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Abstract

A Hamiltonian framework of non-equilibrium thermodynamics is adopted to construct a set of dynamical continuum equations for a
polymer blend with matrix viscoelasticity and a narrow droplet size distribution that is assumed to obey a Weibull distribution function. The
microstructure of the matrix is described in terms of a conformation tensor. The variable droplet distribution is described in terms of two
thermodynamic variables: the droplet shape tensor and the number density of representative droplets. A Hamiltonian functional in terms of
the thermodynamic variables is introduced and a set of time evolution equations for the system variables is derived. Sample calculations
for homogenous flows and constant droplet distribution are compared with data of a PIB/PDMS blend and a HPC/PDMS blend with high
viscoelastic contrast. For the PIB/PDMS blend, satisfactory predictions of the flow curves are obtained. Sample calculations for a blend with
variable droplet distribution are performed and the effect of flow on the rheology, droplet morphology, and on the droplet distribution are
discussed. It is found that deformation can increase or decrease the dispersity of the droplet morphology for the flows investigated herein.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Non-equilibrium thermodynamics; Polymer blends; Constant-volume models; Rheological characterization; Oblate/prolate drops; Non-uniform
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1. Introduction

The purpose of this paper at the 3rd International Work-
shop on Non-Equilibrium Thermodynamics is to present re-
cent developments in our ongoing study of the rheology
and morphology of polymer blends. In a recent article[1],
we examined the effects of matrix-phase viscoelasticity on
the rheology and morphology of Newtonian droplets sub-
jected to both shear and elongational flow fields. This pre-
vious article demonstrated that matrix-phase viscoelasticity
was very important for quantifying the deformation-induced
shape changes in the dispersed phase droplets, as well as the
overall rheological responses of the blends.

In this paper, we extend the model introduced in the pre-
vious article[1] to incorporate phenomena of break-up and
coalescence of droplets in a crude way. This is done through
the introduction of a Weibull distribution function to quan-
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tify the size of the droplets. As in the prior article, we are not
so much striving for quantitative accuracy in model predic-
tion, but are instead attempting to develop an understanding
for what type of effects are necessary in order to render an
accurate physical understanding of polymer blend rheology.
Here we add to this understanding by examining the extent
to which droplet break-up and coalescence affect the rhe-
ology and morphological characteristics of typical polymer
blends. At the end, we should be able to draw some relevant
conclusions about the importance of the size distribution of
droplets on these important materials.

The present article is organized as follows. In the next sec-
tion, we give a description of the system we want to model.
We introduce the relevant thermodynamic variables and we
make a constitutive assumption for the system Hamiltonian.
In Section 3, a set of time evolution equations for the thermo-
dynamic variables is derived in a Hamiltonian framework of
non-equilibrium thermodynamics. InSection 4, we present
sample calculations for start-up and steady-state shear and
uniaxial elongational flow. We compare model calculations
with experimental data of real polymer blends, and we in-
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vestigate the effect of flow on the droplet distribution. In the
final section, we summarize our results.

2. The thermodynamic system

In the present work, the polymer blend is considered as
a continuum with internal microstructure consisting of two
immiscible phases. The thermodynamic variables in a con-
tinuum description of matter are statistical mechanical av-
erages over all constituent molecules and other microstruc-
tural components of the continuum. The macroscopic flow
of the blend is quantified in terms of the momentum den-
sity field, M, defined as the velocity of a fluid particle,v,
times its density,ρ. The average orientation and deforma-
tion of the matrix molecules at a fixed position in space is
described in terms of the contravariant, second-rank confor-
mation tensor field,C. For a polymer blend with a narrow,
non-uniform droplet size distribution, the Weibull distribu-
tion function[2],

f(R) = 1

V
γqRq−1 e−γRq

, (1)

is assumed to give a reasonable description of the average
droplet size distribution, whereR > 0 is a dimensionless
droplet radius,f(R) is the number density of micro-droplets
with radii betweenR andR + dR per unit volume,V , and
q > 1, γ > 0 are positive real numbers. The above droplet
distribution function (DDF) is fully specified if the location,
R̃, and the height,f(R̃), of its absolute maximum are known.
Therefore, we introduce two representative thermodynamic
variables to account for the non-uniform droplet morphology
of the polymer blend. The droplet shape tensor,S, is related
to the location of the maximum of the DDF, trS/3 ≡ R̃,
and is a contravariant, second-rank tensor field, with the
constraint detS = 1 to account for volume preservation of
the micro-droplets. A scalar variable,n, which represents the
average number density of micro-droplets of representative
shapeS, is related to the height of the maximum of the DDF,
n ≡ f(R̃). We emphasize that the two internal variables,
S andn, are representative microstructural variables of the
polymer blend. The full droplet morphology is described in
terms of an appropriate DDF, heref(R). Hence our set of
thermodynamical variables isx ≡ [M,C,S, n].

The droplet shape tensor,S, has a direct connection to
the droplet morphology since the eigenvalues ofS are the
squared semiaxes of the ellipsoidal droplets and the deter-
minant is their volume[3]. Therefore, we chose the droplet
shape tensor to describe the droplet morphology instead of
an anisotropy tensor of the Doi-Ohta type[4,5]. Very re-
cently, Almusallam et al.[6] considered the anisotropy ten-
sor approach in the framework of the Tomotika Theory to de-
scribe droplet break-up and coalescence in polymer blends.

With the thermodynamic variables introduced above, we
make now a constitutive assumption for the Hamiltonian
functional, which represents the total energy of the polymer

blend. Here, we study a system that is envisioned as a super-
position of a Maxwell fluid with characteristic elastic con-
stant,K, an elastic droplet interface with interfacial tension,
�′, and a non-linear coupling of matrix and interfacial elas-
ticity with the variable number density,n, of representative
micro-droplets,S:

Hm[M,C,S, n] = K[M] + A[C,S, n]

=
∫ [

MαMα

2ρ
+ 1

2
(1 − φ)G

K

kBT
IC
1 − 1

2
(1 − φ)G

×ln(det
KC

kBT
) + 1

2
φ�

n

n0
IS
2 − 1

6
φ�

K

kBT

×ln(
n

n0
)IC

1 ε(I
S
1 , I

S
2 )

]
d3x. (2)

In this expression,IC
n and IS

n denote then-th invariant of
C andS, respectively,φ = 1/V

∫∞
0 f(R)dR is the constant

total volume fraction of droplets,G is the elastic modu-
lus of the matrix,Γ = Γ ′/R0 whereR0 is a representative
droplet radius in the undeformed state,n0 denotes the repre-
sentative number density of micro-droplets at equilibrium,
and ε = ε(IS

1 , I
S
2 ) is a measure for the asphericity of the

droplets.Eq. (2)represents the kinetic energy of the system
(first term in the integral) plus a linear superposition of the
Helmholtz free energy of a system of Hookean springs (sec-
ond and third terms) and the energy of the elastic interface,
with IS

2 being associated with the surface area (fourth term).
Note that the energy of the elastic interface is proportional to
the relative representative number of micro-droplets,n/n0,
and therefore increases linearly withn. To represent the dy-
namic effects that determine the representative number den-
sity of droplets away from equilibrium, a fifth term is added
to the Hamiltonian. We consider here a logarithmic term in
n/n0 similar to the Flory/Huggins mixing term. This mixing
term is taken to depend on both microstructural variables,
C andS. The mixing term depends on the microstructural
tensorC, since the conformation of the matrix molecules
influences droplet shape and hence the break-up and coales-
cence processes. Here, we have chosen a linear dependence
of the mixing term on the trace of the conformation tensor,
IC
1 , for simplicity. Furthermore, the mixing term depends on

the average asphericity of the micro-droplets, which can be
expressed in terms of the non-unit scalar invariants of the
droplet shape tensor,ε = ε(IS

1 , I
S
2 ). Here we take the first

invariant of the droplet configuration tensor,ε = IS
1 , to ex-

press the asphericity of the droplet. Consequently, we have
ε = 3 at equilibrium andε → ∞ as the micro-droplets
are stretched into long fibres or compressed into thin sheets.
More elaborate expressions for the asphericity parameter in
terms of the first and the second invariants of the droplet
shape tensor can be introduced if necessary.

The subscript “m” in the Hamiltonian denotes that the
description of the polymer blend is purely mechanical; i.e.,
we will not consider the transfer of mechanical energy into
internal degrees of freedom. Instead, we study an isother-
mal and incompressible system. Note thatEq. (2)duly sat-
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isfies the consistency requirement that, at equilibrium in ab-
sence of any stress and when the droplet shape is spherical,
Sequil = δ, the Hamiltonian is minimized forn = n0, which
can be considered in general as a function of the viscosity
ratio and the temperature.

In the next section, a set of dynamical time evolution
equations for the variablesx = [M,C,S, n] will be con-
structed in order to describe the dynamical behavior of the
polymer blend. To do this, we adopt an appropriate frame-
work of non-equilibrium thermodynamics.

3. Derivation of continuum-level evolution equations

In this section, we wish to present the main steps in the
construction of the macroscopic flow equations for the set
of variablesx = [M,C,S, n]. A detailed presentation of the
thermodynamic modeling of complex materials in terms of
internal variables is explained in Ref.[7]. In the Hamiltonian

{F,Hm} = −
∫ [

δF

δMγ

∇β

(
δHm

δMβ

Mγ

)
− δHm

δMγ

∇β

(
δF

δMβ

Mγ

)]
d3x −

∫ [
δF

δCαβ

∇γ

(
δHm

δMγ

Cαβ

)
− δHm

δCαβ

∇γ

(
δF

δMγ

Cαβ

)]

×d3x −
∫
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(
δF

δMβ

)
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∇β

(
δHm
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n

)
− δHm

δn
∇β

(
δF

δMβ

n

)]
d3x. (4)

framework of non-equilibrium thermodynamics, the dynam-
ical evolution equations for the polymer blend are derived
from the master equation

dF

dt
= {F,Hm} + [F,Hm], (3)

whereF = F [x] is an arbitrary functional of a set of field
variablesx, Hm denotes the Hamiltonian or the generator of
the dynamics,{·, ·} and [·, ·] denote the Poisson and dissipa-
tion brackets, respectively, and d· /dt is the time derivative.

The physical variables,x, for the description of the blend
are the momentum density,M = ρv, an unconstrained
contravariant second-rank tensor,C, describing the mi-
crostructure of the continuous phase (i.e., the conformation
of the polymer molecules in the matrix), a constrained

[F,Hm] = −
∫

ΛC
αβγε

δF

δCαβ

δHm

δCγε

d3x −
∫

ΛS
αβγε

δF
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δHm

δSγε
d3x + 1

3

∫
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αβγεSρηS

−1
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δF

δSρη

δHm

δSγε
d3x −

∫
Λn δF

δn

δHm

δn
d3x

−
∫

Aαβγε

(
δF

δCαβ

δHm

δSγε
+ δHm
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δF
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)
d3x + 1

3

∫
Aαβγε

(
δF

δCαβ

δHm

δSρη
SρηS

−1
γε + δHm

δCαβ

δF

δSρη
SρηS

−1
γε

)
d3x, (5)

contravariant second-rank tensor,S, describing a representa-
tive ellipsoidal droplet shape of the DDF, and the represen-

tative number density of micro-droplets with shape tensorS,
n: hencex = [M,C,S, n]. Since the dispersed phase is as-
sumed to be incompressible, we impose the microstructural
constraint, detS = 1, to account for volume preservation of
the deforming ellipsoidal microdroplets.

For single droplets with diameters larger than microns
(40–500�m), the approximation of ellipsoidal droplet shape
has been investigated experimentally by Guido and Villone
[8] and by Hu and Lips[9] in simple shear flow and in
planar hyperbolic flow, respectively. Implicitly, we assume
the validity of the ellipsoidal droplet and constant-volume
assumptions on smaller length scales than those examined
experimentally.

To obtain a set of continuum equations usingEq. (3),
one has to derive the Poisson bracket and to postulate a
dissipation bracket, as well as the generator of the dynamics,
Eq. (2). The Poisson bracket needs to be expressed in terms
of M, C, S andn, and is given as

This bracket shares the properties of a Poisson bracket since
it is bilinear, it is antisymmetric, and it satisfies the Jacobi
identity. The first integral represents the Poisson bracket
for the structureless, incompressible, and isothermal fluid.
The second, third, and fourth integrals represent the Poisson
bracket for a contravariant, unconstrained, second-rank ten-
sorial variable,C. The last integral is the Poisson bracket for
the scalar variable,n. These brackets were derived following
standard reduction procedures from Hamilton’s principle of
least action in Refs.[10–14,7]. The remaining four integrals
represent the Poisson bracket for a constrained, contravari-
ant, second-rank tensorial variable,S, with detS = 1, and
it was derived in Ref.[15] by adopting a suitable mapping
transformation.

For the dissipation bracket, we introduce the expression

with the four phenomenological matricesΛC, ΛS, Λn, and
A. The above dissipation bracket represents a generaliza-
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tion of the dissipation bracket for the Two Coupled Maxwell
Modes Model in Refs.[7,16] to a system that is described
in terms of an unconstrained conformation tensor,C, a con-
strained representative droplet tensor,S, with detS = 1, and
a variable representative number density of micro-droplets,
n.

The first integral in the above dissipation bracket is the
relaxation of the viscoelastic matrix. The second and the
third integrals account for the relaxation of the droplet in-
clusions under the auspices of the constraint detS = 1, and
they were derived in Ref.[15]. The fourth integral with the
phenomenological matrixΛn is the relaxation of the repre-
sentative number density of micro-droplets in the fluid. The
last two integrals, involving the phenomenological matrix
A, describe the coupling of the viscoelastic matrix fluid with
the droplet interface. They were derived with the procedure
developed in Ref.[15]. In the above dissipation bracket, we
neglect viscous dissipation of the matrix fluid since it ap-
pears implicitly in the Maxwell viscosity,GλC, and droplet
diffusivity. The latter phenomenon can be included into the
dissipation bracket to obtain more sophisticated dynamic
equations for the system if so desired.

An irreversible coupling of the number density of droplets
with the droplet shape tensor,S, is not considered inEq. (5)
because it gives an antisymmetric contribution to the dissi-
pation bracket, which does not contribute to the rate of me-
chanical energy dissipation. We wish to consider only contri-
butions to the dissipation bracket that yield a non-vanishing
rate of mechanical energy dissipation. (This is a completely
arbitrary consideration, but we believe that it is better for a
preliminary work to keep the final set of evolution equations
as simple as possible.) The rate of mechanical energy dissi-
pation associated with the above dissipation bracket,Eq. (5),
will be discussed below.

The Poisson and dissipation brackets yield the following
general set of dynamical evolution equations:

ρ
∂vα

∂t
= −ρvβ∇βvα − ∇αp + ∇βσαβ, (6a)

∂Cαβ

∂t
= −vγ∇γCαβ + Cαγ∇γvβ + Cβγ∇γvα − ΛC

αβγε

δHm

δCγε

−Aαβγε

δHm

δSγε
+ 1

3
Aαβγε

δHm

δSρν
SρνS

−1
γε , (6b)

∂Sαβ

∂t
= −vγ∇γSαβ − 2

3
∇γvγSαβ + Sαγ∇γvβ + Sβγ∇γvα

−ΛS
αβγε

δHm

δSγε
+ 1

3
ΛS
ρηγεSαβS

−1
ρη

δHm

δSγε
− Aαβγε

δHm

δCγε

+ 1

3
Aρνγε

δHm

δCρν

S−1
γε Sαβ, (6c)

∂n

∂t
= −∇α(nvα) − Λn δHm

δn
. (6d)

Eq. (6a)is the momentum balance equation in a spatial de-
scription of macroscopic fluid flow, where the pressure and

the extra stress tensor have been denoted withp, σ, respec-
tively. Pressure and velocity are thus viewed as averaged
quantities at each location in space-time coordinates; i.e.,
they are coarse-grained averages of the matrix fluid parti-
cles and droplets contained in the fluid particle at coordi-
nates(x, t). They arise naturally through the mathematical
structure of the Poisson bracket. The pressure obeys a Pois-
son equation with appropriate boundary conditions, and the
extra stress tensor is obtained as

σαβ = 2Cαγ

δHm

δCγβ

+ 2Sαγ
δHm

δSγβ
− 2

3
Sγε

δHm

δSγε
δαβ. (7)

Eq. (6b)is the conformation tensor equation describing the
average deformation and orientation of polymer molecules
in the matrix. The first three terms on the righthand-side
of Eq. (6b) represent the upper-convected derivative of an
unconstrained, second-rank contravariant tensorial variable,
and they arise from the mathematical structure of the Pois-
son bracket,Eq. (4). The remaining three terms on the
righthand-side ofEq. (6b) are of dissipative nature. The
third term captures the relaxational dynamics of the matrix
molecules and the last two terms inEq. (6b)account for a
possible influence of droplet deformation on the conforma-
tion tensor dynamics.Eq. (6c) is the droplet shape tensor
equation describing the average shape and orientation of rep-
resentative micro-droplets in the blend. The first four terms
on the righthand-side ofEq. (6c) represent a generalized
upper-convected derivative for a second-rank, contravariant
tensorial variable with the constraint detS = 1, obtained
from the Poisson bracket. The last four terms inEq. (6c)
arise from the dissipation bracket, and account for the re-
laxation of micro-droplets (fifth and sixth terms) and the in-
fluence of the conformation tensor dynamics on the droplet
dynamics (the last two terms). With the procedure devel-
oped by Edwards et al.[15], it can be shown forEq. (6c)
that detS is a conserved quantity independent of the mathe-
matical form of the phenomenological matricesΛC, ΛS, A,
and the Hamiltonian,Hm[M,C,S, n].

In order to obtain a specific set of time evolution equa-
tions that is generated by an appropriate system Hamiltonian
(e.g.,Eq. (2)), we have to specify expressions for the phe-
nomenological matricesΛC, ΛS, Λn, andA introduced in
the dissipation bracket,Eq. (5), and appearing in the above
set of general system equations,Eqs. (6a)–(6d). This is done
in the following paragraphs.

To describe the relaxation of the matrix fluid, we adopt the
phenomenological matrix of the extended White–Metzner
(EWM) Model of Souvaliotis and Beris[17] (see, e.g., Ref.
[7]). This is

ΛC
αβγε = 1

2λCG

kBT

K
(trC̃/3)−k(Cαγδβε + Cαεδβγ + Cβγδαε

+Cβεδαγ), (8)

whereλC is a characteristic relaxation time associated with
the continuous phase and we have introduced the elastic
modulus of the continuous phaseG. In the above relaxation
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matrix, the effective relaxation time of the matrix phase,
λ(C̃) ≡ λC(trC̃)k, is allowed to depend on the first invariant
of the scaled conformation tensor,C̃ = CK/(kBT), and on
the EWM power-law index,k. For k = 0, we recover the
relaxation matrix of the Maxwell Model. In conjunction with
theC-terms in the Hamiltonian,Eq. (2), and withA = 0 and
k = 0, this expression gives the Upper-Convected Maxwell
Model (UCMM) for the matrix phase.

We adopt the following anisotropic expression for the
relaxation matrix of the interface:

ΛS
αβγε = 1

λSΓ

[
(1 + p)2p

2

(
Sαγδβε + Sαεδβγ

+Sβγδαε + Sβεδαγ
)+ 3p

IS
1I

S
2

(
δαγδβε + δαεδβγ

)]
,

(9)

whereλS is a characteristic time scale associated with the
elastic interface andIS

1 , IS
2 are the first and the second in-

variants ofS, respectively[1]. The first term in the square
brackets accounts for droplets that deform into oblates for
start-up of steady shearing flow, the second term accounts
for droplets that deform into prolates for start-up of steady
shearing flow. The difference between oblate and prolate
droplet shapes is illustrated in subsequent figures, which will
be explained in more detail in the next section. The quantity
p is a phenomenological parameter that controls whether
the droplet deformation is more oblate or prolate, and it de-
pends on the viscous and/or elastic properties of the two
phases.

In what follows, we wish to consider two different pos-
sibilities to relate the phenomenological coefficient,p, to
the material properties of the polymer blend, since the
physical mechanisms that govern droplet deformation in
non-Newtonian liquids are not well known and the issue
is a topic of ongoing research, see e.g., Refs.[18–20]. If
droplet deformation into oblate or prolate configurations
is assumed to depend on the viscous properties of the two
phases, thenp should be taken as the negative viscosity
ratio of the blend components, i.e.,p = −ηd/ηc. (The fact
thatp has to be a negative quantity will be discussed below,
when we examine the rate of mechanical energy dissipation
due to droplet relaxation,ΛS—see also Ref.[1].) If droplet
deformation into oblate or prolate configurations is assumed
to depend on the viscoelastic properties of the interface,
instead of the Newtonian viscosity of the droplet phase,
one may introduce an interfacial viscosity,η∗ = ΓλS, and
definep = −η∗/ηc. Then, if ηc = Gλc is identified as a
Maxwellian viscosity of the continuous phase,p becomes
a dependent quantity that combines the viscoelastic prop-
erties of the matrix and the interface,p = −ΓλS/GλC.
Otherwise, one may introduce an additional viscous dissi-
pation matrix into the bracket,Eq. (5), to take into account
explicitly the Newtonian flow behavior of the matrix. For
the sample calculations in the subsequent paragraphs, we

investigate the model equations forp = −ηd/ηc as well as
p = −η∗/ηc.

For the phenomenological matrixΛn, the following gen-
eral expression is introduced:

Λn = 2fc
n0n

λnΓ
, (10)

whereλn is a characteristic time scale of the break-up/coale-
scence process andfc is a general function of the phe-
nomenological parameter,p, and the scalar invariants of
the conformation tensor and the droplet shape tensor,fc =
fc(p, C̃,S). This quantity can be related to the probability
of the coalescence process[21]. In the sample calculations,
we will takefc = 1 for simplicity; i.e., we neglect a direct
influence of the viscosity ratio on the break-up/coalescence
processes in the framework of the present study.

The phenomenological matrixA is adopted in analogy to
the coupling matrix introduced in Ref.[16,7,1]:

Aαβγε = 1

2

(1 + p)2θ√
GΓλCλS

(trC̃/3)−k/2(CαγSβε + CαεSβγ

+CβγSαε + CβεSαγ), (11)

whereθ is a phenomenological coupling parameter. Forθ >

0 this phenomenological matrix gives oblate droplet config-
urations. Note that the coupling matrix is defined to vanish
for p = −1. The phenomenological coefficient,θ, may be
taken as a function of the scalar invariants of the structural
variables, if so desired; however, here we want to work with
θ being a constant real number, for simplicity.

We mention that the prefactors that contain the viscos-
ity ratio in the phenomenological matrices,Eqs. (8), (9)
and (11), have been introduced ad hoc:ζo = (1 + p)2p,
ζp = p, ζc = (1 + p)2. It may be necessary to adopt more
appropriate functional dependencies if one wants to fit ex-
perimental data or to make predictions over an extended
range or viscosity ratios,p.

In order to rationalize the thermodynamic admissibility of
the phenomenological matrices ofEqs. (8)–(11), we consider
the rate of mechanical energy dissipation generated by the
Hamiltonian,(2):

dHm

dt
= [Hm, Hm] ≤ 0. (12)

This is a decreasing function of time[7]. Eq. (12)is obtained
from Eq. (3)by exploiting the antisymmetry of the Poisson
bracket and the fact that mechanical energy has to be dissi-
pated into internal degrees of freedom in the long time limit.
Inequality(12) is the appropriate condition to give a physi-
cally meaningful description of the system, and it can lead to
counterintuitive results for the range of thermodynamically
admissible phenomenological coefficients adopted herein;
e.g., a negative viscosity ratio appearing inEq. (9) [1]. Math-
ematical criteria that are imposed directly onto the dissipa-
tive phenomenological coefficients, e.g., on the relaxation
times,λC andλS, on the coupling parameter,θ, or on the
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dissipative coefficient,p, do not necessarily satisfy Inequal-
ity (12) and may therefore lead to aphysical results. This
will become evident in the following paragraph, where we
evaluateEq. (12)for the dissipation bracket ofEq. (5).

For the dissipation bracket ofEq. (5), Inequality (12) is
equivalent to

[Hm, Hm] = [Hm, Hm]C + [Hm, Hm]S + [Hm, Hm]n + [Hm, Hm]CS = − 1
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d3x ≤ 0, (13)

whereIC
−1 = C−1

αα = IC
2 /I

C
3 . The first integral is the me-

chanical energy dissipation of a Maxwell fluid, [Hm, Hm]C,
the second and third integrals are the mechanical energy dis-
sipation due to droplet relaxation including oblate and pro-
late relaxation, [Hm, Hm]S, the fourth integral is the rate of
mechanical energy dissipation due to the change of the rep-
resentative droplet number density, [Hm, Hm]n, and the fifth
integral is the rate of mechanical energy dissipation due to
the irreversible coupling of the matrix fluid and the droplet
interface, [Hm, Hm]CS. The above expression for the rate of
mechanical energy dissipation is negative, if each of the five
integrals are negative.

In the following, we want to evaluate generically the first
three integrals in In Inequality(13) for start-up of a homo-
geneous, weak flow; i.e., we consider a vanishing coupling
parameter,θ = 0, and the limit of infinite break-up time,λn,
to find the correct range of thermodynamically admissible
phenomenological coefficientsp. Note that all terms propor-
tional to ln(n/n0) in the first three integrals vanish in the
limit θ = 0, λn → ∞. Numerical calculations corroborate
that the scalar invariants of the structural variables increase
upon start-up of steady flow (except the third invariant of
the droplet shape tensor, detS = 1). The invariantIC

−1 as-
sumes values above its equilibrium value,IC

−1 = 3K/(kBT);
however, the variations inIC

−1 are small compared to the
variations ofIC

1 . Therefore, the first integral in In Inequal-
ity (13), which corresponds to the mechanical dissipation
rate of the UCMM, anyway, is negative since the expres-
sion in parentheses is positive (since the relaxation times,
λC, λS, and the elastic moduli,G, Γ , are positive num-

bers). Due toIS
1 ≥ 3 andIS

2 ≥ 3 for non-vanishing flow,
the expressions in parentheses in the second and the third
integrals are negative. Consequently, the phenomenological
friction coefficient,p, has to be negative,p < 0, to give a

negative dissipation rate due to droplet relaxation. For small
values of the coupling parameter,|θ| � 1, this quantity has
to be positive to yield a negative dissipation of mechanical
energy due to the coupling between the two microstructural
variables. Our analysis shows that the constraint det(S) =
1 and the functional form of the thermodynamic potential,
ES = ΓφIS

2/2, produce this counterintuitive example of
a phenomenological dissipative coefficient being negative.
Note that the aspect of a negative friction coefficient in the
droplet configuration equation is not worked out rigorously
by Grmela et al.[22] and Yu et al.[23]. With the general set
of dynamical time evolution equations,(6a)–(6d), and the
constitutive assumptions for the dissipative matrices,Eqs.
(8)–(11), we can now write down the set of dynamical equa-
tions generated by the Hamiltonian,Eq. (2).

Evaluating the Volterra derivatives of the Hamilto-
nian (2) and inserting the phenomenological matrices of
Eqs. (8)–(11) into Eqs. (6a)–(6d), we obtain the following
time evolution equations for the structural variables and the
representative droplet number density:
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Eq. (14a)is the conformation tensor equation. Forθ = 0,
k = 0, andn = n0, we recover the UCMM. Forθ �= 0
andp �= −1, we have a non-trivial coupling of the droplet
phase to the matrix phase. This means that the droplet defor-
mation induces changes in the average conformation of the
molecules in the matrix phase.Eq. (14b)is the droplet shape
tensor equation describing the dynamics of a representative
drop of the droplet distribution. The first four terms on the
righthand-side ofEq. (14b)are the reversible contributions
to the droplet dynamics, the fifth term inEq. (14b)accounts
for oblate droplets, and the sixth term accounts for prolate
droplets. The last term captures two additional influences on
the droplet dynamics: (i) the local polymer conformation in
the matrix phase and (ii) the variable representative number
density of droplets.Eq. (14c)is the number density time evo-
lution equation with a reversible and two irreversible contri-
butions. The second term on the righthand-side ofEq. (14c)
has a negative sign and it accounts for a decrease of the repre-
sentative number density of micro-droplets, i.e., droplet coa-
lescence. This term is proportional to the number density of
droplets,n, cf. Ref.[21]. The last term on the righthand-side
of Eq. (14c)has a positive sign, and it accounts for an in-
crease of the representative number density of droplets, i.e.,
break-up. Note that we have a single time scale for break-up
and coalescence,λn. Furthermore, note that an equilibrium
of coalescence and break-up rates is predicted byEq. (14c)
at any steady state. The last two terms on the righthand-side
of Eq. (14c) represent effective coalescence and break-up
rates, which involve the dispersed phase concentration and

the invariants of the two structural variables. Though the
time scale for coalescence and break-up are identical, the
time evolution equations give different rates of coalescence
and break-up far from thermodynamic equilibrium.

The elastic extra stress tensor of the blend is the linear
combination of the extra stress tensor of the two components.
With Eq. (2), the general expression ofEq. (7)for the extra
stress tensor is equivalent to

σαβ = σC
αβ + σS

αβ = (1 − φ)G
K

kBT
Cαβ − (1 − φ)Gδαβ

+φΓ
n

n0

(
IS
1Sαβ − SαγSγβ − 2

3
IS2 δαβ

)
− φΓK

3kBT

×ln

(
n

n0

)[
IC
1 Sαβ + IS

1Cαβ − 1

3
IC
1 I

S
1δαβ

]
. (15)

For the dilute regime (φ → 0), we have mainly a stress con-
tribution due to the matrix phase and the droplet configura-
tion is governed by the coupling term inEq. (14b). For the
concentrated regime (φ → 1), the extra stress is due to the
droplet phase and the non-linear coupling terms are the only
contributions in the conformation tensor evolution equation,
Eq. (14a).

4. Sample calculations

The set of continuum equations,Eq. (6a), (14a)–(14c),
derived in the previous section, has been solved for various
combinations of physical parameter values to determine its
characteristic features for various homogeneous flows, char-
acterized by the velocity gradient tensor,∇v. These equa-
tions have been rendered dimensionless using quantitiest̃ =
t/ 3

√
λCλSλn, C̃ = K/kBTC, S̃ = S, ñ = n/n0, and σ̃ =

σ/(
√
GΓ). In all that follows, we omit the tilde over dimen-

sionless quantities. Note that there is a one-to-one relation-
ship between the parameters,q, γ, in the Weibull distribu-
tion function and the thermodynamic variables,S, n. The
parameterq is obtained by solving the non-linear equation
n = f(R̃), whereR̃ ≡ 1/3trS is the location of the maxi-
mum of the DDF andn, S are the solutions of the continuum
equations for a given velocity field. Then also the second
parameter of the Weibull distribution function is fixed since
R̃q = (q − 1)/γq.

4.1. PIB/PDMS blend with low viscoelastic contrast

In this subsection, we show solutions of the continuum
equations for a constant DDF and for data of a polyisobutene
(PIB, ηd = 86 Pa s)/polydimethylsiloxane (PDMS,ηc =
195 Pa s,Ψ1c = 10.4Pa s2) blend [24]. Interfacial tension
between the blend components isΓ ′ = 0.0023N/m [24].
With the UCMM and the relationship for the interfacial elas-
tic modulus, we estimateG ≈ 7300 Pa andΓ = 230 Pa for
an average droplet radius of 10�m.
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Fig. 1 shows calculations for the pure matrix fluid with
G = 7300Pa andφ = 0 (solid lines) and two PIB/PDMS
blends withG/Γ = 30,φ = 0.1 (dashed lines) andG/Γ =
30,φ = 0.3 (dotted lines). The EWM power-law index has
been taken ask = −2 to recover the shear thinning behav-
ior for the matrix fluid and the phenomenological coupling
coefficient has been chosen asθ = 0.01. The phenomeno-
logical parameter,p, is not taken as the viscosity ratio of the
blend components, but it is related to the interfacial elastic-
ity in Figs. 1 and 2, p = −η∗/ηc. The ratio of relaxation
timesλC/λS is adjusted to fit experimental data.

Fig. 1a–dshow the steady-state viscometric functions of
the PIB/PDMS blend, which are normalized with respect
to their steady-state values.Fig. 1ashows the steady flow
curves ofηs(γ̇) for the pure PDMS matrix fluid (solid line)
and for the PIB/PDMS blends withφ = 0.1 (dashed line)
andφ = 0.3 (dotted line). Experimental data points were
taken from Ref.[24]. We obtain a satisfactory fit for the
flow curve of the matrix fluid (circles) and for theφ = 0.1
blend (squares). For volume fractions as high asφ = 0.3,
the power-law behavior is not recovered with our set of
parameters. Since the model is strictly applicable only to
low concentration blends, this observation is to be expected.

Fig. 1. Model predictions of the continuum equations for constant droplet
distributionn = 1, as a function of shear-rate for three different dispersed
phase concentrations,φ = 0 (solid lines), 0.1 (dashed lines), and 0.3
(dotted lines). Other model parameters areG = 7300,k = −2 (for φ = 0);
G/Γ = 30, θ = 0.01, k = −2 (for φ �= 0); p = −ΓλS/GλC. The ratio
of relaxation times has been taken as a fitting parameter:λC/λS = 0.03
(φ = 0), 0.012 (φ = 0.1), 0.04 (φ = 0.3). The viscometric functions have
been normalized with respect to their zero shear-rate values. Symbols are
experimental data from Ref.[24].

Fig. 1bdisplays the steady-state first normal stress coef-
ficient as a function of shear-rate. Also here we observe a
satisfactory fit for theφ = 0.1 blend, whereas the onset of
the shear thinning behavior is not recovered for theφ = 0.3
blend.Fig. 1c–hshow further solutions of the system equa-
tions for which no experimental data are available. Note that
for the pure matrix fluid, the EWM model predictsΨ2 = 0
and no droplet morphology is present. Therefore, only the
predictions of the two blends are reported in the remaining
graphs ofFig. 1. Fig. 1cdisplays the shear thinning behavior
of the second normal stress coefficient,Ψ2, for theφ = 0.1
and the 0.3 blend.Fig. 1dshows the ratio of the two normal
stress coefficients. Forφ = 0.1, we recoverΨ2/Ψ1 ≈ −0.8
being considerably larger than for polymer melts, whereas
for φ = 0.3 a smaller value ofΨ2/Ψ1 ≈ −0.5 is recovered
from the system equations. This value is close to the stress
tensor predictions of the Maffettone-Minale (MM) Model,
Ψ2/Ψ1 = −0.5, cf. Ref.[23], which has also been included
in Fig. 1d. In Fig. 1e–hwe display the morphological charac-
teristics of the polymer blend, which are represented by the
average magnitude of the three semiaxes of the ellipsoidal
droplets and the average orientation of the droplets with re-
spect to the flow direction. The semiaxes of the droplets are
the square roots of the eigenvalues of the droplet configura-
tion tensor,S [3]. The droplet semiaxes in the flow direction,
in the direction of the shear gradient, and in the direction

Fig. 2. The same asFig. 1 for start-up of steady shearing flow as a function
of shear strain for theφ = 0.1 blend and three different shear rates,
γ̇ = 0.27 s−1 (solid lines), 1.38 s−1 (dashed lines), and 2.77 s−1 (dotted
lines) corresponding to the filled symbols inFig. 1. The shear viscosities
in (b) are normalized with respect to the zero shear-rate viscosity.
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of the vorticity axis are denoted withL, B, W , respectively.
For steady shear flow, the major droplet axis,L, increases
and the minor droplet axis,B, decreases with respect to the
equilibrium droplet radius (Fig. 1e and f). However, the vor-
ticity axis, W , can be greater than, smaller than, or equal
to unity upon start-up of flow and the droplets are thus ei-
ther oblate or prolate. InFig. 1g, we have oblate droplets
(W > 1) for theφ = 0.1 blend and prolate droplets (W < 1)
for theφ = 0.3 blend. The orientation angle,χ, is the angle
between the eigenvector corresponding to the largest eigen-
value of theS-tensor and the flow direction; it is defined as
χ = 1/2 arctan [2S12/(S11 − S22)]. This quantity decreases
for increasing shear rate,Fig. 1h.

Very recently, Guido et al.[19] studied the steady-state
deformation of single Newtonian droplets in a viscoelas-
tic matrix. For the continuous and the dispersed phase a
non-Newtonian polyisobutylene (PIB) and silicon oil were
used, respectively. For viscosity ratiosp = −1 and−0.1,
steady-state prolate droplets have been observed.

Fig. 2displays transient solutions of the continuum equa-
tions for start-up of steady shearing flow for theφ = 0.1
blend assuming again a constant DDF. Sample calculations
were carried out for three different shear rates,γ̇ = 0.27 s−1

(solid lines), 1.38 s−1 (dashed lines), and 2.77 s−1 (dotted
lines), which correspond to the abscissas of the filled squares
in Fig. 1a. Material parameters are the same as inFig. 1 for
the 10wt% PIB/PDMS blend, i.e.,G/Γ = 30, θ = 0.01,
k = −2, andλC/λS = 0.012. Fig. 2a–ddisplay the tran-
sient viscometric behavior of the system equations showing
a typical non-linear viscoelastic response as encountered of-
ten in synthetic polymer rheology. The transient shear stress,
σ12, and the shear viscosity,ηs = σ12/γ̇, (Fig. 2a and b)
show a rapid approach to their steady-state values, which
are attained atγ ≈ 5 shear strain units. The shear viscos-
ity in Fig. 2bhas been normalized with respect to the zero
shear-rate value. The first normal stress difference inFig. 2c
is positive and shows a monotonic increase for the low-
est shear-rate (γ̇ = 0.27 s−1, solid line), whereas a slight
overshoot is seen for the higher shear rates (γ̇ = 1.38 s−1,
2.77 s−1, broken lines). The steady-state value ofN1 is at-
tained at strains ofγ ≈ 10, being twice as high as the strains
that are necessary to attain a steady-state shear stress. The
first normal stress difference is approximately one order of
magnitude smaller than the shear stress. The second normal
stress difference inFig. 2d is negative, and of the same or-
der of magnitude as the first normal stress difference. Both
normal stress differences,N1 andN2, show a similar qual-
itative behavior as a function of strain rate in the regime of
shear rates shown inFig. 2.

Fig. 2e–hdisplay the transient morphological properties
of the φ = 0.1 blend for start-up of steady shearing flow.
For the low shear-rate,̇γ = 0.27 s−1 (solid line), we recover
a monotonic approach of the droplet axes and the orienta-
tion angle towards their steady-state values. For the highest
shear-rate,̇γ = 2.77 s−1 (dotted line), a pronounced over-
shoot is observed inL, which goes along with slight under-

shoots in the two minor droplet axes,B andW . For all shear
rates shown inFig. 2, the droplet shape evolves towards a
oblate, sheet-like configuration.

Levitt et al.[25] report transient morphological measure-
ments of a single polypropylene droplet in a viscoelastic
matrix with G/Gd ≈ 0.3, whereGd is the elastic modulus
of the dispersed phase. Immediately after start-up of steady
shear flow, an increase of the vorticity axis to 40% of its
equilibrium value is observed. For higher shear strains, the
vorticity axis decreases and a prolate droplet is recovered.

In the above sample calculations, we see that the tran-
sient first normal stress difference is approximately one or-
der of magnitude smaller than the shear stress (σ12 � N1)
for the shear rate regime investigated inFig. 2. The changes
that the externally imposed flow field induces in the droplet
morphology are as large as 70% for the major droplet axis,
L. For the minor droplet axis,B, and for the vorticity axis,
W , we recover variations of 50 and 15%, respectively, for
a shear-rate as high asγ̇ = 2.77 s−1, and a steady state is
recovered from the model. This may be due to the viscoelas-
tic similarity between the matrix and the interface, which is
quantified in terms ofG/Γ = 30 andλC/λS = 0.012. With
these values, we calculateΨ1c/Ψ1d ≈ 4×10−3 for the ratio
of zero shear-rate first normal stress coefficients.

In what follows, we wish to solve the continuum equations
for a polymer blend with a high viscoelastic contrast between
the matrix phase and the interface and to investigate whether
a large viscoelastic contrast of the blend components allows
for highly deformed microstructural constituents such as
fibres or sheets. This is of technological importance since
in processing one is interested in the creation of a strongly
deformed droplet morphology with a high amount of
interface.

4.2. HPC/PDMS600 blend with high viscoelastic contrast

In Figs. 3 and 4, we present sample calculations for a
polymer blend with a strong viscoelastic contrast between
the two phases. Also for the present calculations, we as-
sume a constant DDF, i.e.,n = 1. However, we take the
phenomenological coefficient,p, as an independent quan-
tity, i.e., p = −ηd/ηc corresponds to the viscosity ratio of
the blend components. Polymer blends with a strong vis-
coelastic contrast are of technological importance because
it is possible to produce highly deformed inclusions (e.g.,
fibres or sheets), by means of modest mechanical deforma-
tion of the blend. Kernick and Wagner[26], e.g., examined
a polymer blend of 5 wt.% hydroxypropyl cellulose (HPC,
ηd ≈ 300 Pa s) in a PDMS (ηd = 600Pa s) matrix by means
of rheology and small angle neutron scattering. In this sys-
tem, the large viscoelastic contrast between the matrix and
the dispersed liquid-crystalline polymer phase is due to the
phenomenon that HPC displays a phase transiton from the
tumbling to the flow aligning regime that correlates with a
sign change of the first normal stress difference causing a
Ψ1c/Ψ1d � 1.
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Fig. 3. The transient shear stress,σ12, and first normal stress difference,
N1 (left column) and the transient droplet axes,L, B, W (right column)
for four different shear rateṡγ = 0.01 (first row), 0.02 (second row),
0.05 (third row), and 0.2 (fourth row). The blend components have a
strong viscoelastic contrast withG/Γ = 106 and λC/λS = 103. The
phenomenological coefficientp = −0.5 is taken as the viscosity ratio of
the blend components, i.e., an independent model parameter. Other model
parameters areφ = 0.05, θ = 0.01, andk = −0.17. The dashed lines in
(c) and (d) are fork = −1.3.

Fig. 3 shows calculations for a polymer blend with dis-
persed phase concentrationφ = 0.05, and viscosity ratio
p = −0.5. In the present model, the droplet phase is as-
sumed to be Newtonian and hence anelastic. Only the first
normal stress difference of the matrix and the interface can
be varied in the model to tune the viscoelastic difference
between the two phases. In order to mimic the strong vis-
coelastic contrast between the two phases, we have taken
G/Γ = 106, andλC/λS = 103; i.e., the ratio of the zero
shear-rate first normal stress coefficient of the matrix and the
interface in the steady state isΨ1c/Ψ1d = 1012. The EWM
power-law index for the continuous phase has been chosen
ask = −0.13, reproducing the shear thinning behavior of
the PDMS matrix (cf.Fig. 7 in Ref. [26]).

Fig. 3 shows transient rheological and morphological
properties of the model blend for start-up of steady shearing
flow for four different shear rates:̇γ = 0.01 (a), γ̇ = 0.02
(b), γ̇ = 0.05 (c), andγ̇ = 0.2 (d). For the lowest shear-rate
portrayed inFig. 3a, we observe a monotonic increase of

Fig. 4. The same asFig. 3 for the transient droplet semiaxes,L, B, and
W , as functions of the transient shear stress,σ12, for four different shear
rates: (a)γ̇ = 0.01, (b) γ̇ = 0.02, (c) γ̇ = 0.05, (d) γ̇ = 0.2.

the shear stress,σ12, and the first normal stress difference,
N1, to their respective steady-state values. Note that in the
low shear-rate regime, the shear stress is always bigger than
the first normal stress difference, which corresponds to a
system with a small viscoelastic contrast as studied, e.g.,
in Figs. 1 and 2. In this shear-rate regime, only relatively
small droplet deformations are observed. In particular, the
vorticity axis of the doplet increases slightly and reaches
a steady-state value that is approximately 4% above its
equilibrium value in the undeformed state. InFig. 3b(γ̇ =
0.02), the shear stress is bigger than the first normal stress
difference only in the small shear strain regime,γ < 1.5
(γ∗ denotes the shear strain whereσ12 = N1 which we can
identify from Fig. 3b–d). Forγ > γ∗, the first normal stress
difference becomes greater than the shear stress which may
be due to the high values ofG/Γ andλC/λS. The crossover
of the two stresses correlates with a strong increase of the
vorticity axis of the droplet,W , for shear strainsγ ≈ γ∗.
At the steady state, the vorticity axis,W , is approximately
18% above its equilibrium value, whereas forγ̇ = 0.01 an
increase of approximately 4% is observed at the steady state
(Fig. 3a). For even higher shear rates,γ̇ = 0.05 and 0.2,
the crossover of the first normal stress difference,N1, and
the shear stress,σ12, shifts towards smaller shear strains
(γ∗ ≈ 1), and the first normal stress difference becomes
considerably larger than the shear stress (Fig. 3c and d).
For these shear rates, two different droplet deformation
regimes can be identified. Forγ > γ∗, we observe only a
slight droplet widening in the vorticity direction, whereas
the droplet widening becomes very strong forγ � γ∗. In
the latter strain-rate regime, the strong droplet widening
correlates with the droplet extension in the flow direction
and the droplets deform into thin disks withL ≈ W ≈ 10
andB ≈ 0. For smaller EWM power-law indices, the steady
state is recovered at smaller shear strains. This is illustrated
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in Fig. 3c and d, where predictions fork = −1.3 (dashed
lines) are included.

Fig. 4 shows the transient droplet semiaxes as functions
of the transient shear stress for four different shear rates.
We observe that the time evolution behavior of the droplet
semiaxes correlates with the shear stress. For the two highest
shear rates inFig. 4c–d, the major droplet axis,L, and the
vorticity axis,W , start to increase linearly forσ12 � 800
and�1200, approximately.

In the following subsection, we want to present sample
calculations for the full set of continuum equations that have
been derived in the previous section, taking into account a
variable DDF, which is allowed to interact mutually with
the externally imposed flow field, the viscoelasticity of the
matrix phase, and the droplet deformation as dictated by the
model equations.

4.3. Blends with variable and constant droplet
distribution

In what follows, we present sample calculations for a
blend with a variable DDF, and we compare our model pre-
dictions with the predictions of a reduced model that as-
sumes a constant DDF, i.e.,n = 1. We do so in order to
investigate the effect of a non-uniform DDF on the morpho-
logical properties and the rheological response of the de-
forming blend. Again, the phenomenological coefficient,p,
is taken as an independent model parameter for the present
set of sample calculations; i.e.,p = −ηd/ηc corresponds to
the viscosity ratio of the blend components. Moreover, we
takek = 0 for the EWM power-law index; i.e., we neglect
the shear thinning behavior of the matrix fluid for the sam-
ple calculations in this section.

Grizzuti and Bifulco[27] studied the effect of coalescence
and break-up on the steady-state morphology of immiscible
polymer blends in shear flow. In their experimental studies,
coalescence and break-up phenomena prevail over the effects
of droplet deformation.

Fig. 5shows the rheometric and the morphological prop-
erties as a function of shear-rate,γ̇, for two model blends
with p = −0.25, G/Γ = 4 (solid lines) andp = −1.25,
G/Γ = 4 (dashed lines), solving the full set of model equa-
tions (6a) and (14a)–(14c)for steady shearing flow. The
dispersed phase concentration isφ = 0.1. The thin dotted
lines in Fig. 5 are predictions for a constant droplet distri-
bution and analogous material parameters. We have taken
λCλS/λ

2
n = 1 for the ratio of relaxation times of the blend,

and a phenomenological coupling coefficientθ = 0.001.
Fig. 5a–dshow the non-linear rheometric properties as

predicted from the system equations for steady shear flow.
All viscometric functions possess a Newtonian plateau for
low shear rates, a power-law regime for intermediate shear
rates, and another Newtonian plateau in the high shear-rate
regime (Fig. 5a–c). The ratio of the normal stress coeffi-
cients inFig. 5d is non-trivial and decreases with increas-
ing shear-rate. The viscometric properties of the blends with

Fig. 5. Model predictions of the continuum equations for a variable DDF
as functions of shear-rate for two different viscosity ratios,p = −0.25
(solid lines) andp = −1.25 (dashed lines). For the ratio of elastic moduli,
the relaxation times, the coupling parameter, and the EWM power-law
index, we choseG/Γ = 4, λCλS/λ

2
n = 1, θ = 0.001, and k = 0,

respectively. Dispersed phase concentration isφ = 0.1. The thin dotted
lines are model preditions for a constant droplet distribution, i.e.,n = 1.

variable and constant DDF are very similar for the present
choice of model parameters.

Fig. 5e–hshow the deformation induced microstructural
changes of the droplet morphology and the orientation of
the micro-droplets with respect to the external flow field.
The major droplet axis,L, increases and the minor droplet
axis, B, decreases with increasing shear-rate. For the low
viscosity ratio blend,p = −0.25, we observe stronger vari-
ations in the major and in the minor droplet axes than for
thep = −1.25 blend. The steady-state behavior of the vor-
ticity axis of the droplet,W , is different for the two blends.
Whereas a droplet widening effect,W > 1, is calculated for
the low viscosity ratio,p = −0.25, a droplet compression
effect,W < 1, is obtained for the high viscosity ratio,p =
−1.25. The orientation angle,χ, decreases as a function of
shear-rate. FromFig. 5e–hwe see that a variable DDF influ-
ences the steady-state morphological properties as obtained
from the model equations, if we compare with the predic-
tion for a constant DDF. This is especially true in the high
shear-rate regime,̇γ � 0.2. Note that for very high shear
rates, the viscometric and the morphological properties of
the blend seem to approach constant plateau values. Finally,
it should be mentioned that the continuum equations predict
steady-state solutions for a wide shear-rate regime, extend-
ing from a low shear-rate region with a lower Newtonian
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Fig. 6. The same asFig. 5 for the properties of the steady DDF,f(trS/3):
(a) position of the maximum, trS/3, (b) maximum of the distribution
function,n, (c) volume fraction of residual droplets left and right from the
inflection pointsR± (τ+, τ−) and total volume fraction of residual droplets
(τ+ + τ−), (d) volume fraction of the droplets around the maximum of
the droplet distribution function,σ.

plateau to high shear rates with an upper Newtonian plateau.
In Fig. 6, we examine the properties of the steady-state

DDF for p = −0.25 (solid lines) andp = −1.25 (dashed
lines) as functions of shear-rate. We use the same model
parameters as inFig. 5. Fig. 6ashows the average radius of
the representative micro-droplets. This quantity increases for
both viscosity ratios reported inFig. 6 as the shear-rate,γ̇,
is increased. For shear rates as high asγ̇ ≈ 0.8, the increase
in the average droplet radius becomes less pronounced and
seems to reach a plateau value (cf.Fig. 5). The behavior of
the average droplet radius shown inFig. 6acorresponds to
a shift of the location of the maximum of the DDF towards
higher values of̃R ≡ trS/3 as the shear rate,γ̇, is increased
(cf. Fig. 7).

Fig. 6bshows the solution of the droplet number density
equation,Eq. (14c), for steady shear flow. We note that the
representative number density of micro-droplets decreases
for thep = −0.25 blend, whereas it increases for thep =
−1.25 blend with increasing shear-rate,γ̇. This means that
the steady-shear DDF is smeared out forp = −0.25 (cf.
Fig. 7a), and it is compressed forp = −1.25 (cf. Fig. 7b).
Hence our model equations predict a shear-induced droplet
coalescence in the low viscosity regime, and a shear-induced
droplet break-up in the higher viscosity ratio regime.

In Fig. 6c and d, we show several characteristic droplet
volume fractions,τ−, τ+, σ, which are calculated from the
DDF:

τ− = 1

V

∫ R−

0
f(R)dR, σ = 1

V

∫ R+

R−
f(R)dR,

τ+ = 1

V

∫ ∞

R+
f(R)dR, (16)

wheref(R) is the DDF,Eq. (1), and

Fig. 7. The DDF for steady shearing flow and two viscosity ratios
(a) p = −0.25, (b) p = −1.25, with the shear-rate as a parameter
(0 ≤ γ̇ ≤ 1.0). The dotted line is the trajectory of the maximum of the
DDF in the trS/3–f/φ plane, with γ̇ as a parameter, and the vertical
dashed line marks the maximum of the equilibrium DDF forγ̇ = 0. The
inset shows the equilibrium DDF (dashed line), which has been superim-
posed onto the DDF for the highest shear-rate (solid line). Vertical dotted
lines mark the position of the inflection points of the two DDFs,R±.

R± = R̃
q

√√√√3

2
±
√

5q − 1

q − 1
, (17)

are the inflection points of the DDF withq > 1. The first in-
tegral in the aboveEq. (16), τ−, represents the volume frac-
tion of micro-droplets with droplet radii smaller thanR−,
whereas the last integral,τ+ corresponds to the volume frac-
tion of droplets with radii larger thanR+. The second inte-
gral,σ, is the number density of droplets with radii between
R− andR+, and it is a measure of the width of the center
part of the DDF, i.e., the volume fraction of droplets that
are found around its maximum atR̃. Consequently,τ− + τ+
might be considered as the total volume fraction of small,
residual droplets (e.g., daughter or satellite droplets).Fig. 6c
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shows thatτ− increases as a function of shear-rate, whereas
τ+ decreases with increasing shear-rate. This means that the
left edge of the DDF is smeared out as the shear-rate is in-
creased, whereas the right edge is compressed and becomes
steeper as the shear-rate increases (cf.Fig. 7a and b). The
total volume fraction of residual droplets,τ− + τ+, is not
a constant, but it increases with increasing shear-rate. This
is mainly due to a decrease of the third integral,σ, which
is found to decrease for the low viscosity ratio blend,p =
−0.25, as well as for the higher viscosity ratio blend,p =
−1.25 (Fig. 6d).

In Fig. 7, we display a band of steady-state DDFs forp =
−0.25 (Fig. 7a) andp = −1.25 (Fig. 7b), which have been
discussed inFig. 6. In Fig. 7, the shear-rate is a parameter,
0 ≤ γ̇ ≤ 1.0. The dotted lines inFig. 7are the trajectories of
the maximum of the DDF witḣγ as a parameter, whereas the
vertical dashed lines denote the maximum of the equilibrium
DDF, γ̇ = 0. The set of model parameters is the same as in
Figs. 5 and 6. We see clearly inFig. 7that the left edges of the
DDF are smeared out for increasing shear rate,γ̇, whereas
the right edges become steeper as the shear rate is increased,
although we have a qualitatively different behavior for the
representative number density of droplets,n (cf. Fig. 3b
and c). The insets inFig. 7show the DDF foṙγ = 1.0 (solid
lines) together with the equilibrium DDF (dashed lines),
which have been shifted onto the DDF forγ̇ = 1.0. The
vertical dotted lines in the two insets denote the positions
of the inflection points of the two DDFs,R±. Note that the
position of the inflection points separate from each other
for thep = −0.25 blend (Fig. 7a), whereas they approach
each other for thep = −1.25 blend (Fig. 7b). However,
the volume fraction of droplets between the two inflection
points, σ, decreases with respect to the equilibrium DDF
for both viscosity ratios (cf.Fig. 6d). Although the DDF
in Fig. 7b is compressed, the volume fraction of residual
droplets,τ+ + τ− increases. If dispersity of the system is
defined as the distance between the inflection points of the
DDF then we see that the degree of dispersity increases for
the blend inFig. 7aand it decreases for the blend inFig. 7b.

In Figs. 8–10, we show sample calculations for start-up
of steady shearing flow for ap = −0.25,G/Γ = 4 blend
with φ = 0.1 dispersed phase concentration,λCλS/λ

2
n = 1,

θ = 0.001, andk = 0. Fig. 8 shows the transient behavior
of the model as a function of shear strain,γ, for start-up of
steady flow with three different shear rates,γ̇ = 0.2 (solid
lines), 0.4 (dashed lines), and 0.8 (dotted lines).Fig. 8a
and bdisplay the transient shear stress,σ12, and the tran-
sient shear viscosity,ηs = σ12/γ̇, respectively. The shear
stress shows a rapid, monotonic increase for small shear
strains and a subsequent overshoot before the steady state is
attained. The steady shear stress increases with increasing
shear rate. The transient shear viscosity inFig. 8b shows
the same qualitative behavior as the shear stress; i.e., a
rapid increase, an overshoot, and an approach towards its
steady state as the shear strain increases during the start-up
experiment.

Fig. 8. The same asFig. 5 for start-up of steady shearing flow for a
p = −0.25 blend and three different shear rates,γ̇ = 0.2 (solid lines),
0.4 (dashed lines), 0.8 (dotted lines). The thin dotted lines are model
predictions for a constant DDF.

In Fig. 8c, d, the two normal stress differences are dis-
played. Note that the first normal stress difference,N1, is
larger than the shear stress, whereas the second normal stress
difference,N2, is nearly equal to the shear stress.

The morphological characteristics of our model equations
are shown inFig. 8e–h. The transient behavior of the major
droplet axis,L, correlates with the transient stresses; i.e.,

Fig. 9. The same asFig. 6 for the function properties of the transient DDF
for p = −0.25 and three different shear rates,γ̇ = 0.2 (solid lines), 0.4
(dashed lines), 0.8 (dotted lines). Other model parameters are as inFig. 8.
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a steep increase is observed for small strains, which is fol-
lowed by an overshoot and an approach to the steady state.
The minor droplet axis,B, shows an undershoot for the small
shear rate,̇γ = 0.2 (solid line), and a monotonic decrease
for the high shear rate,̇γ = 0.8 (dotted line). Foṙγ = 0.2,
the vorticity axis of the droplets,W , shows a transition from
a prolate configuration for small strains to an oblate con-
figuration for small shear strains (solid line inFig. 8g). For
the other two shear rates, the droplet configuration is oblate
for all shear strains (broken lines inFig. 8g). In Fig. 8h,
the transient orientation angle of the droplet with respect
to the external flow field is shown. For the smallest shear
rate (solid line), an undershoot in the orientation angle is
obtained. FromFig. 8e–h, we see that transient droplet de-
formation and orientation become more pronounced as the
shear rate is increased (cf.Fig. 5e–h). The thin dotted lines
in Fig. 8 are predictions for the blend with a constant DDF,
i.e.,n = 1.

In Fig. 9, we examine properties of the transient DDF
as functions of shear strain for the same model parameters
as in Fig. 8. Fig. 9a shows the transient behavior of the
representative average droplet radius of the micro-droplets.
This quantity shows a pronounced overshoot and reaches a
steady state forγ ≈ 40 shear strain units. The solution of
the droplet number density equation,Eq. (14c), is reported
in Fig. 9b. We recover an increase of the representative num-
ber density of droplets immediately after start-up of flow of
approximately 10–50%, which is followed by a rapid de-
crease of this quantity towards the steady-state value. This
value isn ≈ 0.9 for the lowest shear rate (γ̇ = 0.2, solid
line), and ofn � 0.5 for the highest shear rate (γ̇ = 0.8,
dotted line). This means that for start-up of steady shear
flow, a transition from a break-up to a coalescence regime is
obtained with the model. The volume fractions of residual
droplets,τ+, τ−, andτ+ + τ− are shown inFig. 9c. Note
that these volume fractions also show a strongly non-linear
behavior with an overshoot (forτ− andτ+ + τ−) or an un-
dershoot (forτ+). Whereas the small droplet radius regime,
τ−, is smeared out for increasing shear strains, the large
droplet radius regime, represented byτ+, is compressed as
the shear strain increases. The total volume fraction of resid-
ual droplets,τ+ + τ−, is approximately 25% forγ = 0, and
reaches a value of approximately 33% at the steady state.

Fig. 9d, displays the volume fraction of droplets with radii
between the inflection points,σ. This volume fraction de-
creases rapidly for small shear strains, shows an undershoot
at γ ≈ 7, and reaches a steady-state value forγ � 40. The
volume fraction of droplets with radii between the two in-
flection points of the DDF is approximately 75% at equi-
librium, and decreases to approximately 67% at the steady
state. FromFigs. 9c and d, we deduce that the volume frac-
tion σ is reduced and the total volume fraction of residual
droplets,τ++τ−, is increased for start-up of steady shearing
flow.

Fig. 10shows two bands of transient DDFs for the same
set of model parameters as inFigs. 8 and 9. The shear rates

Fig. 10. The same asFig. 7 for the transient DDF with shear strain as a
parameter (0≤ γ ≤ 80) and two shear rates: (a)γ̇ = 0.4, (b) γ̇ = 0.8.
The dotted line is the trajectory of the maximum of the DDF in the
trS/3–f/φ plane, and the vertical dashed line denotes the equilibrium
DDF for γ = 0.

are γ̇ = 0.4 (Fig. 10a), γ̇ = 0.8 (Fig. 10b) and the di-
mensionless strain, 0≤ γ ≤ 80, has been taken as a pa-
rameter. Again, the vertical dashed lines mark the position
and the height of the equilibrium DDF, whereas the dotted
lines are the trajectories of the maximum of the DDF in the
trS/3− f/φ plane. It can be seen fromFig. 10that both the
location of the maximum (the representative average droplet
radius) and the height of the DDF (the number density of
droplets with the representative average droplet radius) in-
crease for low shear strains and then decrease as the shear
strain increases (cf.Fig. 9a and b). This effect is more pro-
nounced inFig. 10b for the shear-rate,̇γ = 0.8. Further-
more, we see clearly inFig. 10that the left edge of the DDF
is smeared out, whereas the right edge becomes steeper as
the shear strain increases.

Figs. 11–13summarize model predictions for uniaxial
elongational flow. We have taken the same model param-
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Fig. 11. Model solution for uniaxial elongational flow for various elonga-
tion rates and viscosity ratios: (a–c) transient calculations forp = −0.25
and three different elongation rates, (d–f) steady-state calculations for
p = 0.25 (solid lines) andp = −1.25 (dashed lines). The other model
parameters are the same as inFig. 5. Thin lines are predictions for a
constant DDF.

eters as before, i.e.,G/Γ = 4, φ = 0.1, λCλS/λ
2
n = 1,

θ = 0.001, and a vanishing EWM power-law index,k = 0.
Again, we have studied two different viscosity ratios,p =
−0.25 and−1.25.Fig. 11shows morphological and visco-
metric data obtained from the continuum model. In the left
column (Fig. 11a–c), we show the start-up behavior of the
model forp = −0.25 and three different elongation rates,
ε̇ = 0.05 (solid lines), 0.1 (dashed lines), and 0.2 (dotted
lines). For low elongation rates, the droplet semiaxes inFig.
11a and b show a monotonic increase and reach a steady
state forε ≈ 4. For the highest elongation rate,ε̇ = 0.2,
a slight overshoot/undershoot is detected in the transient
droplet semiaxes. The transient elongational viscosity,ηe, in
Fig. 11c increases monotonically foṙε = 0.05 (solid line)
and shows a strongly non-linear behavior forε̇ = 0.1 and 0.2
(broken lines). In the right column (Figs. 11d–f), we display
the steady-state morphological and viscometric data as cal-
culated from the model for two viscosity ratios,p = −0.25
(solid lines) andp = −1.25 (dashed lines). For elongation
ratesε̇ � 0.2, we observe an increase of the major droplet
axis,L, and a decrease of the minor droplet axis,B, (Fig. 11d
and e). For the low viscosity ratio blend, a strain-softening
regime is recovered foṙε > 0.1, whereas the high viscosity
ratio blend shows only a slight strain hardening (Fig. 11f).

For ε̇ � 0.2, the elongational viscosity becomes very large.
The thin dotted lines inFig. 11are predictions of a constant
DDF.

In Fig. 12, we display the properties of the steady DDF
for uniaxial elongational flow as a function of elongation
rate, ε̇, for two different viscosity ratiosp = −0.25 (solid
lines) andp = −1.25 (dashed lines). The other model pa-
rameters are as inFig. 11. Fig. 12a shows that the steady
DDF for uniaxial elongational flow is shifted towards higher
droplet radii, trS/3, for ε̇ > 0.1. Furthermore, the height of
f(R) increases as the elongation rate is increased (Fig. 12b).
This means that the DDF is shifted to the right and it is
compressed as the elongation rate increases (cf.Fig. 13).
Fig. 12c shows that the volume fraction of droplets with
radii smaller thanR− (τ−) increases with increasing elon-
gation rate, whereas the volume fraction of droplets with
radii greater thanR+ (τ+) decreases. The total volume frac-
tion of residual droplets,τ+ + τ−, varies between 26 and
37%, approximately, foṙε > 0.2. Fig. 12d shows the vol-
ume fraction of droplets with radii betweenR+ andR− (σ).
This quantity decreases as the elongation rate is increased,
and varies between 74 and 63%, approximately. Note that
the results ofFig. 12c and dare qualitatively similar to the
results obtained for steady shearing flow (cf.Fig. 6). Fig. 13
shows the steady-state DDF for uniaxial elongational flow
for p = −0.25 and−1.25, using the elongation rate as a pa-
rameter, 0≤ ε̇ ≤ 0.3. Again, the vertical dashed lines mark
the equilibrium DDF, whereas the dotted lines are the tra-
jectories of the maximum of the DDF. Note that the DDF is
compressed and becomes as high asn ≈ 10 for ε̇ = 0.3 and
p = −0.25, i.e., we observe an elongational flow-induced
break-up. Recently, the phenomenon of flow-induced coa-
lescence in extensional flow was investigated in[28]. The
volume fraction of droplets between the inflection points of

Fig. 12. The properties of the steady-state DDF for two different viscosity
ratios,p = −0.25 (solid lines) andp = −1.25 (dashed lines), for steady
uniaxial elongational flow. Other model parameters are the same as in
Fig. 11.
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Fig. 13. The DDF for steady uniaxial elongational flow and two viscosity
ratios, (a)p = −0.25 and (b)p = −1.25. The dotted lines are the
trajectories of the maximum of the DDF in the trS/3–f/φ plane with
ε̇ as a parameter (0≤ ε̇ ≤ 0.3). The vertical dashed lines mark the
maximum of the equilibrium DDF. In (a) we have included the trajectory
for p = −1.25 (solid line).

the DDF becomes smaller and the volume fraction of drops
outside the center part of the DDF increases as the elon-
gation rate increases (cf.Fig. 12c and d). We see that for
both viscosity ratios the dispersity of the system decreases
because the distance of the inflection points of the DDF be-
comes smaller. On an absolute basis, the dispersity decreases
as the width of the distribution gets narrower.

5. Conclusions

In the present work, a polymer blend with matrix vis-
coelasticity and a narrow droplet size distribution has been
modeled in a Hamiltonian framework of non-equilibrium
thermodynamics. The blend is described in terms of four
thermodynamic variables, including the average momentum
density of the fluid to describe its macroscopic flow, a confor-

mation tensor field to describe the microstructure/rheology
of the matrix phase, a representative droplet shape tensor
to account for the dynamics of the dispersed phase, and the
number density of representative micro-droplets. A Hamil-
tonian functional expressing the total system energy in terms
of these dynamical variables has been postulated, and a set of
dynamical continuum equations for the system variables has
been constructed. The system equations have been solved
for various combinations of model parameters for homoge-
nous flows, assuming a constant and a variable droplet dis-
tribution. In particular, we performed sample calculations
with data of a 10 wt.% PIB/PDMS blend, which had been
studied experimentally by Vinckier et al.[24]. A satisfactory
fit of rheometric data was obtained. Furthermore, sample
calculations for data of a 5 wt.% HPC/PDMS system with
strong viscoelastic contrast of the blend components and
constant droplet distribution were performed to investigate
the influence on the droplet dynamics. The system equations
can predict large droplet deformations, if the ratio of elastic
moduli and relaxation times of the viscoelastic blend com-
ponents is large. Finally, sample calculations for blends with
a variable droplet distribution were performed for start-up
and steady shear and uniaxial elongational flows. The model
predictions were compared with a model working in terms
of a constant droplet distribution. The viscometric and mor-
phological predictions obtained from the model have been
discussed and the steady-state and transient droplet distri-
butions have been studied. Our sample calculations showed
that steady shear flows can decrease as well as increase the
dispersity of the blend whereas for steady uniaxial flow we
found a decrease of the dispersity.
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