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Abstract

A Hamiltonian framework of non-equilibrium thermodynamics is adopted to construct a set of dynamical continuum equations for a
polymer blend with matrix viscoelasticity and a narrow droplet size distribution that is assumed to obey a Weibull distribution function. The
microstructure of the matrix is described in terms of a conformation tensor. The variable droplet distribution is described in terms of two
thermodynamic variables: the droplet shape tensor and the number density of representative droplets. A Hamiltonian functional in terms of
the thermodynamic variables is introduced and a set of time evolution equations for the system variables is derived. Sample calculations
for homogenous flows and constant droplet distribution are compared with data of a PIB/PDMS blend and a HPC/PDMS blend with high
viscoelastic contrast. For the PIB/PDMS blend, satisfactory predictions of the flow curves are obtained. Sample calculations for a blend with
variable droplet distribution are performed and the effect of flow on the rheology, droplet morphology, and on the droplet distribution are
discussed. It is found that deformation can increase or decrease the dispersity of the droplet morphology for the flows investigated herein.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this paper at the 3rd International Work-
shop on Non-Equilibrium Thermodynamics is to present re-
cent developments in our ongoing study of the rheology
and morphology of polymer blends. In a recent artidg
we examined the effects of matrix-phase viscoelasticity on
the rheology and morphology of Newtonian droplets sub-
jected to both shear and elongational flow fields. This pre-

tify the size of the droplets. As in the prior article, we are not
so much striving for quantitative accuracy in model predic-
tion, but are instead attempting to develop an understanding
for what type of effects are necessary in order to render an
accurate physical understanding of polymer blend rheology.
Here we add to this understanding by examining the extent
to which droplet break-up and coalescence affect the rhe-
ology and morphological characteristics of typical polymer
blends. At the end, we should be able to draw some relevant

vious article demonstrated that matrix-phase viscoelasticity conclusions about the importance of the size distribution of

was very important for quantifying the deformation-induced

droplets on these important materials.

shape changes in the dispersed phase droplets, as well as the The present article is organized as follows. In the next sec-

overall rheological responses of the blends.
In this paper, we extend the model introduced in the pre-
vious article[1] to incorporate phenomena of break-up and

tion, we give a description of the system we want to model.
We introduce the relevant thermodynamic variables and we
make a constitutive assumption for the system Hamiltonian.

coalescence of droplets in a crude way. This is done throughln Section 3a set of time evolution equations for the thermo-

the introduction of a Weibull distribution function to quan-
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dynamic variables is derived in a Hamiltonian framework of
non-equilibrium thermodynamics. [Bection 4 we present
sample calculations for start-up and steady-state shear and
uniaxial elongational flow. We compare model calculations
with experimental data of real polymer blends, and we in-
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vestigate the effect of flow on the droplet distribution. In the blend. Here, we study a system that is envisioned as a super-

final section, we summarize our results. position of a Maxwell fluid with characteristic elastic con-
stant,K, an elastic droplet interface with interfacial tension,
IV, and a non-linear coupling of matrix and interfacial elas-

2. The thermodynamic system ticity with the variable number density, of representative
micro-droplets,S:

In the present work, the polymer blend is considered as

a continuum with internal microstructure consisting of two mlM- €. S.n] = K[M] T A[C S, n]

immiscible phases. The thermodynamic variables in a con- _ / [M oMo + = ( — ¢)G—I _ }(1 —¢)G

tinuum description of matter are statistical mechanical av- 2p

erages over all constituent molecules and other microstruc- KC K

) . In(det )+ qbl" — —qu—

tural components of the continuum. The macroscopic flow kgT

of the blend is quantified in terms of the momentum den-

sity field, M, defined as the velocity of a fluid particle, X'”(n—)lfe(lf’ 128)} d3x- )

times its densityp. The average orientation and deforma-

tion of the matrix molecules at a fixed position in space is In this expression/< and I3 denote then-th invariant of

described in terms of the contravariant, second-rank confor- C ands, respectivelyg = 1/ V [o° f(R)R is the constant

mation tensor fieldC. For a polymer blend with a narrow, total volume fraction of dropletsi; is the elastic modu-

non-uniform droplet size distribution, the Weibull distribu- lus of the matrix,l” = I'"/Ro whereRg is a representative

tion function[2], droplet radius in the undeformed staig,denotes the repre-
1 sentative number density of micro-droplets at equilibrium,
A(R) = quRq—i e VR, 1) ande = (I3, I5) is a measure for the asphericity of the

droplets.Eq. (2)represents the kinetic energy of the system
is assumed to give a reasonable description of the averagdfirst term in the integral) plus a linear superposition of the
droplet size distribution, wher& > 0 is a dimensionless ~ Helmholtz free energy of a system of Hookean springs (sec-
droplet radius,f(R) is the number density of micro-droplets ond and third terms) and the energy of the elastic interface,
with radii betweenR and R + dR per unit volume,V, and with 12S being associated with the surface area (fourth term).
g > 1,y > 0 are positive real numbers. The above droplet Note that the energy of the elastic interface is proportional to
distribution function (DDF) is fully specified if the location, the relative representative number of micro-droplefsio,
R, and the heightf(R), of its absolute maximum are known. and therefore increases linearly withTo represent the dy-
Therefore, we introduce two representative thermodynamic namic effects that determine the representative number den-
variables to account for the non-uniform droplet morphology sity of droplets away from equilibrium, a fifth term is added
of the polymer blend. The droplet shape ten$giis related to the Hamiltonian. We consider here a logarithmic term in
to the location of the maximum of the DDF %3 = R, n/ng similar to the Flory/Huggins mixing term. This mixing
and is a contravariant, second-rank tensor field, with the term is taken to depend on both microstructural variables,
constraint de§ = 1 to account for volume preservation of € andS. The mixing term depends on the microstructural
the micro-droplets. A scalar variable,which represents the  tensorC, since the conformation of the matrix molecules
average number density of micro-droplets of representative influences droplet shape and hence the break-up and coales-
Shapes is related to the height of the maximum of the DDF, cence processes. Here, we have chosen a linear dependence
= f(R). We emphasize that the two internal variables, of the mixing term on the trace of the conformation tensor,
S andn are representative microstructural variables of the IS, for simplicity. Furthermore, the mixing term depends on
polymer blend. The full droplet morphology is described in the average asphericity of the micro-droplets, which can be
terms of an appropriate DDF, hey&R). Hence our set of ~ expressed in terms of the non-unit scalar invariants of the
thermodynamical variables is= [M, C, S, n]. droplet shape tensoe, = (I3, 123). Here we take the first
The droplet shape tensa$, has a direct connection to invariant of the droplet configuration tenser= If‘, to ex-
the droplet morphology since the eigenvaluesSddre the press the asphericity of the droplet. Consequently, we have
squared semiaxes of the ellipsoidal droplets and the deter-« = 3 at equilibrium and — oo as the micro-droplets
minant is their volumg3]. Therefore, we chose the droplet are stretched into long fibres or compressed into thin sheets.
shape tensor to describe the droplet morphology instead ofMore elaborate expressions for the asphericity parameter in
an anisotropy tensor of the Doi-Ohta typ&5]. Very re- terms of the first and the second invariants of the droplet
cently, Almusallam et al[6] considered the anisotropy ten- shape tensor can be introduced if necessary.
sor approach in the framework of the Tomotika Theorytode-  The subscript “m” in the Hamiltonian denotes that the
scribe droplet break-up and coalescence in polymer blends.description of the polymer blend is purely mechanical; i.e.,
With the thermodynamic variables introduced above, we we will not consider the transfer of mechanical energy into
make now a constitutive assumption for the Hamiltonian internal degrees of freedom. Instead, we study an isother-
functional, which represents the total energy of the polymer mal and incompressible system. Note tkat (2)duly sat-
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isfies the consistency requirement that, at equilibrium in ab- tative number density of micro-droplets with shape ter§or
sence of any stress and when the droplet shape is sphericak: hencex = [M, C, S, n]. Since the dispersed phase is as-
Sequil = 6, the Hamiltonian is minimized fot = ng, which sumed to be incompressible, we impose the microstructural
can be considered in general as a function of the viscosity constraint, de§ = 1, to account for volume preservation of
ratio and the temperature. the deforming ellipsoidal microdroplets.

In the next section, a set of dynamical time evolution  For single droplets with diameters larger than microns
equations for the variables = [M, C, S, n] will be con- (40-500um), the approximation of ellipsoidal droplet shape
structed in order to describe the dynamical behavior of the has been investigated experimentally by Guido and Villone
polymer blend. To do this, we adopt an appropriate frame- [8] and by Hu and Lipg9] in simple shear flow and in
work of non-equilibrium thermodynamics. planar hyperbolic flow, respectively. Implicitly, we assume

the validity of the ellipsoidal droplet and constant-volume
assumptions on smaller length scales than those examined
3. Derivation of continuum-level evolution equations experimentally.
To obtain a set of continuum equations usig. (3)

In this section, we wish to present the main steps in the one has to derive the Poisson bracket and to postulate a
construction of the macroscopic flow equations for the set dissipation bracket, as well as the generator of the dynamics,
of variablesx = [M, C, S, n]. A detailed presentation of the  Eq. (2) The Poisson bracket needs to be expressed in terms
thermodynamic modeling of complex materials in terms of of M, C, S andn, and is given as
internal variables is explained in R€T]. In the Hamiltonian

SF 8Hm _ 8Hm SF 3 SF 8Hm 8Hm SF
(FFHn)=— | | —Vs | —2M, | - =2V, M, || a3 — Vy [ =2Cop ) — —2V, —Caﬂ
oM, Mg 8M (SMﬁ SCaﬁ M, 8Cqp
SH, SF SF SH, SH SF oF 3H
xd3x—/CW v, -~ V) (= d3x—/cyﬁ v, ’“)
8Cap oMg 8Cqp SMg 8Cap oM, 3Caﬂ
[ SF SH, 8Hm S8F SH, SF OF  (3H
xd3x—/ —— "V, (Sup) — oV (Sap) d3x—/SyO, v, L
| 5Sup SM,, 8Sap SM,, 8Sep 7 \ Mg 530,,3 SMpg
SH SF SF SH, 2 SH SF SF SH,
xd3x—/syﬂ v, ——V, = d3x+—/Saﬂ v, N el
8Sap T \6My)  8Sep T \ M, 3 8Sus T \SM, ) 8Sup

[8F 8H, 8H, oF
xd3x — / —V My) - =1 Vg n)| d3x. 4)
| on Mg én Mg
— : This bracket shares the properties of a Poisson bracket since
framework of non-equilibrium thermodynamics, the dynam- it is pjlinear, it is antisymmetric, and it satisfies the Jacobi

ical evolution equations for the polymer blend are derived jgentity. The first integral represents the Poisson bracket
from the master equation for the structureless, incompressible, and isothermal fluid.
dr 3 The second, third, and fourth integrals represent the Poisson
dr = {F. Hm} + [F. Hml, ) bracket for a contravariant, unconstrained, second-rank ten-
. : sorial variableC. The last integral is the Poisson bracket for

y;riee[glgs; Z[xljIeSn2?e§rtlr)1letzraHr;rrf1Lill?grt1lizrr]1aclJrotfhi S(ee;g];alerdof the scalar variable;. These brackets were derived following
the d narr;icsr?- .} and . -] denote the Poisson a?nd dissina- standard reduction procedures from Hamilton’s principle of
tion byrackets r’es ectiv;al and gdr is the time derivativep least action in Ref410-14,7] The remaining four integrals

S, [eSpe Y o ' represent the Poisson bracket for a constrained, contravari-

The physical variables;, for the description of the blend . . .
. : ant, second-rank tensorial variabk, with detS = 1, and

are the momentum densityy = pv, an unconstrained

contravariant second-rank tensdf, describing the mi- it was derived in Ref|15] by adopting a suitable mapping

) : . transformation.
crostructure of the continuous phase (i.e., the conformation o . .
. i . For the dissipation bracket, we introduce the expression
of the polymer molecules in the matrix), a constrained

oF §H, 0F §H, _1 0F &H, O0F §H,
[F, Hn] = _/Agﬁye m 3 /Agﬁyé m 3 / S Spn aﬂl ofm 43, /An ofm 43,
3Cqp 8C e 3Sup 8Sye 3 AP (SSye sn on

SF 6Hpm SHp 6F \ 4 / SF 8Hp . .y 8Hp OF .
— | a Bt = [ Awpye (2 SmS,,S 2SS t) B, (5
/ ofre <acaﬁ 55 | 5Cap 55V6> X3 ) A\ 500 55 T 5Cap 35, 7" x G

contravariant second-rank tens§ydescribing a representa-  with the four phenomenological matrice€, AS, A", and
tive ellipsoidal droplet shape of the DDF, and the represen- A. The above dissipation bracket represents a generaliza-
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tion of the dissipation bracket for the Two Coupled Maxwell the extra stress tensor have been denoted with respec-
Modes Model in Refs[7,16] to a system that is described tively. Pressure and velocity are thus viewed as averaged
in terms of an unconstrained conformation teng€jra con- guantities at each location in space-time coordinates; i.e.,
strained representative droplet tensrwith detS = 1, and they are coarse-grained averages of the matrix fluid parti-
a variable representative number density of micro-droplets, cles and droplets contained in the fluid particle at coordi-
n. nates(x, r). They arise naturally through the mathematical
The first integral in the above dissipation bracket is the structure of the Poisson bracket. The pressure obeys a Pois-
relaxation of the viscoelastic matrix. The second and the son equation with appropriate boundary conditions, and the
third integrals account for the relaxation of the droplet in- extra stress tensor is obtained as
clusions under the auspices of the constrainsdetl, and SHm 8Hm 2 _ 8Hm
they were derived in Ref15]. The fourth integral with the ~ %f = 2CWE + stm N §SV€F
phenomenological matrixt” is the relaxation of the repre- . 7 ) 7 e . .
sentative number density of micro-droplets in the fluid. The EQ- (6b)is the conformation tensor equation describing the
last two integrals, involving the phenomenological matrix average deformation and orientation of polymer molecules
A, describe the coupling of the viscoelastic matrix fluid with 11 the matrix. The first three terms on the righthand-side

the droplet interface. They were derived with the procedure Of Ed. (6b)represent the upper-convected derivative of an
developed in Ref[15]. In the above dissipation bracket, we Unconstrained, second-rank contravariant tensorial variable,

neglect viscous dissipation of the matrix fluid since it ap- and they arise from the mathematical structure of the Pois-

pears implicitly in the Maxwell viscosityGic, and droplet ~ SON bracketEq. (4) The remaining three terms on the
diffusivity. The latter phenomenon can be included into the ighthand-side ofEq. (6b) are of dissipative nature. The
dissipation bracket to obtain more sophisticated dynamic third term captures the relaxational dynamics of the matrix
equations for the system if so desired. moIepuIe; and the last two terms k. §6b)account for a

An irreversible coupling of the number density of droplets possmle influence 'of droplet Qeformatlon on the conforma-
with the droplet shape tensd, is not considered ifq. (5)  tion tensor dynamicsEq. (6¢)is the droplet shape tensor
because it gives an antisymmetric contribution to the dissi- €guation describing the average shape and orientation of rep-
pation bracket, which does not contribute to the rate of me- resentative micro-droplets in the blend. The first four terms
chanical energy dissipation. We wish to consider only contri- ©n the righthand-side oq. (6c) represent a generalized
butions to the dissipation bracket that yield a non-vanishing UPPer-convected derivative for a second-rank, contravariant
rate of mechanical energy dissipation. (This is a completely €nsorial variable with the constraint det= 1, obtained
arbitrary consideration, but we believe that it is better for a from the Poisson bracket. The last four termsHa. (6¢)
preliminary work to keep the final set of evolution equations 2risé from the dissipation bracket, and account for the re-
as simple as possible.) The rate of mechanical energy dissilaxation of micro-droplets (fifth and sixth terms) and the in-

801/5' (7)

pation associated with the above dissipation bradiet(5) fluence of the conformation tensor dynamics on the droplet
will be discussed below. dynamics (the last two terms). With the procedure devel-
The Poisson and dissipation brackets yield the following ©P€d by Edwards et a[15], it can be shown foEq. (6c)
general set of dynamical evolution equations: that des is a conserved quantity independent of the mathe-
o matical form of the phenomenological matric4S, AS, A,
'08_: = —pvgVeuy — Vo p + Vgoug, (6a) and the HamiltonianHw[M, C, S, n].

In order to obtain a specific set of time evolution equa-
tions that is generated by an appropriate system Hamiltonian

aC, S H, . g
a;"ﬂ =-v,V,Cop + CqyVyvg + Cp,V, vy — Aocl,sye(sc_m (e.0.,Eq. (2_)), we ha_ve toCsp%mfy expressions for the _phe-
e nomenological matriced™, A>, A", and A introduced in
B Aaﬂyg(SHm + }Aaﬂye SHm Spo S;gl’ (6b) the dissipation brackeEq. (5_) and appearing iq the above
8Sye 3 3Spv set of general system equatiofsjs. (6a)—(6d)This is done
in the following paragraphs.
0Sap 2 To describe the relaxation of the matrix fluid, we adopt the
= U VrSes = 3VyvySes £ Say Vyup + Spy Ve phenomenological matrix of the extended White—Metzner
s OHm 4 }AS g S—15Hm 4 §Hm (EWM) .Mpdel of Souvaliotis and Berigl7] (see, e.g., Ref.
apfye 88, | 3P B iy 5Se apye 35Cye [7]). This is
1 (SHm -1 1 kBT ~
+ éA,OvyervSye Sap; 6c)  AG,. = mT(trC/?,)—k (CaySpe + Caedpy + Cpydac
) SH. + Cpebday), (8)
N _ gy — anHm. (6d) S o , ,
ot én whereac is a characteristic relaxation time associated with

Eqg. (6a)is the momentum balance equation in a spatial de- the continuous phase and we have introduced the elastic
scription of macroscopic fluid flow, where the pressure and modulus of the continuous phaé&e In the above relaxation
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matrix, the effective relaxation time of the matrix phase, investigate the model equations fpr= —nq/nc as well as
A(C) = Ac(trC)¥, is allowed to depend on the first invariant p = —n* /1.
of the scaled conformation tens@t,= CK/(kgT), and on For the phenomenological matrix”, the following gen-
the EWM power-law indexk. For k = 0, we recover the  eral expression is introduced:
relaxation matrix of the Maxwell Model. In conjunction with
the C-terms in the Hamiltoniargq. (2) and withA = 0 and
k = 0, this expression gives the Upper-Convected Maxwell
Model (UCMM) for the matrix phase.

We adopt the following anisotropic expression for the
relaxation matrix of the interface:

non

A" =2 ,
fcknl“

(10)
wherel,, is a characteristic time scale of the break-up/coale-
scence process anfl is a general function of the phe-
nomenological parametep, and the scalar invariants of
the conformation tensor and the droplet shape tengos
fe(p, C, S). This quantity can be related to the probability
of the coalescence procg&d]. In the sample calculations,
we will take f; = 1 for simplicity; i.e., we neglect a direct
influence of the viscosity ratio on the break-up/coalescence
processes in the framework of the present study.
The phenomenological matriz is adopted in analogy to
the coupling matrix introduced in R€fl6,7,1}
where s is a characteristic time scale associated with the
elastic interface and?, 75 are the first and the second in-
variants ofS, respectively{1]. The first term in the square
brackets accounts for droplets that deform into oblates for
start-up of steady shearing flow, the second term accounts
for droplets that deform into prolates for start-up of steady whered is a phenomenological coupling parameter. fFor
shearing flow. The difference between oblate and prolate O this phenomenological matrix gives oblate droplet config-
droplet shapes is illustrated in subsequent figures, which will urations. Note that the coupling matrix is defined to vanish
be explained in more detail in the next section. The quantity for p = —1. The phenomenological coefficient, may be
p is a phenomenological parameter that controls whethertaken as a function of the scalar invariants of the structural
the droplet deformation is more oblate or prolate, and it de- variables, if so desired; however, here we want to work with
pends on the viscous and/or elastic properties of the two# being a constant real number, for simplicity.
phases. We mention that the prefactors that contain the viscos-
In what follows, we wish to consider two different pos- ity ratio in the phenomenological matriceEgs. (8), (9)
sibilities to relate the phenomenological coefficiept,to and (11) have been introduced ad hag = (1 + p)?p,
the material properties of the polymer blend, since the ¢p = p, &c = (1+ p)2. It may be necessary to adopt more
physical mechanisms that govern droplet deformation in appropriate functional dependencies if one wants to fit ex-
non-Newtonian liquids are not well known and the issue perimental data or to make predictions over an extended
is a topic of ongoing research, see e.g., REf8-20] If range or viscosity ratiog.
droplet deformation into oblate or prolate configurations Inorder to rationalize the thermodynamic admissibility of
is assumed to depend on the viscous properties of the twothe phenomenological matricesids. (8)(11), we consider
phases, therp should be taken as the negative viscosity the rate of mechanical energy dissipation generated by the
ratio of the blend components, i.e,,= —nq4/nc. (The fact Hamiltonian,(2):
that p has to be a negative quantity will be discussed below,
when we examine the rate of mechanical energy dissipation—m = [Hm, Hm] < 0.
due to droplet relaxatiordS—see also Ref{1].) If droplet d
deformation into oblate or prolate configurations is assumed This is a decreasing function of tinfig]. Eq. (12)is obtained
to depend on the viscoelastic properties of the interface, from Eq. (3) by exploiting the antisymmetry of the Poisson
instead of the Newtonian viscosity of the droplet phase, bracket and the fact that mechanical energy has to be dissi-

1+ p)?p
2

AS, = 1
afye — sl

(Say8ﬂe + Saeaﬂy
3p

+88y0uc + Speday) + S5 (BaySpe + Baedpy) |
112

9)

11+ p)2

Agre = = ———tt —
“re = 3 JGThohs
+ CﬁySae + CﬁeSay)a

(trC/3)™*?(Cay Spe + CueSpy
(11)

(12)

one may introduce an interfacial viscosity, = I'\s, and
definep = —n*/nc. Then, ifne = G is identified as a
Maxwellian viscosity of the continuous phage becomes

a dependent quantity that combines the viscoelastic prop-

erties of the matrix and the interface, = —I'As/GAc.
Otherwise, one may introduce an additional viscous dissi-
pation matrix into the brackeEqg. (5) to take into account
explicitly the Newtonian flow behavior of the matrix. For

pated into internal degrees of freedom in the long time limit.
Inequality (12) is the appropriate condition to give a physi-
cally meaningful description of the system, and it can lead to
counterintuitive results for the range of thermodynamically
admissible phenomenological coefficients adopted herein;
e.g., anegative viscosity ratio appearingeip (9) [1] Math-
ematical criteria that are imposed directly onto the dissipa-

tive phenomenological coefficients, e.g., on the relaxation

the sample calculations in the subsequent paragraphs, weimes, Ac and As, on the coupling parametef, or on the
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dissipative coefficientp, do not necessarily satisfy Inequal-  pers). Due toIS > 3 and 12 > 3 for non-vanishing flow,
ity (12) and may therefore lead to aphysical results. This the expressions in parentheses in the second and the third
will become evident in the following paragraph, where we integrals are negative. Consequently, the phenomenological
evaluateEq. (12)for the dissipation bracket diq. (5) friction coefficient, p, has to be negatives < 0, to give a

For the dissipation bracket &q. (5) Inequality (12) is
equivalent to

[Hm, Hm] = [Hm, Hm]c + [Hm, Hm]s + [Hm, Hml, + [Hm, Hm]cs = —i / (trC¢/3)~* [(1 - $)°G
x (kaz + k;’( <, - ) 1261 —)In (nﬁ) 8 <1 SkKT ) + ¢2F—2 <In %)2
kKT[](.:Iflli| P (1+12\28p¢>2 [( ) < 11812) + ;ka :O In (no) 15 (I;I; - 1)}
xd3x_pil“/[nio_3kl; ]{ <1T)2_1> 2|n(”>k§TjZ(1f12 9)}
x dx — ‘ZiF/fc <:—01§'1§ ;kK S+ ; (kKT) (Iflf)z ) P — % kaT
/(trC/3) kf2 [(1 #)G — -¢F In ( 0) 11] [ p~ (lfca,gsaﬁ — CaySpySup — 215125)

1K 1
—~ " In 1S CopSus — —I1CT2 ) | dBx < 0, 13
o7 " (1) £ (Corsn = 36| < )

where 1€, = c;1 = IS/1S. The first integral is the me-
chanical energy dissipation of a Maxwell fluidZf,, Hmn]c,

the second and third integrals are the mechanical energy dis-
sipation due to droplet relaxation including oblate and pro-
late relaxation, Hm, Hmls, the fourth integral is the rate of
mechanical energy dissipation due to the change of the rep-
resentative droplet number densitslf, Hm],, and the fifth
integral is the rate of mechanical energy dissipation due to
the irreversible coupling of the matrix fluid and the droplet
interface, Hm, Hmlcs. The above expression for the rate of
mechanical energy dissipation is negative, if each of the five
integrals are negative.

In the following, we want to evaluate generically the first
three integrals in In Inequalit{l13) for start-up of a homo-
geneous, weak flow; i.e., we consider a vanishing coupling
parameterd = 0, and the limit of infinite break-up time,,,
to find the correct range of thermodynamically admissible
phenomenological coefficients Note that all terms propor-
tional to In(n/ng) in the first three integrals vanish in the
limit & = 0, A,, — oo. Numerical calculations corroborate
that the scalar invariants of the structural variables increase
upon start-up of steady flow (except the third invariant of
the droplet shape tensor, et 1). The invariant[‘f1 as-
sumes values above its equilibrium vaItliE1 = 3K/(kgD);
however, the variations in]f1 are small compared to the
variations ofllc. Therefore, the first integral in In Inequal-

, ) . T or
ity (13), which corresponds to the mechanical dissipation

rate of the UCMM, anyway, is negative since the expres- 3)‘
sion in parentheses is positive (since the relaxation times, (14 p)2¢0

; - ” -z —(tré/s)—k/z{i
Ac, As, and the elastic moduliG, I, are positive num- 2 G  Jhche no

negative dissipation rate due to droplet relaxation. For small
values of the coupling paramet@i| <« 1, this quantity has

to be positive to yield a negative dissipation of mechanical
energy due to the coupling between the two microstructural
variables. Our analysis shows that the constrain¢(Sjet

1 and the functional form of the thermodynamic potential,
Es = F¢I§’/2, produce this counterintuitive example of
a phenomenological dissipative coefficient being negative.
Note that the aspect of a negative friction coefficient in the
droplet configuration equation is not worked out rigorously
by Grmela et al[22] and Yu et al[23]. With the general set

of dynamical time evolution equation&a)—(6d) and the
constitutive assumptions for the dissipative matridegs.
(8)11), we can now write down the set of dynamical equa-
tions generated by the Hamiltoniagg. (2)

Evaluating the \olterra derivatives of the Hamilto-
nian (2) and inserting the phenomenological matrices of
Egs. (8H11) into Egs. (6a)—(6d)we obtain the following
time evolution equations for the structural variables and the
representative droplet number density:

9Cup

= —VyVyCoup + CayVyvp + CpyVyva

1 _C¢ (trC/3)*Cop + (1 — ¢)"B—T(tré/3)*’<aa,g

trC/3)7* In( )Ifcaﬁ
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s 4 o the invariants of the two structural variables. Though the
X [(115;/6 — Sye) (CaySpe + CpySae) — 302 Caﬁ] time scale for coalescence and break-up are identical, the
K n\ o time evolution equations give different rates of coalescence
- n <—) I7 and break-up far from thermodynamic equilibrium.
3kgT no

The elastic extra stress tensor of the blend is the linear
< <CayS/3y + Cpy Sy — Ellscaﬂ)} ’ (14a) cqmbination of the extra stress ter_130r of the two components.

With Eg. (2) the general expression Bfy. (7)for the extra
stress tensor is equivalent to

N 2
=—v,V, 848 — =V, 0,848 + Soy V + S,V K
ot Oy Yy ap T g ¥y Uy ap T Say Yy UB T Spy Yy b Oup = Oy + Oy = (1 — PG Cap — (1= $)Goap
(L+p?ppn (1 g ®
= | 3105 — SaySyp n (s 2 s ¢I'K
As  no\3 + &I — \ I7Sup = SaySyp — 31280p | —
c 3 no 3 3kgT
pop| n K n\ I B 1
— == In{— ) == | Sep— n C S C/S
+ )\'S |:n0 3kBT (no) If of IZS Xln (n_o) |:[1 Saﬁ+llca/3_ 511 115aﬁ} . (15)
K 1+p2% - . : :
TR (Tp/\)(trC/S) k/2 For the dilute regimeg — 0), we have mainly a stress con-
B CAS tribution due to the matrix phase and the droplet configura-
«| - e G oI n( ™) s tion is governed by the coupling term Eq. (14b) For the
r 3VG no) 1 concentrated regimes(— 1), the extra stress is due to the
5 droplet phase and the non-linear coupling terms are the only
X (CayS,sy + CpySay — _I](_:Saﬁ> , (14b) contributions in the conformation tensor evolution equation,
3 Eq. (14a)
3 3 KISI?
o —Vu(Nuy) — 9Jch; n—+ LaSeh no. (14c)
ot An 3k Thn 4. Sample calculations
Eqg. (14a)is the conformation tensor equation. Fbe= 0, . )
k = 0, andn = ng, we recover the UCMM. Fop = 0 The set of continuum equationgg. (6a), (14a)—(14c¢)

and p # —1, we have a non-trivial coupling of the droplet derived in the previous section, has been solved for various

phase to the matrix phase. This means that the droplet defor-COmbinations of physical parameter values to determine its
mation induces changes in the average conformation of thechara_lcterlsnc features _for various homogeneous flows, char-
molecules in the matrix phasgq. (14b)is the droplet shape ~ acterized by the velocity gradient tens8ty. These equa-
tensor equation describing the dynamics of a representativelions have been rendered dimensionless using quantises
drop of the droplet distribution. The first four terms on the !/~AcAstn, C = K/kgTC, S = S, ii = n/no, andé =
righthand-side oEq. (14b)are the reversible contributions “./(*/ﬁ)- In all that follows, we omit the tilde over dimen-

to the droplet dynamics, the fifth term Eg. (14b)accounts 5|0_nless guantities. Note that the_re is a on_e-to-one _relatlon-
for oblate droplets, and the sixth term accounts for prolate Ship between the parametess,y, in the Weibull distribu-
droplets. The last term captures two additional influences on tion function and the thermodynamic variabless,n. The

the droplet dynamics: (i) the local polymer conformation in Parametey is obtained by solving the non-linear equation
the matrix phase and (ii) the variable representative number” = f(R), whereR = 1/3tr§ is the location of the maxi-
density of dropletsEq. (14c)is the number density time evo- Mum of the DDF and, § are the solutions of the continuum
lution equation with a reversible and two irreversible contri- €quations for a given velocity field. Then also the second
butions. The second term on the righthand-sidEef(14c) parameter of the Weibull distribution function is fixed since
has a negative sign and it accounts for a decrease of the repreR? = (¢ — 1)/vq.

sentative number density of micro-droplets, i.e., droplet coa-

lescence. This term is proportional to the number density of 4.1. PIB/PDMS blend with low viscodlastic contrast

dropletsy, cf. Ref.[21]. The last term on the righthand-side

of Eqg. (14c)has a positive sign, and it accounts for an in-  In this subsection, we show solutions of the continuum
crease of the representative number density of droplets, i.e. equations for a constant DDF and for data of a polyisobutene
break-up. Note that we have a single time scale for break-up(PIB, nqy = 86 Pa s)/polydimethylsiloxane (PDM$; =

and coalescence,,. Furthermore, note that an equilibrium 195 PasWic = 10.4Pa$) blend [24]. Interfacial tension

of coalescence and break-up rates is predicteBdpy(14c) between the blend components/i$ = 0.0023N/m [24].

at any steady state. The last two terms on the righthand-sidewith the UCMM and the relationship for the interfacial elas-
of Eq. (14c) represent effective coalescence and break-uptic modulus, we estimaté ~ 7300 Pa and™ = 230 Pa for
rates, which involve the dispersed phase concentration andan average droplet radius of jun.
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Fig. 1 shows calculations for the pure matrix fluid with
G = 7300Pa and = O (solid lines) and two PIB/PDMS
blends withG/I' = 30,¢ = 0.1 (dashed lines) an@/I" =
30, ¢ = 0.3 (dotted lines). The EWM power-law index has
been taken ag = —2 to recover the shear thinning behav-
ior for the matrix fluid and the phenomenological coupling
coefficient has been chosen @s- 0.01. The phenomeno-
logical parameterp, is not taken as the viscosity ratio of the
blend components, but it is related to the interfacial elastic-
ity in Figs. 1 and 2p = —n*/nc. The ratio of relaxation
timesic/As is adjusted to fit experimental data.

Fig. la—dshow the steady-state viscometric functions of
the PIB/PDMS blend, which are normalized with respect
to their steady-state valueBig. lashows the steady flow
curves ofys(y) for the pure PDMS matrix fluid (solid line)
and for the PIB/PDMS blends with = 0.1 (dashed line)
and ¢ = 0.3 (dotted line). Experimental data points were
taken from Ref[24]. We obtain a satisfactory fit for the
flow curve of the matrix fluid (circles) and for the= 0.1
blend (squares). For volume fractions as highpas 0.3,
the power-law behavior is not recovered with our set of
parameters. Since the model is strictly applicable only to
low concentration blends, this observation is to be expected.

G/T=30, AJA=0.03:0.012:0.04,0=0.01, k=2
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Fig. 1. Model predictions of the continuum equations for constant droplet
distributionn = 1, as a function of shear-rate for three different dispersed
phase concentrationgy = 0 (solid lines), 01 (dashed lines), and.®
(dotted lines). Other model parameters @re- 7300,k = —2 (for ¢ = 0);

G/I" =30,0 =0.01, k = =2 (for ¢ # 0); p = —I'rs/Gxrc. The ratio

of relaxation times has been taken as a fitting parametefis = 0.03

(¢ =0), 0.012 @ = 0.1), 0.04 (p = 0.3). The viscometric functions have
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Fig. 1bdisplays the steady-state first normal stress coef-
ficient as a function of shear-rate. Also here we observe a
satisfactory fit for thep = 0.1 blend, whereas the onset of
the shear thinning behavior is not recovered forghe 0.3
blend.Fig. 1c—hshow further solutions of the system equa-
tions for which no experimental data are available. Note that
for the pure matrix fluid, the EWM model predicis = 0
and no droplet morphology is present. Therefore, only the
predictions of the two blends are reported in the remaining
graphs ofFig. 1 Fig. 1cdisplays the shear thinning behavior
of the second normal stress coefficied, for the¢ = 0.1
and the (3 blend.Fig. 1dshows the ratio of the two normal
stress coefficients. F@r = 0.1, we recoven,/¥; ~ —0.8
being considerably larger than for polymer melts, whereas
for ¢ = 0.3 a smaller value o#,/¥; ~ —0.5 is recovered
from the system equations. This value is close to the stress
tensor predictions of the Maffettone-Minale (MM) Model,
v, /w1 = —0.5, cf. Ref.[23], which has also been included
in Fig. 1d In Fig. le—hwe display the morphological charac-
teristics of the polymer blend, which are represented by the
average magnitude of the three semiaxes of the ellipsoidal
droplets and the average orientation of the droplets with re-
spect to the flow direction. The semiaxes of the droplets are
the square roots of the eigenvalues of the droplet configura-
tion tensorS [3]. The droplet semiaxes in the flow direction,
in the direction of the shear gradient, and in the direction

G/T=30, AJA=0.012, $=0.1, 8=0.01, k=2
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Fig. 2. The same d8ig. 1for start-up of steady shearing flow as a function
of shear strain for thep = 0.1 blend and three different shear rates,
7 =0.27s 1 (solid lines), 138s™! (dashed lines), and.27s! (dotted

been normalized with respect to their zero shear-rate values. Symbols arelines) corresponding to the filled symbolskig. 1L The shear viscosities

experimental data from Ref24].

in (b) are normalized with respect to the zero shear-rate viscosity.
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of the vorticity axis are denoted with, B, W, respectively. shoots in the two minor droplet axeBandW. For all shear
For steady shear flow, the major droplet axis,increases  rates shown irFig. 2, the droplet shape evolves towards a
and the minor droplet axig§, decreases with respect to the oblate, sheet-like configuration.
equilibrium droplet radiusKig. 1e and¥. However, the vor- Levitt et al.[25] report transient morphological measure-
ticity axis, W, can be greater than, smaller than, or equal ments of a single polypropylene droplet in a viscoelastic
to unity upon start-up of flow and the droplets are thus ei- matrix with G/Gq4 ~ 0.3, whereGjy is the elastic modulus
ther oblate or prolate. Ifrig. 1g we have oblate droplets  of the dispersed phase. Immediately after start-up of steady
(W > 1) for the¢ = 0.1 blend and prolate droplet®$/{< 1) shear flow, an increase of the vorticity axis to 40% of its
for the¢ = 0.3 blend. The orientation anglg, is the angle equilibrium value is observed. For higher shear strains, the
between the eigenvector corresponding to the largest eigen-vorticity axis decreases and a prolate droplet is recovered.
value of theS-tensor and the flow direction; it is defined as In the above sample calculations, we see that the tran-
x = 1/2 arctan [&12/(S11 — S22)]. This quantity decreases sient first normal stress difference is approximately one or-
for increasing shear rat€jg. 1h der of magnitude smaller than the shear stress & Ni)
Very recently, Guido et al[19] studied the steady-state for the shear rate regime investigatedrig. 2 The changes
deformation of single Newtonian droplets in a viscoelas- that the externally imposed flow field induces in the droplet
tic matrix. For the continuous and the dispersed phase amorphology are as large as 70% for the major droplet axis,
non-Newtonian polyisobutylene (PIB) and silicon oil were L. For the minor droplet axisB, and for the vorticity axis,

used, respectively. For viscosity ratips= —1 and—0.1, W, we recover variations of 50 and 15%, respectively, for
steady-state prolate droplets have been observed. a shear-rate as high as= 2.77s 1, and a steady state is
Fig. 2displays transient solutions of the continuum equa- recovered from the model. This may be due to the viscoelas-
tions for start-up of steady shearing flow for the= 0.1 tic similarity between the matrix and the interface, which is
blend assuming again a constant DDF. Sample calculationsquantified in terms o&;/I" = 30 andic/As = 0.012. With
were carried out for three different shear ragess 0.27s1 these values, we calculata;/Wiq ~ 4 x 1073 for the ratio

(solid lines), 138s™1 (dashed lines), and.27s ! (dotted of zero shear-rate first normal stress coefficients.
lines), which correspond to the abscissas of the filled squares In what follows, we wish to solve the continuum equations

in Fig. 1la Material parameters are the same aBio 1 for for a polymer blend with a high viscoelastic contrast between
the 10wt% PIB/PDMS blend, i.eG/I" = 30,60 = 0.01, the matrix phase and the interface and to investigate whether
k = —2, andic/As = 0.012. Fig. 2a—ddisplay the tran- a large viscoelastic contrast of the blend components allows

sient viscometric behavior of the system equations showing for highly deformed microstructural constituents such as
a typical non-linear viscoelastic response as encountered offibres or sheets. This is of technological importance since
ten in synthetic polymer rheology. The transient shear stress,in processing one is interested in the creation of a strongly
o012, and the shear viscositys = o12/y, (Fig. 2a and b deformed droplet morphology with a high amount of
show a rapid approach to their steady-state values, whichinterface.

are attained a ~ 5 shear strain units. The shear viscos-

ity in Fig. 2bhas been normalized with respect to the zero 4.2. HPC/PDMS600 blend with high viscoelastic contrast
shear-rate value. The first normal stress differendégn2c

is positive and shows a monotonic increase for the low- In Figs. 3 and 4we present sample calculations for a
est shear-ratey( = 0.27s1, solid line), whereas a slight polymer blend with a strong viscoelastic contrast between

overshoot is seen for the higher shear rajes=(1.38s1, the two phases. Also for the present calculations, we as-
2.77s1, broken lines). The steady-state valueNof is at- sume a constant DDF, i.ex, = 1. However, we take the
tained at strains of ~ 10, being twice as high as the strains phenomenological coefficieny, as an independent quan-
that are necessary to attain a steady-state shear stress. Thiy, i.e., p = —ng/nc corresponds to the viscosity ratio of

first normal stress difference is approximately one order of the blend components. Polymer blends with a strong vis-
magnitude smaller than the shear stress. The second normatoelastic contrast are of technological importance because
stress difference ifrig. 2dis negative, and of the same or- it is possible to produce highly deformed inclusions (e.g.,

der of magnitude as the first normal stress difference. Both fibres or sheets), by means of modest mechanical deforma-

normal stress differencedj; and N2, show a similar qual-  tion of the blend. Kernick and Wagn§26], e.g., examined
itative behavior as a function of strain rate in the regime of a polymer blend of 5wt.% hydroxypropyl cellulose (HPC,
shear rates shown irig. 2 ng ~ 300 Pas) in a PDMSyg = 600Pa s) matrix by means

Fig. 2e—hdisplay the transient morphological properties of rheology and small angle neutron scattering. In this sys-
of the ¢ = 0.1 blend for start-up of steady shearing flow. tem, the large viscoelastic contrast between the matrix and
For the low shear-ratg, = 0.27 s™1 (solid line), we recover  the dispersed liquid-crystalline polymer phase is due to the
a monotonic approach of the droplet axes and the orienta-phenomenon that HPC displays a phase transiton from the
tion angle towards their steady-state values. For the highesttumbling to the flow aligning regime that correlates with a
shear-ratey = 2.77s ! (dotted line), a pronounced over- sign change of the first normal stress difference causing a
shoot is observed ia, which goes along with slight under-  Wyc/W14 > 1.
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G/M=10", A JA=10", p=0.5, $=0.05, 6=0.01, k=0.17 G/T=10°, A JA=10, p=0.5, $=0.05, 6=0.01, k=0.17

400 ——1————— —T— — 1.6 1.6 — , — 3
300 [ (2)v=0.01 14 [ (a)y=0.01 L A L (b)y=0.02
[ - T 2
200 12 b ]
r I w
100 1 ) ] i
0 P 0.8 B - L
0 1 06 L1 1 P R B A
800 T 0 100 200 300 0 200 400 600
600 L®7=002 6 —— — 10
- L (c)y=0.05 (d)y=0.2
400 - L 1
L 4
200 i (N I
0 R B 2
0 1 u 1
4000 ——T—— o : . s,
F (c)y=0.05
3000 97 0 400 800 12000 800 1600 2400
2000 L shear stress, G,
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0 1 2 3 4 0 1 3 4 rates: (a)y = 0.01, (b) ¥ = 0.02, (c) y = 0.05, (d) y = 0.2.
10000
8000
6000 the shear stressyy, and the first normal stress difference,
4000 N1, to their respective steady-state values. Note that in the
2000 low shear-rate regime, the shear stress is always bigger than
0

the first normal stress difference, which corresponds to a
system with a small viscoelastic contrast as studied, e.g.,
in Figs. 1 and 2In this shear-rate regime, only relatively
Fig. 3. The transient shear stresgp, and first normal stress difference, ~ small droplet deformations are observed. In particular, the
N1 (left column) and the transient droplet axds, B, W (right column) vorticity axis of the doplet increases slightly and reaches
for four_different shear ratey = 0.01 (first row), 002 (second row), a steady-state value that is approximately 4% above its
0.05 (third row), and @ (fourth row). The blend components have a N . . .
strong viscoelastic contrast witi/I" = 10° and Ac/is = 10°. The equilibrium value in the,unqeformed State'l_:Hg' 3b(y =
phenomenological coefficient = —0.5 is taken as the viscosity ratio of ~ 0-02), the shear stress is bigger than the first normal stress
the blend components, i.e., an independent model parameter. Other modedifference only in the small shear strain regime< 1.5
parameters arg¢ = 0.05, ¢ = 0.01, andk = —0.17. The dashed lines in (y* denotes the shear strain wherg = N1 which we can
() and (d) are fok = —1.3. identify from Fig. 3b—d. Fory > y*, the first normal stress
difference becomes greater than the shear stress which may
be due to the high values &f/I" andic/\s. The crossover

Fig. 3 shows calculations for a polymer blend with dis- of the two stresses correlates with a strong increase of the
persed phase concentratign= 0.05, and viscosity ratio  vorticity axis of the dropletW, for shear straing ~ y*.
p = —0.5. In the present model, the droplet phase is as- At the steady state, the vorticity axi#/, is approximately
sumed to be Newtonian and hence anelastic. Only the first18% above its equilibrium value, whereas foe= 0.01 an
normal stress difference of the matrix and the interface canincrease of approximately 4% is observed at the steady state
be varied in the model to tune the viscoelastic difference (Fig. 33. For even higher shear ratgs,= 0.05 and 02,
between the two phases. In order to mimic the strong vis- the crossover of the first normal stress differenge, and
coelastic contrast between the two phases, we have takernthe shear stressyio, shifts towards smaller shear strains
G/I' = 1P, andic/rs = 10% i.e., the ratio of the zero  (y* ~ 1), and the first normal stress difference becomes
shear-rate first normal stress coefficient of the matrix and the considerably larger than the shear streSig.(3c and 9l
interface in the steady statedg¢/¥1q = 10*2. The EWM For these shear rates, two different droplet deformation
power-law index for the continuous phase has been choserregimes can be identified. For> y*, we observe only a
ask = —0.13, reproducing the shear thinning behavior of slight droplet widening in the vorticity direction, whereas
the PDMS matrix (cfFig. 7in Ref.[26]). the droplet widening becomes very strong for> y*. In

Fig. 3 shows transient rheological and morphological the latter strain-rate regime, the strong droplet widening
properties of the model blend for start-up of steady shearing correlates with the droplet extension in the flow direction
flow for four different shear rates: = 0.01 (a),y = 0.02 and the droplets deform into thin disks with~ W ~ 10
(b), y = 0.05 (c), andy = 0.2 (d). For the lowest shear-rate andB ~ 0. For smaller EWM power-law indices, the steady
portrayed inFig. 3a we observe a monotonic increase of state is recovered at smaller shear strains. This is illustrated

shear strain, Y
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in Fig. 3c and dwhere predictions fok = —1.3 (dashed G/T=4, M AA=1, 6=0.1, 0=0.001, k=0
lines) are included. T

Fig. 4 shows the transient droplet semiaxes as functions ™
of the transient shear stress for four different shear rates.

We observe that the time evolution behavior of the droplet
semiaxes correlates with the shear stress. For the two highest
shear rates iffrig. 4c—d the major droplet axisL, and the

vorticity axis, W, start to increase linearly far;2 2> 800 -V,
and=>1200, approximately.

In the following subsection, we want to present sample
calculations for the full set of continuum equations that have
been derived in the previous section, taking into account a
variable DDF, which is allowed to interact mutually with L
the externally imposed flow field, the viscoelasticity of the
matrix phase, and the droplet deformation as dictated by the
model equations.

3.5 [—rrrem—rrrrm— rrrr—rrrr—rr 80

RT3

4.3. Blends with variable and constant droplet W
distribution

In what follows, we present sample calculations for a 05
blend with a variable DDF, and we compare our model pre-
dictions with the predictions of a reduced model that as-
sumes a constant DDF, i.ei,= 1. We do so in order to  Fig. 5. Model predictions of the continuum equations for a variable DDF
investigate the effect of a non-uniform DDF on the morpho- as functions of shear-rate for two different viscosity ratips= —0.25
Iogical properties and the rheological response of the de- (solid Iines) anq{a =-125 (dash_ed lines). For the ratio of elastic moduli,
forming blend. Again, the phenomenological coefficiqnt, Fhe relaxation times, th_e coupling galflmeter,_and the EWM [iower-law
. ! index, we choseG/I" = 4, Acis/A; = 1, 6 = 0.001, andk = O,
is taken as an independent model parameter for the presenfespeciively. Dispersed phase concentratios is 0.1. The thin dotted
set of sample calculations; i.2,= —nqg/nc corresponds to  lines are model preditions for a constant droplet distribution, e, 1.
the viscosity ratio of the blend components. Moreover, we
takek = O for the EWM power-law index; i.e., we neglect
the shear thinning behavior of the matrix fluid for the sam- variable and constant DDF are very similar for the present
ple calculations in this section. choice of model parameters.

Grizzuti and Bifulcd27] studied the effect of coalescence Fig. 5e—hshow the deformation induced microstructural
and break-up on the steady-state morphology of immiscible changes of the droplet morphology and the orientation of
polymer blends in shear flow. In their experimental studies, the micro-droplets with respect to the external flow field.
coalescence and break-up phenomena prevail over the effect¥he major droplet axisL, increases and the minor droplet
of droplet deformation. axis, B, decreases with increasing shear-rate. For the low

Fig. 5shows the rheometric and the morphological prop- viscosity ratio blendp = —0.25, we observe stronger vari-
erties as a function of shear-rate, for two model blends  ations in the major and in the minor droplet axes than for
with p = —0.25, G/I" = 4 (solid lines) andp = —1.25, the p = —1.25 blend. The steady-state behavior of the vor-
G/I' = 4 (dashed lines), solving the full set of model equa- ticity axis of the dropletW, is different for the two blends.
tions (6a) and (14a)—(14c)for steady shearing flow. The Whereas a droplet widening effed¥, > 1, is calculated for
dispersed phase concentrationpis= 0.1. The thin dotted  the low viscosity ratiop = —0.25, a droplet compression
lines in Fig. 5 are predictions for a constant droplet distri- effect, W < 1, is obtained for the high viscosity ratip,=
bution and analogous material parameters. We have taken—1.25. The orientation angle;, decreases as a function of
Acxs/kﬁ = 1 for the ratio of relaxation times of the blend, shear-rate. Frorig. 5e—hwe see that a variable DDF influ-
and a phenomenological coupling coefficiént 0.001. ences the steady-state morphological properties as obtained

Fig. 5a—dshow the non-linear rheometric properties as from the model equations, if we compare with the predic-
predicted from the system equations for steady shear flow.tion for a constant DDF. This is especially true in the high
All viscometric functions possess a Newtonian plateau for shear-rate regime; > 0.2. Note that for very high shear
low shear rates, a power-law regime for intermediate shearrates, the viscometric and the morphological properties of
rates, and another Newtonian plateau in the high shear-rateghe blend seem to approach constant plateau values. Finally,
regime €ig. 5a—¢. The ratio of the normal stress coeffi- it should be mentioned that the continuum equations predict
cients inFig. 5d is non-trivial and decreases with increas- steady-state solutions for a wide shear-rate regime, extend-
ing shear-rate. The viscometric properties of the blends with ing from a low shear-rate region with a lower Newtonian
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shear rate, y (a) average droplet radius, trS/3

Fig. 6. The same aBig. 5 for the properties of the steady DDFitrS/3): )
(a) position of the maximum, 873, (b) maximum of the distribution GT=4, AAJA,'=1,p=1.25, $=0.1,6=0.001, k=0
function, n, (c) volume fraction of residual droplets left and right from the 3 T T T T T
inflection pointsk.. (z, t—) and total volume fraction of residual droplets
(t4+ + 1-), (d) volume fraction of the droplets around the maximum of
the droplet distribution functiong.

plateau to high shear rates with an upper Newtonian plateau.
In Fig. 6, we examine the properties of the steady-state

DDF for p = —0.25 (solid lines) andp = —1.25 (dashed

lines) as functions of shear-rate. We use the same model

parameters as iRig. 5. Fig. 6ashows the average radius of

the representative micro-droplets. This quantity increases for

both viscosity ratios reported ifig. 6 as the shear-rats,

is increased. For shear rates as highr @5 0.8, the increase

in the average droplet radius becomes less pronounced and

seems to reach a plateau value {&fy. 5. The behavior of

the average droplet radius shownHiy. 6acorresponds to

a shift of the location of the maximum of the DDF towards Fig- 7. The DDF for steady shearing flow and two viscosity ratios

i D S it (@ p = —0.25, (b) p = —1.25, with the shear-rate as a parameter
I(’l(l:?h[:eirgVE;;ueS ok = irS/3 as the shear ratg, is increased (0 < y < 1.0). The dotted line is the trajectory of the maximum of the

. . . DDF in the tS/3—f/¢ plane, withy as a parameter, and the vertical
Fig. 6bshows the solution of the droplet number density dashed line marks the maximum of the equilibrium DDF foe= 0. The

equation,Eq. (14c) for steady shear flow. We note that the inset shows the equilibrium DDF (dashed line), which has been superim-

representa‘“ve number densrty Of m|Cro_dr0p|etS decreasegjosed onto the DDF for the highest shear-rate (SOlId Iine). Vertical dotted

for the p = —0.25 blend, whereas it increases for the= lines mark the position of the inflection points of the two DDHRs,.

—1.25 blend with increasing shear-rage, This means that

the steady-shear DDF is smeared out joe= —0.25 (cf.

Fig. 79, and it is compressed fgr = —1.25 (cf. Fig. 7). Ry =

Hence our model equations predict a shear-induced droplet

coalescence in the low viscosity regime, and a shear-induced . . . . —

droplet break-up in the higher viscosity ratio regime. are thg inflection points of the DDF with> 1. The first in-
In Fig. 6¢c and ¢dwe show several characteristic droplet tfegral in t_he aboveq. (16.) - represen}s the volume frac-

volume fractionsz_, t., o, which are calculated from the tion of micro-droplets with droplet radii smaller that.,

droplet distribution function, f/

(b) average droplet radius, trS/3

: (17)

DDE: whereas the last integral;. corresponds to the volume frac-

' R R tion of droplets with radii larger thar . The second inte-

1 /% 1 /% gral, o, is the number density of droplets with radii between
=Ty 0 FfR) dR, Ty /R_ f(R) dR, R_ and R4, and it is a measure of the width of the center

1 [o° part of the DDF, i.e., the volume fraction of droplets that
T=y AR dR, (16) are found around its maximum &t Consequentlyr_ + 7

R might be considered as the total volume fraction of small,
where f(R) is the DDF,Eq. (1) and residual droplets (e.g., daughter or satellite dropl&ig). 6¢
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shows that_ increases as a function of shear-rate, whereas G/T=4, Mg, =1, 6=0.1, 0=0.001, k=0
74 decreases with increasing shear-rate. This means that the 2 /, LML B — 3
left edge of the DDF is smeared out as the shear-rate isin- o, 15 i n,
creased, whereas the right edge is compressed and becomes 1=
steeper as the shear-rate increasesHicf. 7a and h The 0.5
total volume fraction of residual droplets, + t, is not 0
a constant, but it increases with increasing shear-rate. This 5
is mainly due to a decrease of the third integeglwhich N, # N,
is found to decrease for the low viscosity ratio blepd= o "
—0.25, as well as for the higher viscosity ratio blend~= ?
—1.25 (Fig. 69. 0

In Fig. 7, we display a band of steady-state DDFs jfjoe 5
—0.25 (Fig. 79 andp = —1.25 (Fig. 7b), which have been L4l 5
discussed irFig. 6. In Fig. 7, the shear-rate is a parameter, N
0 < y < 1.0. The dotted lines ifrig. 7 are the trajectories of 5
the maximum of the DDF with as a parameter, whereas the |
vertical dashed lines denote the maximum of the equilibrium
DDF, y = 0. The set of model parameters is the same as in 5'§
Figs. 5 and 6We see clearly ifrig. 7that the left edges of the w 14 b x
DDF are smeared out for increasing shear rateyhereas 12 |
the right edges become steeper as the shear rate is increased, I 1 -
although we have a qualitatively different behavior for the 08 S w0 50 0 20 0 60 50°
representative number density of droplets(cf. Fig. 3b shear strain, y

and 9. The insets irFFig. 7 show the DDF fory = 1.0 (solid
lines) together with the equilibrium DDF (dashed lines), Fi9: 8'0ngeb|S:r$eaigi%Hr2;0(;i ff;";‘:r#pshc:aftf;‘?ijge;r(iggm‘;'"I‘i’:’]efs)r a
Whl(,:h have bee,n Sh.lfted onto t,he DDF for= 1.0. Th_e_ 3.4 (dashed lines), .8 (dotted lines). The thin 9Ziotted lines are mc;del
vertical dotted lines in the two insets denote the positions pregictions for a constant DDF.

of the inflection points of the two DDF®... Note that the
position of the inflection points separate from each other
for the p = —0.25 blend Fig. 79, whereas they approach
each other for thep = —1.25 blend Fig. 7b. However,

the volume fraction of droplets between the two inflection
points, o, decreases with respect to the equilibrium DDF
for both viscosity ratios (cfFig. 6d. Although the DDF

in Fig. 7bis compressed, the volume fraction of residual
droplets,t4 + t— increases. If dispersity of the system is
defined as the distance between the inflection points of the
DDF then we see that the degree of dispersity increases for G/T=4, A A, '=1, 6=0.1, 6=0.001, k=0
the blend inFig. 7aand it decreases for the blendrig. 7h

In Fig. 8¢ d, the two normal stress differences are dis-
played. Note that the first normal stress differende, is
larger than the shear stress, whereas the second normal stress
difference,No, is nearly equal to the shear stress.

The morphological characteristics of our model equations
are shown irFig. 8e—h The transient behavior of the major
droplet axis,L, correlates with the transient stresses; i.e.,

6 T 1 11— 1.5
In Figs. 8-10 we show sample calculations for start-up 5 '_:.:"\\'_ F 1 H ]
of steady shearing flow for @ = —0.25, G/I" = 4 blend wsz O H T 1 [} 112,
with ¢ = 0.1 dispersed phase concentratiagjs/A2 = 1, N 1 R 47
6 = 0.001, andk = 0. Fig. 8 shows the transient behavior 3 1L \\\\_}\__ 1075
of the model as a function of shear strajn for start-up of 2T @ 1 to el ]
steady flow with three different shear ratgs= 0.2 (solid 1 1 11 g
lines), Q4 (dashed lines), and.® (dotted lines).Fig. 8a 04 T T T ] —T T T | 074
and bdisplay the transient shear stresgp, and the tran- e 0.3 |
sient shear viscosityys = o12/y, respectively. The shear o | 707 °
stress shows a rapid, monotonic increase for small shear 0.2 0.66
strains and a subsequent overshoot before the steady state i ** 0.1 ’
attained. The steady shear stress increases with increasing 0 [ AR TR o
shear rate. The transient shear viscosityFig. 8b shows 0 20 40 60 80 0 20 40 60 80

the same qualitative behavior as the shear stress; i.e., a shear strain,

rapld Increase, an OverShOOt'_ ahd an approa_ch towards It§=ig. 9. The same aBsig. 6 for the function properties of the transient DDF
steady state as the shear strain increases during the start-ugy , — —0.25 and three different shear ratgs= 0.2 (solid lines), 04
experiment. (dashed lines), .8 (dotted lines). Other model parameters are dSign 8.
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a steep increase is observed for small strains, which is fol- GIT=4, A AJA 1, 0=0.1,8=0.001, k=0
lowed by an overshoot and an approach to the steady state. -
The minor droplet axisB, shows an undershoot for the small
shear ratey = 0.2 (solid line), and a monotonic decrease
for the high shear rate; = 0.8 (dotted line). Foyy = 0.2,

the vorticity axis of the dropletd¥, shows a transition from

a prolate configuration for small strains to an oblate con-
figuration for small shear strains (solid line fig. 8g). For

the other two shear rates, the droplet configuration is oblate
for all shear strains (broken lines Fig. 89. In Fig. 8h

the transient orientation angle of the droplet with respect
to the external flow field is shown. For the smallest shear
rate (solid line), an undershoot in the orientation angle is

15 . ] . , .

droplet distribution function, f/

obtained. Fronfig. 8e—h we see that transient droplet de- //,/,/

formation and orientation become more pronounced as the 6
shear rate is increased (&fig. 5e—f). The thin dotted lines (a) average droplet radius, trS/3

in Fig. 8 are predictions for the blend with a constant DDF,

ie.n=1. G/T=4, A A/A, =1, 0=0.1, 6=0.001, k=0

In Fig. 9 we examine properties of the transient DDF
as functions of shear strain for the same model parameters
as in Fig. 8 Fig. 9ashows the transient behavior of the
representative average droplet radius of the micro-droplets.
This quantity shows a pronounced overshoot and reaches a
steady state foy ~ 40 shear strain units. The solution of
the droplet number density equatidg. (14c) is reported
in Fig. 9. We recover an increase of the representative num-
ber density of droplets immediately after start-up of flow of
approximately 10-50%, which is followed by a rapid de-
crease of this quantity towards the steady-state value. This

/i
/////

value isn ~ 0.9 for the lowest shear rate’ (= 0.2, solid - A !//f&/////;/

droplet distribution function, f/¢

line), and ofn = 0.5 for the highest shear rat¢ = 0.8, s
dotted line). This means that for start-up of steady shear 0 2 ¢ 6 8
flow, a transition from a break-up to a coalescence regime is average droplet radius, trS/3
) p g

obtained with the model. The volume fractions of residual Fig. 10. The same aBig. 7 for the transient DDF with shear strain as a
droplets,r+, 7_, and 74 + T_ are shown inFig. 9c. Note parameter (0< y < 80) and two shear rates: (g)= 0.4, (b) y = 0.8.
that these volume fractions also show a strongly non-linear The dotted line is the trajectory of the maximum of the DDF in the
behavior with an overshoot (far. andz; + ) or an un- gg/'::%;gqb p_la(;le, and the vertical dashed line denotes the equilibrium
dershoot (forr;). Whereas the small droplet radius regime, r=s
7_, IS smeared out for increasing shear strains, the large
droplet radius regime, represented dy, is compressed as arey = 0.4 (Fig. 109, y = 0.8 (Fig. 1) and the di-
the shear strain increases. The total volume fraction of resid-mensionless strain, & y < 80, has been taken as a pa-
ual dropletsz, + 7_, is approximately 25% foy = 0, and rameter. Again, the vertical dashed lines mark the position
reaches a value of approximately 33% at the steady state. and the height of the equilibrium DDF, whereas the dotted

Fig. 9d displays the volume fraction of droplets with radii  lines are the trajectories of the maximum of the DDF in the
between the inflection points;. This volume fraction de-  trS/3— f/¢ plane. It can be seen frofig. 10that both the
creases rapidly for small shear strains, shows an undershootocation of the maximum (the representative average droplet
aty ~ 7, and reaches a steady-state valueyfgr 40. The radius) and the height of the DDF (the number density of
volume fraction of droplets with radii between the two in- droplets with the representative average droplet radius) in-
flection points of the DDF is approximately 75% at equi- crease for low shear strains and then decrease as the shear
librium, and decreases to approximately 67% at the steadystrain increases (cfig. 9a and h This effect is more pro-
state. Frontfigs. & and d, we deduce that the volume frac- nounced inFig. 10bfor the shear-ratey = 0.8. Further-
tion o is reduced and the total volume fraction of residual more, we see clearly iRig. 10that the left edge of the DDF
droplets,t; +1_, is increased for start-up of steady shearing is smeared out, whereas the right edge becomes steeper as
flow. the shear strain increases.

Fig. 10shows two bands of transient DDFs for the same  Figs. 11-13summarize model predictions for uniaxial
set of model parameters ashigs. 8 and 9The shear rates  elongational flow. We have taken the same model param-
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G/T=4, MAJA,'=1, p=0.25, =0.1, 0=0.001, k=0 For ¢ = 0.2, the elongational viscosity becomes very large.
The thin dotted lines ifrig. 11are predictions of a constant
6 [ T l’;’,f' T l_' T ] [ R | _'""'"I '4‘,‘""": 8 DDF
K p=0.25 — p=0.25
L ' Fo—-p=125 7 A6 L In Fig. 12 we display the properties of the steady DDF
I 14 for uniaxial elongational flow as a function of elongation
| rate, ¢, for two different viscosity ratiop = —0.25 (solid
12 lines) andp = —1.25 (dashed lines). The other model pa-
N vl vl 4o 0 rameters are as iRig. 11 Fig. 12a shows that the steady
0 2 4 6 8§ 10100 10" 10 10 DDF for uniaxial elongational flow is shifted towards higher
O s I S SR droplet radii, t§/3, for ¢ > 0.1. Furthermore, the height of
0.8 i N\ do0s f(R) increases as the elongation rate is increabayl (25).
B - 1 1 B This means that the DDF is shifted to the right and it is
K compressed as the elongation rate increases~(gf.13.
= Fig. 12c shows that the volume fraction of droplets with
L © 02 radii smaller thank_ (r_) increases with increasing elon-
0 2 4 6 & 10100 100 100 10 gation rate, whereas the volume fraction of droplets with
12 Ty 40 radii greater thaR ;. (1) decreases. The total volume frac-
] 30 tion of residual dropletsy,. + 7_, varies between 26 and
N, - n. 37%, approximately, foé > 0.2. Fig. 12 shows the vol-
20 ume fraction of droplets with radii betweet. andR_ (o).
11 This quantity decreases as the elongation rate is increased,
1 and varies between 74 and 63%, approximately. Note that
7 the results ofFig. 12c and care qualitatively similar to the

results obtained for steady shearing flow {€fy. 6). Fig. 13
shows the steady-state DDF for uniaxial elongational flow
Fig. 11. Model solution for uniaxial elongational flow for various elonga- for p= —0.25 and—1.25 using the elongation rate as a pa-
tion rates an_d viscosity ratlo_s: (a—c) transient calculationgfer —0.25 rameter, O< ¢ < 0.3. Again, the vertical dashed lines mark
and three different elongation rates, (d—f) steady-state calculations for o .
p = 0.25 (solid lines) andp = —1.25 (dashed lines). The other model the eqUIIIbrlum DDF, whereas the dotted lines are the tra-

parameters are the same asFiy. 5 Thin lines are predictions for a  jectories of the maximum of the DDF. Note that the DDF is

elongational strain, € elongation rate, €

constant DDF. compressed and becomes as high as10 foré = 0.3 and
p = —0.25, i.e., we observe an elongational flow-induced
break-up. Recently, the phenomenon of flow-induced coa-
eters as before, i.eG/I" = 4, ¢ = 0.1, rchs/A2 = 1, lescence in extensional flow was investigated28]. The
6 = 0.001, and a vanishing EWM power-law indéx= O. volume fraction of droplets between the inflection points of

Again, we have studied two different viscosity ratigs=
—0.25 and—1.25.Fig. 11shows morphological and visco-

metric data obtained from the continuum model. In the left G/T=4, M\ AJA'=1, $=0.1, 8=0.001, k=0

column Fig. 11a—¢, we show the start-up behavior of the P e
model for p = —0.25 and three different elongation rates, sh _'pzms T 8 ' T

¢ = 0.05 (solid lines), AL (dashed lines), and.® (dotted uS/3 b == p=12s L n
lines). For low elongation rates, the droplet semiaxdsign ir N

11a and b show a monotonic increase and reach a steady Ir C ]

state fore ~ 4. For the highest elongation rate,= 0.2, 2 @ C (b 406

a slight overshoot/undershoot is detected in the transient ] b Tl vl sl 11 g
droplet semiaxes. The transient elongational viscosityin 0.4 ey 075
Fig. 11c increases monotonically fér = 0.05 (solid line) C 0.3 r b

and shows a strongly non-linear behaviordes 0.1 and 02 N B 07 ©
(broken lines). In the right columrF{gs. 11—f), we display o 02 I

the steady-state morphological and viscometric data as cal- +" ¢ B 0.65
culated from the model for two viscosity ratigs= —0.25 o L i [ @ T s
(solid lines) andp = —1.25 (dashed lines). For elongation 0° 100 10t 107 107 107

ratesé > 0.2, we observe an increase of the major droplet elongation rate, €

axis,L, and a decrease of the minor droplet aBis(Fig. 11d , _ . .
d For the low Viscosity ratio blend. a strain-softenin Fig. 12. The properties of the steady-state DDF for two different viscosity
and e). Yy ! 9 ratios, p = —0.25 (solid lines) andp = —1.25 (dashed lines), for steady

regime is recovered far > 0.1, whereas the high viscosity  ynjaxial elongational flow. Other model parameters are the same as in
ratio blend shows only a slight strain hardenifag( 111). Fig. 11
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GT=4, A AJA=1, p=0.25, 4=0.1,8=0.001, k=0 mation tensor field to describe the microstructure/rheology
10 . : , : , of the matrix phase, a representative droplet shape tensor
I X | to account for the dynamics of the dispersed phase, and the

\ number density of representative micro-droplets. A Hamil-

tonian functional expressing the total system energy in terms
r 1 of these dynamical variables has been postulated, and a set of
6 - - dynamical continuum equations for the system variables has
been constructed. The system equations have been solved
for various combinations of model parameters for homoge-
nous flows, assuming a constant and a variable droplet dis-
I ] tribution. In particular, we performed sample calculations
2 F - with data of a 10wt.% PIB/PDMS blend, which had been
L _ studied experimentally by Vinckier et §24]. A satisfactory
fit of rheometric data was obtained. Furthermore, sample
0 2 4 6 calculations for data of a 5wt.% HPC/PDMS system with
(a) average droplet radius, trS/3 strong viscoelastic contrast of the blend components and
constant droplet distribution were performed to investigate
G/T=4, A AJN=1, p=1.25, ¢=0.1,6=0.001, k=0 the influence on the droplet dynamics. The system equations
6 T T . T T can predict large droplet deformations, if the ratio of elastic
moduli and relaxation times of the viscoelastic blend com-
. ponents is large. Finally, sample calculations for blends with
a variable droplet distribution were performed for start-up
- and steady shear and uniaxial elongational flows. The model
predictions were compared with a model working in terms
. of a constant droplet distribution. The viscometric and mor-
phological predictions obtained from the model have been
- discussed and the steady-state and transient droplet distri-
butions have been studied. Our sample calculations showed
§ that steady shear flows can decrease as well as increase the
dispersity of the blend whereas for steady uniaxial flow we
found a decrease of the dispersity.

droplet distribution function, f/¢

0

droplet distribution function, f/
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(b) average droplet radius, trS/3
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