onsager’s and Casimir’s seminal contributions, intense research
work in the ensuing years led to a number of elegant thermo-
dynamic and statistical theories on the fundamental nature of
irreversible processes,”” which eventually culminated to what is
known today as the theory of linear irreversible thermodynamics
(LIT) for dissipative systems.'® Founded on the local equilibrium
assumption (which allows one to take full advantage of the rigor
of the known fundamental laws of equilibrium thermodynamics),
LIT has offered a unified description of many nonequilibrium
processes (associated with the transport of conserved quantities
such as mass, momentum and energy) in a systematic and
compact way.lo’1 !

Modern nonequilibrium thermodynamic formulations, on the
other hand, such as the extended irreversible thermodynamics,12
the generalized bracket formalism,”> ™7 the matrix model,'®"
and the GENERIC (general equation for the nonequilibrium
reversible-irreversible coupling) approach®®** recover LIT as a
special case. The starting point in these formalisms is to choose
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the set x of the proper state variables, a step of paramount
importance requiring deep physical insight and experience. This
happens because thermodynamics is generally concerned with
the description of a system at a coarse-grained level where, by
eliminating an enormous number of microscopic degrees of
freedom associated with fast dynamics ( fast degrees of freedom),
the emphasis is placed on the evolution of a limited set of slowly
evolving variables (slow degrees of freedom). This in turn implies
the existence of an intermediate time scale 7 separating fast and
slow variables;*® coarse-graining then means that it is only the
latter that are kept in the list of state variables.”* The next step is
to identify generalizations of thermodynamic potentials as the
primary source of complete thermodynamic information. In the
generalized bracket formalism, this is the dissipative Hamiltonian H.
In the GENERIC framework, it is the generators E (the energy)
and S (the entropy) describing reversible and irreversible con-
tributions, respectively. The third and final step is to obtain the
transport equations by postulating a fundamental equation for
the time evolution of the set x of nonequilibrium variables. In
GENERIC, for example, such an equation reads:

45(x)

N 2% v = (1)

dr — ) ox

and comes together with a number of important properties for the
generators E and S and the matrices L and M. For example, L
is always antisymmetric while M is symmetric (expressing the
Onsager—Casimir symmetry of LIT) and positive-semidefinite
(this can be considered as a strong nonequilibrium generalization
of the second law of thermodynamics). In fact, a strict separation
of reversible and irreversible contributions in GENERIC is
provided by the mutual degeneracy requirements

M(x) =0, L(x) ox =0 (2)
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expressing the conservation of energy even in the presence of
dissipation and the conservation of entropy for any reversible
dynamics (entropy can only be produced by irreversible dynamics),
respectively. As explained by Ottinger,>* E and L can be obtained
by straightforwardly averaging the microscopic energy and Pois-
son bracket of classical mechanics. S and M, on the other hand,
should account correctly for the increase in entropy and dissipa-
tion (or friction) associated with the elimination of fast degrees of
freedom or the grouping of microstates to coarser states. To see
this, let py(z) be the probability density to find a microstate z
(in classical mechanics, this is defined by the positions and
momenta of the atomistic units) for given values of the set of
coarse-grained variables x, and I1(z) a mapping that assigns a
coarse-grained state to any microstate z. In any ensemble, the
variables x are the averages of Il(z) evaluated with the prob-
ability density py(z), i.e., x = (II(z))x. Then, one can show
using projection operation techniques>>° that the friction matrix
M can be obtained by the following Green—Kubo equation:*’

M) = / IV @) (0))), de 3)

Here, k s the Boltzmann constant and I1/ denotes the (fast) time
derivative of IT. How to apply eq 3 in order to compute M from
dynamic simulations (executed, however, only for a small frac-
tion of the longest system time scale, as dictated by the upper limit
of integration in eq 3, namely the intermediate time 7) has been
discussed by Ilg et al.*®

Each of the new nonequilibrium thermodynamics formula-
tions has its advantages and disadvantages; however, all of them
are very useful in our effort to consistently understand or describe
irreversible processes far away from equilibrium. Furthermore,
and despite key differences in their fundamental structure or
starting point, they bear striking similarities to a degree that one
can even prove equivalence of any such two formalisms in certain
cases.”” ! Regarding, in particular, the issue of the existence
of thermodynamic potentials, we recall that from a statistical
mechanics point of view these are well-defined at equilibrium.
And they can be calculated via partition functions in terms of
statistical weighting by sampling equilibrium configurations in
a predefined statistical ensemble. All the information about a
particular system at equilibrium is thus contained in a single
thermodynamic potential whose form is limited only by convexity
conditions. For example, for a system specified by the variables
T, V, and N, namely temperature, volume and number of mole-
cules, the Helmholtz free energy A= A(T,V,N) is the proper
thermodynamic potential to consider, from which (e.g.) all
equations of state can be obtained by simple partial differentia-
tions. Furthermore, the function 4= A(T,V,N) is obtainable
from molecular simulations in the NV'T ensemble through the
canonical partition function. Beyond equilibrium, however, even
the choice of variables can be bad. But one can still check (based
on the corresponding Green—Kubo equation for the M matrix,
eq 3 above) whether a separating time scale does exist in which
case the choice of the variables should be a reasonable one. On the
other hand, the consideration of additional structural variables in
the set x implies that we should resort to an expanded ensemble,
wherein the coarse-grained variables appear explicitly. Then,
despite the elegance and rigor (expressed through a set of con-
sistency conditions) of the nonequilibrium thermodynamics
approach adopted, one is still faced with the question whether or
not “well-defined thermodynamic potentials (such as the entropy
and energy functions postulated in GENERIC or the extended
Helmholtz free energy function assumed in the generalized
bracket) really exist far beyond equilibrium”**~** and how these
can be computed. We demonstrate here how, given a set of
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nonequilibrium variables for a model system (an unentangled
polymer melt), one can actually carry out accurate calculations of
such a nonequilibrium potential (in particular of the entropy) and
of a few other thermodynamic functions in terms of the chosen
coarse-grained variable(s) through detailed atomistic MC simu-
lations in an expanded statistical ensemble.*>** We also provide
a consistency check of our numerical method by directly demon-
strating the validity of Maxwell’s relations relating certain pairs
of the second derivatives of the generalized potential with respect
to the nonequilibrium variables.

2. Nonequilibrium System Studied and Simulation Methodology

As atest case, let us consider a polymeric melt containing short
polyethylene (PE) chains under an arbitrary flow field with shear
rates covering both the linear and the nonlinear regime. For such
a system, Mavrantzas and Theodorou already back in 1998°°
showed how one can compute the Helmholtz free energy function
in terms of its density p, temperature 7, and a tensorial structural
variable, namely the conformation tensor ¢ defined as 3(RR)/
(Rz)eq where R is the chain end-to-end vector, by making use of
the conjugate thermodynamic variables to p and ¢: The first is a
scalar quantity, the “pressure” P, and the second a tensorial
quantity, the “orienting field” o which is intimately related to
the strain rate in a flow situation.*® Building on these very first
considerations, Baig and Mavrantzas®* proposed recently a
powerful MC methodology capable of sampling nonequilibrium
states for short polymers with an overall conformation identical
to that obtained from a direct nonequilibrium molecular dy-
namics simulation. The method was termed GENERIC MC,
because it was founded on the GENERIC formalism of none-
quilibrium thermodynamics. However, it is more general, since
it makes no a priori assumption about the relationship between
thermodynamic field(s) employed in the simulation and the
corresponding state variable(s). It can be routinely reformulated
in any other nonequilibrium thermodynamics framework, in
which the complete coarse-grained information is assumed to
be contained in the generalized thermodynamic potential. But we
should keep in mind that any MC method, being intrinsically
nondynamic in nature, provides results that strictly apply only
to stationary systems (systems for which the free energy A is time-
independent). Thus, although thermodynamic potentials exist
regardless of time and the same happens with the Maxwell
equations (they hold independently of whether the system under-
goes a stationary or a time-dependent process), our GENERIC
MC methodology can provide numerical evaluation for them for
a given system only when this system undergoes a stationary
process. To confirm Maxwell’s equations under general time-
dependent process, one should devise a different methodology
(see, e.g., ref 28).

The generalized fundamental Gibbs equation for the system
under consideration is written as

dE = Aidxi (4)
k

where 1, represents the thermodynamic force field conjugate to
the extensive state variable x;. Considering points in the none-
quilibrium phase space as well-defined thermodynamic states, the
energy function E plays the role of a generalized thermodynamic
potential [and, of course, other thermodynamic Potentials can be
obtained via appropriate Legendre transforms’ 9] for the none-
quilibrium system considered. In this case, one comes up also
with a set of equalities of the form

B.-@., o
ax,- Vi) ax,- Vs
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which are the analogues of the well-known Maxwell relations
of equilibrium thermodynamics for nonequilibrium systems. In
eq 5, the subscript Vx;_.; denotes all state variables x; except x;.
Alternatively (see, e.g., eq 6.17 or the solution to exercise 139
inref22), eq 5 can be derived starting from the probability density
function p ~ exp(Z; AI1;) computing the average of II; and dif-
ferentiating with respect to 4, Then one obtains that (&I1))/
(04)) = (XI1)/(34;) = (ILIT;) — (I1;){I1;, physically representing
the degree of mutual correlation of the different thermodynamic
variables or the degree of fluctuations for the same variable.
Clearly, if one works with a different thermodynamic potential, a
different set of Maxwell relations will be derived. It is also
understood that for a given system the A;’s have a different
meaning under equilibrium and nonequilibrium conditions, since
under nonequilibrium conditions they are affected by the extra
structural variables considered to account for deviations from
equilibrium.

For the system at hand, an unentangled polymer melt whose
internal microstructure is described by the conformation tensor ¢,
the fundamental thermodynamic representation in terms of the
energy E dictates that

dE = TdS—PdV +udNy+ksTa: d(Nge)  (6)

where N, denotes the number of chains, P the pressure, 7" the
temperature, V the volume, S the entropy, and o the conjugate
thermodynamic field to tensor ¢ accounting for flow effects.
Given that E is a first-order homogeneous thermodynamic
function with respect to S, ¥, and N, eq 6 implies the following
Euler equation

E =TS—PV+uNy+ NgpkgTo: ¢ (7)

and thus, also the following generalized Gibbs—Duhem relation-
ship:

—SdT+VdP— N du— Nge : d(kBT(l) =0 (8)

Other thermodynamic functions can be derived from these
expressions through appropriate Legendre transforms, such as
the extended (generalized) Helmholtz free energy A and the
extended (generalized) Gibbs free energy G:**

dA(T,V,Nps Nepe) = = SAT — PdV +u dNy, + kg Ta - d(Nge) (9)
and

dG(T, P, Nch,(l) = —8SdT + VdP+/4 dN, — Ngc : d(l\’BT(l)
(10)

respectively. For the purpose of confirming Maxwell’s relations,
it is more convenient to work with the thermodynamic potential
A" = A(T,V,N,,0) defined as A" = A'—N_kgTo:c so that:

dA/(T,V,Negpo) = —SdT —PdV +u dNy, — Nee : d(kpTo)
(11)

Equation 11 is the starting point for executing MC simulations in
the expanded ensemble {N,,NVTp*o}, in which the following
variables are specified: The number of chains N, the average
number of atoms per chain N, the volume V, the temperature T,
the spectrum of chain relative chemical potentials g*controlling
the distribution of chain lengths in the system,*’ and the tensorial
field o accounting indirectly for flow effects. The spectrum p*
enters the analysis when one converts from a description in terms
of a Helmholtz free energy representation to a representation
in terms of the variables {N.,NVTu*o} for an m-component
system,**~*? in which case if k (k = 1, 21...m) denotes the kth
component in the mixture (characterized by chain length N;) and
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(i) 1s a selected arbitrary pair of reference species (of lengths
N;and N; respectively) for which u¥ = uf = 0 to maintain the
total number of atoms and the total number of chains constant,
then each of the uf,k = 1, 2, ..., m denotes the relative chemical
potential of chains of species k (and thus of length Nj). The
spectrum p* should reproduce the desired distribution of chain
lengths (e.g., Gaussian, uniform, most probable, Flory, etc.) in
the course of the simulations and should be an input to the MC
algorithm*~* (see ref 40 for the mathematical specification of
p* that generates the most widely employed chain length dis-
tributions). The field o, on the other hand, couples with the tensor
c¢in the thermodynamic function and drives the system away from
equilibrium, based on the following probability density function:

PNV THC (1) g Xy V) ~ exp[ — B(U (11, Ty ooy T, V)
NL./, N(/x
=Y wNe—kpTa: Y )] (12)
k=1 k=1

Consequently, in the proposed GENERIC MC simulations,
system configurations are sampled according to the following
modified Metropolis criterion:

N(»/, Nl‘/l
PNV T ~ exp[ — B(AU = > " iy AN, —kpTa: Y Acy)]
k=1 k=1

7 (13)

where = 1/kgT, n (=N, x N) denotes the total number
of atoms in the system, {r} = {ry, o, ..., r,,} the space of their
position vectors, U the potential energy of the system, uj the
relative chemical potential of the k-mer long chain and ¢
the conformation tensor of this chain. With appropriate
input data for the set {N,NVTu*a}, eq 13 allows one to
sample nonequilbrium steady states by assigning nonzero
values to o.

All simulation results presented here have been obtained with
a model linear PE melt containing 160 Cs;sH;sg chains in a
rectangular box [enlarged in the stretching, x, direction to avoid
undesirable system-size effects, especially at high flow fields] with
dimensions x, y, and z equal to 130.5, 54, and 54 A, respectively.
The simulations were executed at temperature 7 = 450 K and
density p = 0.7638 g/cm? starting from a fully pre-equilibrated
initial configuration of the C73H sg melt, using the following form
of a:

Oy Oy 0
a= |0, 0 0 (14)
0 0 0

How ais related to the velocity gradient tensor y in a real flow
has been analyzed in detail in ref 38 where it is also explained
that the above form, eq 14, represents a mixed flow comprising
both pure stretching and rotational components. We chose
it because it gives rise to more intriguing set of Maxwell’s
relations than that corresponding either to pure shear or to
pure elongation. The tensor o is also intimately related to the
stress tensor @ developing in the system. In fact, if the stress is
only elastic in nature, then the tensor o imposed directly in the
MC simulations and the tensor ¢ that results from the simula-
tions should satisfy a consistency relation which reflects the
inherent symmetric nature of the stress tensor ¢. We refer the
interested reader to ref 38 for more details.

The phase space explored in the present simulations corre-
sponded to a., and a, values in the interval [0, 0.35] with a
spacing equal to 0.05. As also explained in ref 38, for the C;gHsg
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Figure 1. Comparison of the two thermodynamic derivatives (dc../da, and dcy,/d0) in the entire range of values of the applied flow field a

investigated here.

PE melt considered here, this corresponds to Deborah numbers
from 0.3 up to 1000, implying that our simulations spanned
both the linear and the nonlinear regime. Of course, Deborah
numbers equal to 1000 might be too large for a model based on a
single mode (the chain end-to-end conformation tensor ¢ here)
to accurately describe its response to the applied flow but we
included them in our study only in order to test the proposed
numerical method in the highly nonlinear regime.

Substituting eq 14 for o into eq 11 implies then the following
Maxwell relation

9Cyy _ (acxy> (15)
aax«‘" T,V Nojy Gy aa‘“ T,V Neis Oy

for the system at hand.

In the simulations, the well-known end-bridging MC algo-
rithm**™*? was employed, the most efficient MC method
available today for the equilibration of the long-length scale
characteristics of linear polymers irrespective of their length.
The method is capable of generating disparate and practically
uncorrelated polymer conformations with a probability pre-
scribed by the acceptance criterion of eq 13. A small polydispersity
was allowed in the simulations (in conjunction with the use of the
end-bridging move) corresponding to a polydispersity index / ~
1.083. In the simulations the following mix of MC moves was
used: end-bridgings, 50%; reptations, 10%; end-mer rotations,
2%; flips, 6%; concerted rotations, 32%. A total of about 2 billion
MC steps were seen to be enough for the full equilibration of
the structural, volumetric and conformational properties of the
simulated liquid at each state point.
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3. Nonequilibrium Simulation Results

The simulation results for the two partial derivatives appearing
in eq 15 are presented in Figure 1. We see that (a) the two
derivatives are always positive and that (b) they increase mono-
tonically and rather rapidly as the flow components are increased
except for the very last (and highly nonlinear) point correspond-
ing to a,, = 0, = 0.3. It is also surprising that dc,/da.,
increases steeply with o, (at a fixed value of a.,): given that . is
an off-diagonal component, it cannot cause any preferential
deformation of the chain dimensions along the x- or y-directions
by itself; clearly, this reflects the strong, highly nonlinear coupling
of the o, and a,, components. Regarding the maximum
exhibited by the two derivatives for o, =0.3 (bottom right in
Figure 1), this should be attributed to two effects: (a) the finite
extensibility of the relatively short chains simulated here and (b)
the nonzero value of the shear component ., which precludes
chains from assuming fully stretched configurations along the x-
direction. By far, however, the most important result of the
simulations is that the two thermodynamic derivatives are
practically identical to each other over the entire range of field
values investigated. This can be seen more clearly in the 3-dimen-
sional graphs reported in Figure 2; Maxwell’s relations (eq 15) for
the simulated system are numerically confirmed by our GEN-
ERIC MC simulations not only in the linear but also deeply in the
nonlinear flow regime. The shapes of the resulting surfaces are
convex upward and rather steep (except from the very last state
point, corresponding to oL, = o, = 0.3), also indicative of non-
linear effects.

In addition to directly evaluating the Maxwell equations, our
GENERIC MC simulations have allowed us to calculate the
nonequilibrium thermodynamic functions (energy, entropy and
Helmbholtz free energy; see eq 11) as a function of the imposed
nonequilibrium field. Typical results for the system addressed
here are reported in Figure 3 as 3-d plots and reveal that for
small up to intermediate field values, the internal energy either
remains unchanged or shows a small decrease but beyond a value
of o approximately equal to 0.15 and a value of o, approxi-
mately equal to 0.2 decreases abruptly (Figure 3A). A qualita-
tively similar behavior is observed for the entropy function S
(Figure 3B), except for the highest fields where S is seen to drop
rapidly (actually more rapidly than the energy). The decrease of S
manifests the significant reduction in the number of allowed
system configurations due to large chain stretching and orienta-
tion (accompanying the application of the flow). Finally, the sum
of energy and entropy which defines the Helmholtz free energy of
the system is seen to increase as the strength of the applied field is
increased (Figure 3C), but rather smoothly, i.e., not as abruptly
asis separately observed for the (decrease in) energy and entropy.

A few additional points are in order here:

(a) We evaluated numerically the Helmholtz free en-
ergy function at the various state points following
different thermodynamic paths and we always ob-
tained the same result.

(b)  One can show analytically that expressions for the
Helmholtz free energy function underlying the most
widely used conformation-tensor viscoelastic mod-
els (e.g., the upper-convected Maxwell, the Giesekus,
the finite-extensible nonlinear elastic, the Leonov,
etc.) satisfy the Maxwell relations. In fact, the proof
covers all models whose Helmholtz free energy is
expressible in terms of the three invariants of the
conformation tensor (i.e., tr(c), tr(c - ¢), and det(c),
where “tr” and “det” denotes the trace and determi-
nant, respectively). No such assumption was made in
the present work: we addressed the problem to its full
generality and showed that the Maxwell relations are

Baig et al.

Figure 2. Three-dimensional representations of the thermodynamic
derivatives (A) dcy/d0, and (B) dcy,/d0), as a function of field
strength.

a more general property. As a result, one can use
Maxwell’s relations in order to admit or not new
rheological models built on the concept of the con-
formation tensor.

(¢)  Although only the xx and yy components of the
tensor o were taken to be nonzero (for simplicity),
the general conclusions drawn from our computa-
tions are valid for any other type of flow.

By nature, polymer molecules possess an enormous number
of configurational degrees of freedom at the atomistic level.
Thus, entropic contributions should dominate their response to
an externally applied flow field relative to energetic ones, espe-
cially for truly long molecules. We can therefore assume that
the entropy function is separable into an equilibrium part
Sy (corresponding to a = 0 or, equivalently, to ¢ = I) and a con-
figurational part S, accounting for flow effects; and thus to
rewrite eq 6 as

dE =T dSO +T dS(fanﬁg -P dV+/,t ch/l +kpTa: d(Nchc)
(16)

We can even go one step further and completely neglect the
energy change during deformation; i.e., we can set £ = E; in
eq 16 or, equivalently, £, =0 (this is what is customarily
assumed in typical viscoelastic models) at fixed values of tem-
perature and density. Then eq 16 leads to

T dSmnﬁg = = kB Tao: d(NL'/’lc) (17)
implying that

Smnﬁg = — Ngkgo:c (18)
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Figure 3. Three-dimensional plots of the fundamental nonequilibrium thermodynamic functions (relative to equilibrium) vs field strength: (A) the
internal energy U, (B) the entropy multiplied by temperature 7S, and (C) the Helmholtz free energy 4.

This expression sheds some extra light on the principles under-
lying eqs 6 and 7, since it makes the connection with models
(e.g., transient network models) based on the theory of purely
entropic polymer elasticity. Conversely, one can arrive at eqs 6
and 7 starting from a proposition for the configuational entropy
of the form of eq 18. In fact, GENERIC MC simulations of
the type presented here can be used®* to quantify the rela-
tive magnitude of enthalpic and entropic contributions to the
Helmholtz free energy of deformation for short PE melts. For the
system addressed here, a C73Hsg PE melt, the results are shown
in Figure 3 clearly demonstrating that energetic contributions to
the free energy of deformation are as significant as entropic ones.
In fact, by computing the changes in the different components of
the total potential energy due to flow,* one can see that for the
simulated system the ones that are mostly responsible for its
decrease are the nonbonded intermolecular Lennard-Jones inter-
actions (a direct consequence of the tendency of chains to orient
with the flow, which enhances attractive lateral interactions) and
the interactions associated with torsional angles (due to enhance-
ment of trans conformational states, as chains tend to unravel
and assume rather elongated shapes at high deformations).

4. Discussion and Outlook

We have shown how one can employ detailed atomistic MC
simulations in an expanded ensemble to accurately calculate
important thermodynamic functions (such as the entropy and
its derivatives) for systems away from equilibrium and deeply in
the nonlinear regime. We have also demonstrated the internal

consistency of these calculations through a computation of the
corresponding Maxwell equations for the nonequilibrium vari-
ables. In fact, in extended irreversible thermodynamicslz’30 where
the thermodynamic fluxes are also taken as independent state
variables in the extended Gibbs equation (eqs 4 and 5), the
corresponding conjugate fields are usually assumed to be propor-
tional to the thermodynamic fluxes (in order for the formalism to
automatically satisfy the second law of thermodynamics); in this
case, the Maxwell relations are automatically satisfied. In the
present GENERIC MC methodology, however, based on the
extended thermodynamic formulation prescribed by eqs 6—11,
we have not made any such assumption about the relationship
between forces and fluxes as a function of the field strength.
This further indicates that thermodynamic integration works
quite well in practice even in the highly nonlinear regime thereby
allowing one to calculate the entropy and other thermodynamic
functions for a nonequilibrium system. We also note that our
GENERIC MC-based approach of estimating the entropy change
accompanying the deformation of polymeric liquids, which relies
on the judicious choice of a few state variables describing the
conformation of polymer chains beyond equilibrium in an overall
sense, is more advantageous over direct statistical methods***
because of its simplicity and computational efficiency.

Our methodology for confirming Maxwell’s equations and
the results obtained here refer to the family of systems known
as unentangled polymer melts. But the general principles carry
on to other polymeric fluids as well. For example, our work is
of relevance to entangled polymers where one can resort to a
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description either in terms of the conformation tensor for the
entanglement strands in the topological network underlying their
atomistic structure or in terms of the orientational distribution
function f{u,s) representing the probability that the tangent vector
u at segment s along the reduced primitive path of a given chain is
u within du (inspired by Doi—Edwards’ perspective). It is also
applicable to block copolymers and self-assembled systems, as
long as the selected structural variables are capable of describing
morphology (e.g., lamellae, perforated layers, etc.) at the nano-
scale. Guided by experimental observations and field theoretical
approaches to the problem,*® proper candidate variables here
could be the volume fraction for each block component and a set
of (scalar or tensorial) parameters capturing ordering (pattern
formation) at long length scales.

In general, we could say that our results for the generalized
Gibbs equation (eqs 4 and 5) are of relevance to any system (and
not just to polymeric fluids) as long as a proper set of state
variables has been chosen. In contrast, if an improper choice of
structural variable(s) is made, the obtained numerical results may
either be not useful or bear no meaning. To appreciate the value
of the proper choice of state variables, we can consider an
interesting problem often encountered in viscoelastic constitutive
modeling when one attempts a jump in the system description
from the level of the distribution function to the level of the tensor
¢: closed-form nonequilibrium equations cannot be derived with-
out additional “closure” approximations for polymers under
nonequilibrium conditions.*’ Rigorously, the evolution equation
for ¢ in the case of nonlinear elastic models is obtained from the
diffusion equation for the distribution function through some
preaveraging procedure. The same (or a very similar) equation can
practically be obtained by working directly at the level of ¢ by
assuming a particular functional form for the free energy in terms
of this variable. The choice is dictated by the available closed-form
evolution equation from kinetic theory. The present work justifies
our search for a nonequilibrium thermodynamic potential func-
tion that can match the evolution equations as derived from the
two descriptions. That is, it justifies the strategy to adopt certain
closure approximations either at the beginning (nonequilibrium
thermodynamics approach) or at the end (kinetic theory ap-
proach). Of course, one can even go one step further and ask if,
based solely on principles of nonequilibrium thermodynamics, one
could guess (somewhat) the exact form of this potential. Unfortu-
nately, the answer is “no”: although thermodynamics (especially
the second law) puts certain restrictions on the allowed form of this
potential, the admissible solutions are too many. The interested
reader is referred to a recent work (ref 38) on this issue.
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