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bstract
A thermodynamically consistent polymer blend model was solved numerically to understand the isothermal flow of these complex fluids in the
nnular gap between rotating concentric cylinders. Calculations were performed at various gap widths and differing speeds when the cylinders
ere rotating in the same and opposite directions. The aim of this exercise was to determine the optimal operating conditions under which droplet
reak-up would dominate over coalescence during the flow process, thus producing a nearly homogeneous distribution of very small droplets.
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. Introduction

The development of novel polymers with superior material
roperties has always been an expensive and time-consuming
rocess. Over the previous two decades, it has become standard
ractice to avoid this issue by blending two or more standard
ndustrial polymers together to form an immiscible mixture to
roduce new and improved products with tailored rheological
nd morphological properties. This too, however, is an expen-
ive and time-consuming process of trial and error. The primary
eason for the expense and time consumption is that there cur-
ently exists no industry-standard, working model of immiscible
olymer blends, which would allow intelligent, design-oriented
imulations of polymer blend properties and morphological
haracteristics. Such simulations would dramatically reduce the
ost and inefficiency of polymer blend tailoring, and thus signif-
cantly improve the capability of industrial engineers to design
ovel polymer blends with suitable properties necessary for a
articular application.
Over the past decade, theoreticians began to develop sim-
le models for the dynamical properties of fluids composed of
mmiscible blends. The first model to describe some of the basic
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alescence

roperties of blends was introduced by Doi and Ohta in 1991 [1].
ince then, several additional models have been developed, each
ith an increasing degree of sophistication [2–7]. For instance,
agner et al. [2] produced the first thermodynamically con-

istent model of blends. Maffettone and Minale [3] developed
he first blend model that conserved droplet volume. Dressler
nd Edwards derived a model with a viscoelastic matrix phase
5], and accounted for the coalescence and break-up of droplets
nder flow [6]. These and other models have laid the founda-
ion for future advances in the study of flows of immiscible
lends, but still, not much effort has been expended to examine
he predictions of these models under industrially relevant flow
onditions. Basic calculations with these models are usually per-
ormed under idealistic flow conditions, such as homogeneous
hear or uniaxial extensional flow. However, recent advances
n numerical methodology [8,9] have made possible calcula-
ions with these sophisticated models under inhomogeneous
ow fields that are relevant to the polymer processing industry
10].

Now that real processing geometries can be simulated with
hese models, it is time to test their predictive power by perform-
ng flow calculations in specific flow geometries of industrial

oncern, especially those which are easily reproduced in a lab-
ratory or process setting. In this article, we begin this process
y examining flow of a generic blend between concentric cylin-
ers, rotating in the same or opposite directions. Specifically,

mailto:marco.dressler@ilw.agrl.ethz.ch
dx.doi.org/10.1016/j.jnnfm.2007.10.022
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e want to answer the following question, which is particularly
elevant to industrial processes. How can the microstructure of
mmiscible viscoelastic fluids be tailored to produce blends with

any very small, deformed, and uniformly oriented droplets
sing concentric cylinder devices? This is particularly relevant
ince most industrial engineers would like to produce blends
or processing which have the maximum number of droplets,
ith specific orientations, in order to obtain the optimal material
roperties from the blended polymers.

Studies on deformation and break-up of isolated Newtonian
roplets in a Newtonian matrix have a long tradition, begin-
ing with theoretical and experimental work for steady [11] and
ransient homogeneous flows [12]. Later, droplet interactions in
lends of Newtonian liquids were taken into account explicitly to
odel non-dilute systems [13]. Furthermore, early studies [14]

n capillary instabilities of fluid threads under idealized condi-
ions were developed [15] to take into account Newtonian flow
ehavior of the phases, as well as a constant extension rate of
he surrounding fluid. Theories of droplet deformation and cap-
llary jet break-up have been reconsidered and compared with
xperimental data over extended regimes of blend parameters
viscosity ratio, interfacial tension) and for creeping flow con-
itions in Ref. [16] to predict dispersion performance of static
ixers. Blends of non-Newtonian fluids were studied in Ref.

17].
In the following section, we will introduce the thermodynam-

cally consistent blend model to be used in this examination.
fterward, we will discuss the numerical methodology that

s used to solve the model equations in the concentric cylin-
er geometry. Sample results are presented in the following
ection, with the aim of determining the optimal conditions
or producing the greatest number of deformed and oriented
roplets in this geometry. Conclusions are presented in the final
ection.

. The thermodynamically consistent blend model

We assume that the rheology and microstructure of the
lend is described appropriately in terms of the mass den-
ity, ρ(r, t), the momentum density, M (r, t), the contravariant
econd-rank conformation tensor, C(r, t), the contravariant
econd-rank droplet shape tensor, S (r, t) (with det S = 1), and
he number density of micro-droplets, n(r, t). Mass density
nd momentum density are macroscopic variables describing
he effective density and momentum of the blend, viewed as a

acroscopic thermodynamic system. The conformation tensor,
roplet shape tensor, and number density are internal vari-
bles describing the blend microstructure. A set of dynamic
quations for the five fields can then be derived from non-
quilibrium thermodynamics according to the master equation
18–21]

dF = {F, H} + [F, H]. (1)

dt

n this equation, F is an arbitrary functional of the five fields
ntroduced above, d · /dt is the derivative of a functional with
espect to time, and H is the Hamiltonian. The French and square

o

t

−
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rackets denote the Poisson and dissipation brackets, respec-
ively. They quantify the reversible and irreversible dynamics
f the functional F. In Ref. [6], we used Eq. (1) to derive a set
f flow equations for the dynamic variables mentioned above.
he scope of this article is to solve these flow equations for
teady flows in the annular gap between concentrically rotating
ylinders.

For the Hamiltonian of the polymer blend, we make the fol-
owing constitutive assumption [6]

Hm[M, C, S, n] = K[M] + A[C, S, n]

=
∫ [

MαMα

2ρ
+ 1

2
(1 − φ)G

K

kBT
IC

1

−1

2
(1 − φ)G ln

(
det

KC
kBT

)
+ 1

2
φΓ

n

n0
IS

2

−1

6
φΓ

K

kBT
ln

(
n

n0

)
IC

1 ε(IS
1 , IS

2 )

]
d3x, (2)

here the integration is performed over the constant total sys-
em volume. In this equation, φ is the volume fraction of the
ispersed phase, G is the elastic modulus of the matrix phase,
is the characteristic elastic constant of matrix molecules, Γ

s the elastic modulus of the droplet interface, n0 is the num-
er density of micro-droplets in the quiescent state, and IX

i (X
s either C or S) is the ith scalar invariant of the conformation
ensor or the droplet shape tensor. The first term in the inte-
ral is the kinetic energy of the blend, the second and third
erms account for the elastic energy of the matrix phase, the
ourth term represents the elastic energy of the interface, and
he last term is a mixing term to model elastic droplet/matrix
nteractions. The Hamiltonian of Eq. (2) does not take into
ccount droplet–droplet interactions that depend on average
eparation.

As in the Doi–Ohta Model [1], we use a tensorial and a
calar variable to describe the dispersed phase microstructure.
he Doi–Ohta Model was formulated in terms of a covariant
econd-rank tensor and a scalar variable. They quantify the
rientation/deformation of the interface and the amount of inter-
acial area in a co-continuous system [1] or in a system with
roplet morphology [7]. Thus, the Doi–Ohta variables describe
hase inversion if this process passes through a co-continuous
tate, although the description of droplet shapes in terms of the
oi–Ohta variables is awkward [7]. The Hamiltonian (2) is writ-

en in terms of a contravariant second-rank tensor to describe
eformation and orientation of droplets, and a scalar variable
or the number density of droplets. With this interpretation of
he variables, it is not possible to describe phase inversion or
o-continuous systems. It is not clear whether a different inter-
retation of the contravariant, second-rank tensor S and the
calar variable n would allow description of the co-continuous
nd dispersed phase systems.

For steady, fully developed, and incompressible flow, the set

f time evolution equations derived in Ref. [6] is

r L = 0, (3a)

ρv · ∇v − ∇p + ∇ · σ = 0, (3b)
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−v · ∇C+C · LT+L · C − (1 − φ)
1

λC

(
IC

1

3

)−k (
C−kBT

K
1
)

+1

3
φ

Γ

G

1

λC

(
IC

1

3

)−k

ln

(
n

n0

)
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1 C

−1

2

√
Γ

G
(1 + p�)2

φθ
1√

λCλS

(
IC

1

3

)−k/2

×
{

n

n0

[
IS
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3
IS

2 C
]

−1

3

K

kBT
ln

(
n

n0

)
IC

1

(
C · S + S · C − 2

3
IS

1 C
)}

= 0,

(3c)

−v · ∇S − 2

3
tr L S + S · LT + L · S

−(1 + p�)2
p�φ

1

λS

n

n0

(
1

3
IS

1 S − S · S
)

+p�φ
1

λS

[
n

n0
− 1

3

K

kBT
ln

(
n

n0

)
IC

1

IS
1

](
S − 3

IS
2

1

)

−1

2
(1 + p�)2

θ
1√

λCλS

K

kBT

(
IC

1

3

)−k/2

×
[

(1 − φ)

√
G

Γ
− φ

3

√
Γ

G
ln

(
n

n0

)
IS

1

]

×
(

C · S + S · C − 2

3
IC

1 S
)

= 0, (3d)

v · ∇n − φfcI
S
2

1

λn

n

n0
+ φfcI

C
1 IS

1

3

K

kBT

1

λn
= 0, (3e)

here v = M/ρ is the velocity field and L = (∇v)T is the trans-
ose of the velocity gradient tensor. As already mentioned, Eq.
3) is field equation for steady flow. To obtain the full set of
ynamic equations [6], Eq. (3a), should be replaced with the
ontinuity equation for ρ and the right side of Eqs. (3b)–(3e)
hould be replaced with the local derivatives of the variables
, C, S, and n, respectively. These equations are examined in
ection 4 under an imposed inhomogeneous shear flow between
oncentrically rotating cylinders.

Eq. (3a) is the continuity equation for an incompressible
edium. Eq. (3b) is the Cauchy momentum balance for steady,

ully developed flow, where v · ∇v is the non-vanishing contri-
ution to the material derivative, ∇p is the pressure gradient,
nd ∇ · σ is the divergence of the extra stress tensor. The

elocity field has dimensions of (length/time), the pressure and
xtra stress tensor fields of (energy/length3), and the density
f (mass/length3). The constitutive equation for the extra stress
ensor that renders the microstructural Eqs. (3c)–(3e) thermody-

b
s
fi
P
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amically consistent with the Cauchy momentum balance is [6]

= (1 − φ)G

(
K

kBT
C − 1

)
+ φΓ

n

n0

(
IS

1 S − S · S − 2

3
IS

2 1
)

−φ

3
Γ

K

kBT
ln

(
n

n0

)(
IC

1 S + IS
1 C − 1

3
IC

1 IS
1 1
)

. (3f)

he first two terms represent contributions from matrix vis-
oelasticity and droplet deformation, respectively. The third
erm is a contribution from droplet break-up/coalescence. Note
hat Eq. (3f) implies that σ = σT is a symmetric, second-rank
ensor. Eq. (3f) holds for both steady and transient flows.

Eq. (3c) is the conformation tensor equation describing steady
ow of the matrix phase microstructure. The conformation ten-
or, C, has units of (length)2 and it is rendered dimensionless
ith K/kBT , where K is the characteristic elastic constant and

BT is the thermal energy. Since K is related to the second
oment of the end-to-end vector averaged over all configura-

ions, there is a direct microstructural interpretation of C based
n the principles of statistical mechanics. In Eq. (3c), we have
ntroduced λC as the relaxation time related to the long end of
he spectrum of the viscoelastic matrix fluid, k as a power law
ndex according to the Extended White Metzner Model [22],
� = −ηd/ηc as the negative viscosity ratio of the phases [5],
nd θ as a phenomenological coupling parameter which accounts
or the influence of droplet deformation on matrix microstruc-
ure. The first three terms originate from the Poisson bracket
n Eq. (1), and represent Oldroyd’s contravariant deformational
erivative of the conformation tensor, C. The last three terms are
rreversible contributions derived from the dissipation bracket
n Eq. (1). The fourth term describes relaxation of the matrix

olecules, and the last two terms account for the influence
f break-up/coalescence events and droplet deformation on the
atrix fluid conformation.
Eq. (3d) is the droplet shape tensor evolution equation. The

roplet shape tensor, S, appearing in Eq. (3d), is a dimension-
ess second-rank tensor. The reason is that Eq. (3d) is constructed
ith the mapping B → B/(det B)1/3 ≡ S from the Poisson and
issipation brackets for an unconstrained droplet shape tensor
B), with dimension (length)2. The length scale related to the
roplet shape tensor, B, is independent of the length scale of
he conformation tensor, C. In Eq. (3d), λS is a relaxation time
elated to the elastic interface and θ accounts for the effect
f matrix phase deformation on droplet shape. Again, the first
our terms originate from the Poisson bracket and are related
o Oldroyd’s contravariant derivative of the second-rank ten-
or S, under the constant volume constraint, det S = 1 [23].
he last three terms are irreversible contributions, which quan-

ify the effect of flow, droplet break-up/coalescence, and matrix
icrostructural dynamics on drop shape.
Eq. (3e) is the droplet number density evolution equation for

he droplet number density with dimension (length)−3, where fc
s a phenomenological parameter which accounts for the proba-

ility of a coalescence process and λn is a characteristic time
cale that is related to the break-up/coalescence events. The
rst term in Eq. (3e) is the material derivative derived from the
oisson bracket, and the remaining two terms are irreversible
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ontributions stemming from the dissipation bracket. The sec-
nd term accounts for a decrease (coalescence) and the third
erm accounts for an increase of the number density of droplets
break-up).

Eq. (3) represent a set of coupled, non-linear partial differ-
ntial equations. Therefore, numerical techniques are required
o obtain physically meaningful solutions of these equations.

simple analytical solution of the model equations may be
btained for the quiescent polymer blend, σ = 0. In this case,
= 0, which implies C = (kBT/K)1, S = 1, and n = n0; i.e.,

he polymer blend is in the undeformed state.

. Numerical methodology

The blend model of Eq. (3) was solved in the annular gap
etween two concentric cylinders with inner radius, Ri, and outer
adius, Ro. The ratio of cylinder radii is κ = Ri/Ro, and the
nnular gap is δ = Ro − Ri. The relative distance from the inner
ylinder is r̄ = (r − Ri)/(Ro − Ri). To solve the polymer blend
odel for this flow geometry, we adopt cylindrical coordinates

r, ϕ, z), where r is the radial distance from the common cylinder
xis, ϕ is the angular coordinate, and z is the coordinate along
he cylinder axis.

We assume that there is no motion of the blend in the radial
irection and that flow is laminar. Then the velocity field is of
he form

= (0, vϕ(r), 0)T, (4)

hich satisfies the no-penetration conditions imposed by the
onfining cylinders. Furthermore, we assume that the properties
f the cylinders are such that slip does not occur. This implies that
he velocity field (4) satisfies the no-slip boundary conditions

ϕ(r = Ri) = Ui, (5a)

ϕ(r = Ro) = Uo, (5b)

here Ui and Uo are the inner and outer cylinder velocities,
espectively. If one of the cylinders is stationary, the right side
f the respective contribution to Eq. (5) vanishes.

The set of partial differential equations (3) is written in terms
f dimensional quantities. To obtain dimensionless quantities,
e use the definitions C = kBT C̃/K, n = n0ñ, σ = √

GΓ σ̃,
= √

GΓ p̃, and L = L̃/ 3
√

λCλSλn. The spatial coordinate, r,
s rendered dimensionless according to r = δ r̃, where δ is the
haracteristic length scale of the flow, which is the gap width of
he annulus. Note that the droplet shape tensor, as introduced
ith the set of thermodynamic variables, is a dimensionless
uantity; i.e., S = S̃. To obtain a droplet dimension from S
ne can use the mass conservation and incompressibility of the
ispersed phase to calculate an average droplet radius for the
eforming polymer blend, i.e., Rn = (n0/n)1/3R0, where R0 is
he average droplet radius in the undeformed state and Rn is the
verage droplet size for a blend with n droplets per unit vol-

me. With this definition, the length scale associated with S is
ot constant, but it increases or decreases in conjunction with
he coalescence or break-up processes. The three length scales
re made dimensionless with the three independent quantities
Fluid Mech. 152 (2008) 86–100 89

, (K/kBT )1/2, and Rn ≡ (det B)1/6, and the velocity gradient
s made dimensionless with the geometric mean value of the
hree relaxation times, λC and λS, λn. Alternatively, one can use

he geometric mean length scale (δ2K/kBT R2
n)

1/6
to associate

his single length scale to the gap width and to the microstruc-
ural variables C, S. Using the geometric mean value of the
elaxation times to render dimensionless velocity gradient, and
istinct length scales to render dimensionless the microstruc-
ural variables, is qualitatively the same procedure as described
n Ref. [18]. Indeed, in Ref. [18], the relevant length scale for
ach microstructural variable is used to render dimensionless
onformation tensors in multi-mode viscoelastic fluid models.
n all that follows, we use these dimensionless quantities and
rop the tilde which denotes them.

Having introduced dimensionless quantities and assumed
aminar flow, we express the flow equations, (3), in cylindrical
oordinates. It is apparent that Eq. (4) satisfies the divergence-
ree condition, (3a), in cylindrical coordinates, tr L = 0. The
adial, angular, and axial components of Cauchy’s momentum
alance, (3b), in cylindrical coordinates, are

Ta
v2
ϕ

r
= 1

r

∂

∂r
(rσrr) − σϕϕ

r
− ∂p

∂r
, (6a)

= 1

r2

∂

∂r
(r2σrϕ), (6b)

= 1

r

∂

∂r
(rσrz), (6c)

ince the extra stress tensor is symmetric and it is a function
f the radial coordinate only. In Eq. (6a), the Taylor number,
a = ρ2(Ui − Uo)2δ3/(RiGλCΓ λS), is obtained by rendering
imensionless momentum balance (3b). The term v2

ϕ/r is a
on-trivial contribution from the convective derivative v · ∇v
n cylindrical coordinates, with v given by Eq. (4). Eq. (6a)
xpresses the balance of centrifugal forces proportional to v2

ϕ

ith the variation of radial normal stresses, the first normal stress
ifference, and the radial pressure distribution. From Eqs. (6b)
nd (6c), we see immediately that the radial angular shear stress
nd the radial axial shear stress are proportional to r−1 and r−2,
espectively.

Next we consider the reversible contributions to the con-
ormation tensor equation, (3c), and the droplet shape tensor
quation, (3d). Note that the form of the irreversible contribu-
ions is independent of the coordinate system, since these terms
o not contain spatial derivatives. Therefore, it suffices to inspect
he reversible contributions of these equations. The reversible
erms in the C and S equations are of the same form, since the
ow is incompressible. In cylindrical coordinates [24],
v · ∇ X − X · LT − L · X

= Q̂ X + vϕ

r
M − X · LT − L · X, (7)
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here X is either C or S. In this expression, Q̂ = vr∂r +
ϕ/r∂ϕ + vz∂z is a differential operator,

=

⎛
⎜⎝

−2Xrϕ Xrr − Xϕϕ 0

∗ 2Xrϕ Xrz

∗ ∗ 0

⎞
⎟⎠ , (8)

s a matrix with ∗ denoting a symmetric entry, and L is the
elocity gradient tensor in cylindrical coordinates. For rotating
ow, the vanishing radial fluid motion implies Q̂ = 0, and the
elocity gradient has only two non-trivial entries:

=

⎛
⎜⎜⎜⎝

0 −vϕ

r
0

∂vϕ

∂r
0 0

0 0 0

⎞
⎟⎟⎟⎠ . (9)

he magnitude of the velocity gradient γ̇ = 2
√−IID, IID

eing the second invariant of the rate-of-deformation tensor
= 1/2(L + LT), is a measure of the shear rate [25]. For the

elocity gradient of Eq. (9), we have thus

˙ = ∂vϕ

∂r
− vϕ

r
(10)

or the shear rate of circular Couette flow.
Eq. (4) implies that the conformation tensor, droplet shape

ensor, droplet number density, and the extra stress tensor are
unctions of the radial coordinate, r. Since all variables depend
n one spatial coordinate only, and the flow is stationary, the
et of partial differential equations (3a–3f) reduces to a set of
rdinary differential equations (ODEs),

· ξ′ = b, (11)

hich was solved for the boundary conditions (5). In the above
inear equation, ξ is a 12-tuple of the non-trivial physical fields,

is a 12 × 12 coefficient matrix, b is a 12-tuple called the
inhomogeneity,” and “

′
” denotes differentiation with respect

o the radial coordinate, r. The coefficient matrix, A, and the
nhomogeneity, b, are obtained from the continuum equations
3). For laminar flow,

= (p, vϕ, v′
ϕ,vec(C),vec(S), n)T

, (12)

here v′
ϕ = ∂vϕ/∂r, is the derivative of the velocity field, and

ec(X) = (Xrr, Xrϕ, Xϕϕ, Xzz) with X being either C or S. To
btain the solutions to these equations, ξ, the set of ODE’s (11)
s solved between the inner and outer cylinders.

The coefficient matrix, A, and the inhomogeneity, b, in
q. (11) were obtained in the following manner. The first row
f (A, b) corresponding to p is the r-component of Cauchy’s
omentum balance in cylindrical coordinates (6a). The sec-

nd and third rows of (A, b) corresponding to vϕ and v′
ϕ are

he ϕ-component of the momentum balance equation, (6b), and

he rϕ-component of the conformation tensor equation, respec-
ively. The remaining nine rows of (A, b), corresponding to the
on-trivial components of the microstructural variables and to
he number density of the droplets, are identified by taking the

b
q
l
p
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erivative of the microstructural variable in Eqs. (3c) and (3d),
nd of the number density Eq. (3e), with respect to r.

The two-point boundary value (TPBV) problem for the
nnular gap, i.e., the set of ODEs (11) together with the
oundary conditions (5), was solved computationally using a
hooting algorithm. The shooting algorithm uses a fourth-order
unge–Kutta scheme with adaptive step size to integrate the set
f ODEs between the inner and outer cylinders, and a globally
onvergent Newton algorithm to match the no-slip conditions
5) on the outer cylinder. The shooting algorithm and the other
umerical routines used in this study were taken from Ref. [26].

The TPBV problem was solved for given cylinder veloci-
ies Ui and Uo. The linear system (11) was solved using an
U decomposition of the coefficient matrix, A. Then the set of
DEs ξ′ = A−1 · b was integrated using the Runge–Kutta algo-

ithm shooting from the inner cylinder, r = Ri, to the outer one,
= Ro. Each Runge–Kutta integration began with the same ini-

ial condition (5a) on the velocity flow field, and with different
alues of the derivative v′

ϕ(r) on the inner cylinder acting as the
ndependent variables of the Newton subroutine in the shooting
lgorithm. The Runge–Kutta integrations were repeated until
he Newton algorithm converged; i.e., until the boundary con-
ition (5b) on the outer cylinder was satisfied. Prior to each
unge–Kutta application, the homogeneous shear flow prob-

em related to Eq. (3) was solved for the velocity gradient
ensor (9), because the microstructural characteristics at the
nner cylinder were non-trivial functions of L. This was nec-
ssary because the flow problem possessed no symmetry. To
olve the steady shear flow problem at the inner cylinder, we
sed a 12-dimensional Newton–Raphson algorithm to obtain
he microstructural characteristics. This generalized the steady
hear flow solution technique of Ref. [8] to cylindrical coordi-
ates. The consistency of the new algorithm with the algorithms
n Ref. [8,9] was checked carefully.

. Sample results

In the model Eq. (3), we assumed the value φ = 0.1 for
he dispersed phase volume fraction, since we expect that the
esults of this study will be more or less qualitatively equivalent
or the small range of φ values for which these equations are
pplicable. The probability fc was assigned the value of unity,
ince we are more interested in the variations of the other sys-
em variables in this particular case. The elastic moduli ratio
f G/Γ = 4 was examined as one key parameter to determine
he relative energies of the polymer blend components. This
arameter can allow a rational choice to be made for the best
omponents to produce the final desired microstructure. The
elaxation times studied were λC = λS = λn = 1. Obviously,
hese parameter values can affect the model results, however,
e concentrated on variations of other interesting quantities in

his article due to restrictions on length. The coupling coefficient
as taken as θ = 0.1, and the power-law index was assumed to

e k = −2, since neither of these parameters should affect the
ualitative features of the results. We performed sample calcu-
ations for two polymer blends with different viscosity ratios,
� = −1.25 and -0.25, again, so that the choice of the blend
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omponents can be made rationally. For the size of the annu-
us, we set Ri = 0.3, 0.5, and 0.7, and Ro = 1 for the inner and
uter cylinders, respectively. This assigns the values of κ to be
.3, 0.5, and 0.7. Note that κ = 0.3 is the widest gap, and that
= 0.7 is the most narrow. We considered three rotation cases

or the cylinders: inner cylinder rotation, co-rotating cylinders,
nd counter-rotating cylinders. We determined the velocity field,
icrostructure, and stress profiles for the material and geometry

arameters specified above.
To recover physical blend properties from the calculations,

ne has to define three time scales and three length scales for
he fluid, i.e., λC, λS, λn and δ, (K/kBT )1/2, and R0. These time
nd length scales are all independent of each other. If one wants
o assume a quasi-equilibrium approximation, then in particular
� R0, i.e., drops are orders of magnitude smaller than the gap
idth.

.1. Inner cylinder rotation
.1.1. Small viscosity ratio blends
Fig. 1a presents the circular velocity field for the small viscos-

ty ratio blend, p� = −0.25, for the cylinder gap κ = 0.3. The

ig. 1. Couette flow profiles for the p∗ = −0.25 polymer blend in the annular
ap κ = 0.3 for four inner cylinder velocities: Ui = 0.3 (solid lines), 0.4 (dotted
ines), 0.5 (dashed lines), and 0.6 (long-dashed lines). Other model parame-
ers are φ = 0.1, G/Γ = 4, λCλS/λ2

n = 1, θ = 0.1, and k = −2. (a) Circular
elocity, (b) derivative of the circular velocity, and (c) corresponding shear rate.
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ircular velocity is a decreasing function of the radial coordi-
ate, as expected. The velocity near the rotating inner cylinder
ossesses a higher value than near the stationary outer cylin-
er due to the no-slip boundary condition. The four rotational
peeds of the inner cylinder that were examined can be identified
rom the ordinate in Fig. 1a. The derivative of the velocity field,
′
ϕ = ∂vϕ/∂r, displayed in Fig. 1b, is a monotonically decreasing
unction of radial position, again as expected from the no-slip
oundary condition. Also, the strong variation of this derivative
ear the inner cylinder and slow decrease near the outer cylinder
s as expected. The shear rate profile is easily calculated from
he profiles of vϕ and v′

ϕ, which are obtained from the shooting
lgorithm. Fig. 1c shows the shear rate, Eq. (10), which, for this
ype of flow and model parameters, is of the same order of mag-
itude and shows the same qualitative behavior as the derivative
f the velocity field. We remark that the shear rates in the gap
ary over a range of approximately two orders of magnitude.
ote that the derivative of the velocity field and the shear rate
o not vanish on the outer cylinder. This leads to a non-trivial
roplet configuration, as shown in Fig. 2.

The Reynolds number of the flow problem can be defined
n analogy to the Taylor number, Eq. (6a), as Re = (Ui −

o)δρ/
√

GλCΓλS. However, since we have not specified phys-
cal data for the polymer blends, we cannot determine the
eynolds and Taylor numbers. Evaluating the Reynolds number

or dimensionless values, together with ρ = 1, G = 4, yields a
alue smaller than unity, as expected for highly viscous polymer
lends.

Concentric cylinder flow of elastic fluids becomes unsta-
le if the Deborah number, De = (Ui − RiUo/Ro) 3

√
λCλSλn/δ,

xceeds a critical value, cf. e.g., Ref. [27]. The onset of elastic
nstabilities depends on the viscometric material properties and
heir dependence on the rate of deformation; i.e., the power-law
ehavior of the zero shear viscosity, the normal stress coeffi-
ients, and their ratio. Evaluation of the Deborah number for the
ows of Fig. 1 gives values on the order of unity. However, as
een from Fig. 1c, the shear rates on the inner cylinder are large
ompared to the ratio Ui/δ. Therefore, we believe that for the
odel studied herein, evaluation of the Deborah number does

ot admit conclusions on the stability of the calculated flow
elds. This is corroborated also by the fact that the microstruc-

ural Eqs. (3c)–(3e) and the constitutive equation for the elastic
tresses (3f) are highly non-linear. In the following, we assume
xplicitly stability of the flow; i.e., small perturbations of the
elocity field and of the microstructural characteristics decay
xponentially in time.

Fig. 2 presents the semi-axes of the ellipsoidal droplets as
unctions of the relative distance from the inner cylinder. The
quared semi-axes of the droplets are equal to the real Eigenval-
es of the symmetric tensor S,

1
√

1

1,2 =

2
(Srr + Sϕϕ) ±

4
(Srr − Sϕϕ)2 + S2

rϕ, (13a)

3 = Szz, (13b)
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Fig. 2. The same as Fig. 1 for the semi-axes of ellipsoidal droplets: (a) major
droplet axis, (b) minor droplet axis, and (c) intermediate droplet axis. Eigenval-
ues of the droplet shape tensor are denoted with each portion of the profiles, and
the dot-dashed lines in (a) and (c) are the continuation of the Eigenvalue curves
for Ui = 0.3. The dot-dashed vertical lines r̄ = r̄∗ = 0.2 denote the position
of disc-like droplet configurations for Ui = 0.3. The insets show the orienta-
tion angle, χ, and the intermediate droplet axis, W, in the vicinity of the outer
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ylinder. The two drawings on top show schematically the Eigenvectors of the
roplet shape tensor (labeled with the respective Eigenvalues) in the shearing
ereϕ) plane. The left illustration is for r̄ < r̄∗ and the right one for r̄ > r̄∗.

nd the orientation angle of the droplets in the shearing plane is
efined as

= 1

2
arctan

(
2Srϕ

Sϕϕ − Srr

)
. (13c)
he Eigenvectors corresponding to μ1,2 span the shearing plane
nd the Eigenvector corresponding toμ3 points in the axial direc-
ion. We have calculated the Eigenvalues of the droplet shape
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ensor using a Jacobi transformation of the symmetric tensor S.
ote that μ2 is the smallest Eigenvalue. However, the largest
igenvalue is either μ1 or μ3 depending on the rate of deforma-

ion. From Figs. 2a and c, we note that near the outer cylinder μ1
s the largest Eigenvalue, near the inner cylinder μ3 is the largest
igenvalue. The strong increase of μ3 is consistent with sample
alculations in Ref. ([5]; Fig. 6b). At radial position r̄ = r̄∗, cor-
esponding to the minima and absolute maxima in Figs. 2a and
, respectively, the Eigenvalues μ1 and μ3 are identical.

Fig. 2a displays the major droplet axis, L, Fig. 2b the minor
roplet axis, B, and Fig. 2c the intermediate droplet axis, W.
e should inspect first the qualitative behavior of the semi-axes

s we move from the outer towards the inner cylinder; i.e., as
hear rate increases. We do so exemplarily for the smallest value
f inner cylinder rotation, Ui; i.e., the solid curves in Fig. 2.
n the outer cylinder (the position of smallest shear rate) the
ajor droplet axis is slightly larger than its equilibrium value

f unity. As we move from the outer cylinder towards the inner,
he major droplet axis increases slightly. This is intuitively clear
s the shear rate increases with decreasing r̄. For r̄ ≈ 0.44, the
ajor droplet axis assumes a relative maximum (L ≈ 1.89) and

hen it decreases to a minimum at r̄ = r̄ (L ≈ 1.66). A non-
onotonic behavior of the Eigenvalue μ1, as observed between

¯ = 1 and r̄∗, is also recovered for simple shearing flow ([5];
ig. 6b). For r̄ < r̄∗, the major droplet axis increases strongly to
ttain its absolute maximum on the inner cylinder (L ≈ 3.75).
ote that the derivative of the droplet profile is unsteady in the
icinity of its minimum at r̄∗, because now μ3 becomes the
argest Eigenvalue.

The inset of Fig. 2a shows the orientation angle of the droplets
n the shearing plane, which decreases monotonically from the
uter towards the inner cylinder. Referring to the shearing plane,
e find that droplets are less oriented near the outer cylinder

χ ≈ 14.09) than near the inner (χ ≈ 2.49). This is expected
ince shear rate increases monotonically from the outer to the
nner cylinder.

Fig. 2b displays the minor droplet axis, B, which is always
maller than unity and decreases from the outer to the inner
ylinder with increasing shear rate. Droplets are compressed in
he direction of the Eigenvector corresponding to μ2 since it is
maller than unity.

Fig. 2c displays the profile of the intermediate droplet axis,
, which is non-monotonic. As we move away from the outer

ylinder, the intermediate droplet axis increases strongly and
ssumes values greater than unity. At r̄ = r̄∗, a maximum occurs,
nd then a decrease as the inner cylinder is approached because
ow μ1 is the intermediate Eigenvalue. The inset of Fig. 2c
hows that W is smaller than unity at the outer cylinder for small
nd intermediate values of Ui.

We discuss next the orientation and shape of the droplets as
e move from the outer cylinder towards the inner; i.e., as shear

ate increases. Again, we discuss only the results for the small-
st value of inner cylinder rotation, Ui, represented by the solid
urves in Fig. 2. On the outer cylinder, droplet deformation is

ess pronounced with L ≈ 1.72, B ≈ 0.60, and W ≈ 0.99. The

ajor and the minor droplet axes lie in the shearing plane and
he intermediate droplet axis points in the vorticity direction.
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explained above, the minima in Fig. 2 are due to the ordering of
the Eigenvalues of S with respect to their magnitude. Therefore,
normal stress differences should not show a cusp at r̄ = 0.2 since

1 Since the system is highly dissipative, the values of the phenomenological
ig. 3. The same as Fig. 1 for (a) the Taylor deformation parameter of the
roplets and (b) the number density of droplets.

he orientation of the droplets with respect to the flow direc-
ion is already considerable (χ ≈ 14.09), although the shear rate
ssumes a relatively small value at the outer cylinder. Thus, at
he outer cylinder, there is a prolate configuration with a pro-
ounced asymmetry of the B- and the W-axes. We identify this as
cigar-shaped configuration, although the intermediate droplet

xis is approximately at its equilibrium value of unity. As we
ove towards the inner cylinder, droplet deformation becomes
ore severe (cf. Fig. 3a). Between r̄ = 1 and r̄ > r̄∗, we still

bserve cigar-shaped droplets; however, the asymmetry of the
inor and the intermediate axes becomes larger compared to the

uter cylinder. This is observed in Figs. 2b and c since B con-
inues to decrease, whereas W increases rapidly. Note that the
ncrease in W is balanced by the change of L to ensure incom-
ressibility of the dispersed phase; i.e., det S = 1. For r̄ = r̄∗,
he major and the intermediate droplet axes attain the same val-
es, and droplets assume configurations with L = W ≈ 1.66.
e identify this as a disc-like configuration with one major axis

long the vorticity direction. As r̄ is further decreased, the semi-
xis corresponding to μ1 becomes smaller than the semi-axis
orresponding to μ3. Now the largest droplet axis points into the
xial direction. Furthermore, droplets also extend in the shear-
ng plane since the two axes are greater than unity. At the inner
ylinder, L ≈ 3.74, B ≈ 0.21, and W ≈ 1.25, which represents
sheet-like configuration; i.e., the droplets are flat (B attains its
inimum value) and they extend in the axial direction (L attains

ts maximum value). The orientation angle in the shearing plane
as decreased; the W-axis is almost aligned with the flow field
χ ≈ 2.49). At the inner cylinder, the largest degree of droplet
eformation occurs (cf. Fig. 3a).
We observe that the intermediate droplet axis, W, displays
ery interesting behavior with decreasing velocity gradient from
he inner cylinder: it increases with increasing r̄ < r̄∗ (i.e.,

p
t
(
F
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roplets become more oblate, W > 1), and then obtains a max-
mum at about r̄ = r̄∗, where droplets are disc-like W = L.
fterwards, for r̄ > r̄∗, W returns to a value close to equilib-

ium (i.e., the droplets become less oblate without reaching a
pherical shape). Note that we still have considerable droplet
eformation at the outer cylinder since the material is sheared
n that cylinder. The reason for the maxima and minima in the
roplet shape profiles is therefore due to the switch from the
ajor axis of the droplet at low shear rates lying in the plane

f flow, to the major axis of the droplet shape aligning perpen-
icular to the flow plane at high shear rates. This is illustrated
ith the two coordinate systems in Fig. 2, which display the

hearing plane together with the two Eigenvectors of S lying
n that plane. For low shear rates (right coordinate system), the
igenvector corresponding to the major Eigenvalue, L, lies in

he shearing plane, whereas for high shear rates (left coordinate
ystem), the Eigenvector of the intermediate Eigenvalue, W, lies
n the shearing plane.

As the rotation speed of the inner cylinder is increased, the
hear rate becomes higher throughout the gap, thus forcing the
ritical shear rate value for morphological inversion to occur
loser to the outer cylinder. Furthermore, the orientation angle
ecreases with increasing inner cylinder rotation, meaning that
roplets become more aligned as shear rates increase (cf. the
nset of Fig. 3a). Concerning the magnitude of the intermediate
roplet axis on the outer cylinder, we observe that it increases
ith Ui to attain a value of W ≈ 1.001 for Ui = 0.6; i.e., it is

arger than its equilibrium value (cf. the inset of Fig. 2c).
As to the reason for this morphological inversion of the direc-

ion of the principal axis, it is possible that the high value for
/Γ might play an important role, since the elasticity of the
atrix phase dominates over the droplet interfacial energy. Con-

equently, the complicated force balance induced by the flow
eld between the matrix phase conformation and droplet defor-
ation requires a re-direction of the preferred droplet orientation

o minimize the system free energy beyond a critical value of the
hear rate.1 In this article, however, G/Γ is held constant, and
he viscosity ratio, p�, is varied. As discussed more thoroughly
elow, this variable is also of interest in interpreting this phe-
omenon. For the value of p� examined presently, p� = −0.25,
he matrix phase viscosity dominates over the droplet viscos-
ty in the low shear rate limit. At the critical value of the shear
ate, the morphological inversion is induced once the viscos-
ty of the shear-thinning matrix phase has been reduced to the
oint where the constant Newtonian droplet viscosity begins to
ominate the system response. This is consistent with results
or the p� = −1.25 blend, where the droplet viscosity is always
igher than the matrix phase viscosity—see below. As already
arameters will influence the flow field and the microstructural blend charac-
eristics. However, the solutions obtained from the flow equations in local form
eq:pde) act to minimize the total system energy of the blend (according to the
irst Law of Thermodynamics) and result in a degradation of mechanical energy.
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Fig. 4. The same as Fig. 2 for an annular gap of κ = 0.7. Results are displayed
for the same model parameters as in Fig. 1, and values of the inner cylinder
velocity are Ui = 0.3 (solid lines), 0.4 (dotted lines), 0.5 (dashed lines), and 0.6
(long-dashed lines). Dot-dashed lines are drop shape profiles for a larger value
of the inner cylinder velocity, Ui = 1.0.
4 M. Dressler et al. / J. Non-Newto

hey are defined simply through the flow direction and the direc-
ion of its variation. We have not checked whether the change
f droplet orientation affects the qualitative behavior of the nor-
al stresses, as found for suspensions of rigid particles or liquid

rystals.
Fig. 3 displays the Taylor droplet deformation parameter,
= (L − B)/(L + B) (Fig. 3a), and the number density of

roplets (Fig. 3b). The droplet deformation parameter is cal-
ulated directly from the semi-axes reported in Fig. 2, and the
umber density of droplets is obtained from solution of the num-
er density Eq. (3e). The droplet deformation parameter is a
ecreasing function of the relative distance from the inner cylin-
er, implying that droplet deformation is larger near the inner
ylinder and smaller near the outer cylinder. There is a noticeable
nflection point in these curves within the annular gap, which is
gain associated with the switch in the direction of the major
xis. The B axis deforms more when the principal axis lies in
he perpendicular direction than it does when the major axis is
n the plane of flow, as also evident in Fig. 2b.

Fig. 3b indicates that the number of droplets remains constant
n the planar, oblate droplet regime, where the deformations are
elatively small. However, once the droplets become aligned per-
endicular to the plane of flow and extend significantly in that
irection with decreasing r̄, the number of droplets increases dra-
atically, more than doubling in number. This behavior is rather

ounter-intuitive, since one would expect increased deformation
n the plane of shear to result in droplet break-up dominating the
uid microstructural changes, whereas for r̄ > 0.4, the num-
er of droplets is approximately constant. Indeed, the small
inima in the curves near r̄ = 0.2 implies that oblate droplets

riented parallel to the plane of flow tend to coalesce with
ncreasing shear rate, and then experience a dramatic break-
p behavior near the inner cylinder as the orientation shifts
o the perpendicular plane. At the same time, the droplets are
ecoming very thin sheets, oriented perpendicularly to the flow
lane.

The fact that droplets oriented perpendicularly to the shear-
ng plane tend to break is not necessarily counter-intuitive if we
onsider purely Newtonian systems [11,15]. Indeed, for Newto-
ian liquids it is seen that flow stabilizes liquid threads because
t damps capillary waves which arise due to velocity perturba-
ions on the interface. However, in the absence of flow, e.g., after
ow cessation, capillary waves can grow more readily, leading

o break-up of extended liquid threads into many small droplets.
n the vorticity direction of the concentric cylinder geometry
here is no flow, and consequently capillary waves can grow

ore easily than in the shearing plane.
The effects of gap size on the respective profiles can be exam-

ned by changing the value of κ. The qualitative features of the
elocity and shear rate profiles are very similar to those in Fig. 1.
owever, as κ increases, the value of the velocity increases quan-

itatively throughout the gap, since the inner cylinder is closer
o the no-slip condition at the outer cylinder, vϕ = 0. Hence the

uantitative values of the shear rate are also larger across the gap
or smaller gap widths, and their values near to the outer cylin-
er decrease with increasing gap width. In Figs. 4 and 5, we
resent sample calculations for κ = 0.7, displaying the profiles

Fig. 5. The same as Fig. 4 for (a) the Taylor deformation parameter and (b) the
number density of droplets.
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f the semi-axes, the deformation parameter, and the number
ensity. Sample calculations were performed for the same val-
es of Ui as in Figs. 1–3. Additionally, we display profiles
or Ui = 1, representing a maximum value of inner cylinder
elocity where the TPBV problem is solvable for κ = 0.7 and
∗ = −0.25.

Fig. 4, when compared with Fig. 2, displays the effects of
ap size on the droplet axes for κ = 0.7; i.e., as gap size is
ecreased. For the axes, the qualitative features are the same
s described above, except that the maxima and minima are
ushed more toward the outer cylinder as κ increases. This is due
o the fact that the shear rate increases near the outer cylinder
ith increasing κ. As the shear rate increases with increasing
near to the outer cylinder, it enters the regime in which the

roplets assume perpendicular orientations throughout the gap.
lso, as κ increases, at the inner cylinder the major droplet axis
ecreases, whereas the other two semi-axes increase. Further-
ore, for increasing κ, at the outer cylinder the minor droplet

xis decreases further and the intermediate droplet axis increases
ince morphological inversion occurs near the outer cylinder.
t the same time, as κ increases, Fig. 5 demonstrates that the
umber density of droplets is lower at both the inner and outer
ylinders; however, the distribution in the number of droplets is
ore uniform across the gap for higher κ values. For larger gap
idths, the majority of droplets congregate near the inner cylin-
er. Furthermore, note that the region of droplet coalescence
n the range 0.2 < r̄ < 0.4 when κ = 0.3 is almost eliminated
s κ increases. For a small enough gap, it could be eliminated
ntirely.

Results thus far point to small gap widths for producing the
ost desirable droplet morphologies, assuming that one would

refer to have a uniform distribution of droplet density and the
ajor axis of droplet orientation lying in the plane of shear.
lthough there are fewer droplets for the smaller gap widths

nd they are extended to a slightly lower degree, their distribu-
ions in number and shape are more uniform across the gap.
owever, one does not need to worry about possibly unde-

irable perpendicular orientations of droplet shapes forming
ear the outer cylinder if the gap is large enough, such that
he shear rate throughout the gap is always in the disc-like
egime. If uniformity of morphology is desired, then the best
esults are obtained in small gap Couette devices. The maxi-
um degree of droplet morphological segregation is obtained

t high rotation speeds of large gap devices. Clearly, these two
arameters, gap width and rotation speed, can be used to opti-
ize the two competing effects of uniformity of droplet number

ensity, droplet deformation, and direction of orientation; in
ome applications, one might prefer highly deformed droplets,
nd in others, a more uniform distribution of slightly deformed
roplets.

According to Fig. 4, κ = 0.7, i.e., δ = 0.3 and Ui = 0.6,
hould be used to obtain a satisfactory droplet dispersion. For
he set of model parameters used here, these values can be taken

s a reference for process and geometrical parameters because
hey lead to small and uniform shear rates in the gap and many
mall droplets oriented in the axial direction. For δ = 0.3 and
arger values of Ui, more droplets can be generated at the cost

t
p
i
p
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f larger shear rates in the gap. For smaller values of Ui, shear
ates become so low near the outer cylinder that droplets cannot
rient in the axial direction, and consequently do not break in
hat region. Wider gaps lead to shear rate values which decrease
apidly near to the inner cylinder, which does not allow droplet
reak-up to occur since the drops cannot orient in the axial
irection (cf. Fig. 2).

.1.2. Large viscosity ratio blends
We next try to understand qualitatively the influence of the

iscosity ratio on the morphological characteristics of polymer
lends in the annular gap between two concentric cylinders. In
he following description of results, the viscosity ratio is taken
s p� = −1.25, which is substantially larger in magnitude than
he previously used value of −0.25. In fact, this represents an
nversion of the matrix phase and droplet phase viscosities, so
hat the droplet phase viscosity has now the larger value. We per-
ormed sample calculations for inner cylinder velocities between
i = 0.4 and 1.0 for κ = 0.5 and Ui = 1.0 and 1.6 for κ = 0.7.
his illustrates that, for κ = 0.7, the TPBV problem is solvable
ver a larger interval of inner cylinder velocities. In this arti-
le, convergence characteristics have not been investigated in
etail for our model Eq. (3). The velocity and shear rate profiles
s functions of r̄ for rotation of the inner cylinder at various
peeds and various κ values were calculated. The results are
ualitatively similar to those described in the preceding subsec-
ion, with respect to variations of both r̄ and κ, and so are not
isplayed here.

For the droplet axes, many of the qualitative trends described
bove are still evident in the model calculations—see Figs. 6
κ = 0.5) and 7 (κ = 0.7). For examples shown here, the major
xis increases with rotation speed across the gap, and the
inor axis decreases, implying that the droplets become more

eformed with increasing rotation speed. Furthermore, at a given
otation speed, the major axis is larger throughout the gap for
arger values of κ. The minor axis shows the opposite trends.
ence the droplets are more deformed near the inner cylinder

han near the outer one.
There are, however, some dramatic qualitative differences

oticeable in Figs. 6c and 7c, with respect to their counterparts
or the lower viscosity ratio of Figs. 2c and 4c. For the higher vis-
osity ratio blends, there is no evidence of oblate droplet shapes
nywhere within the gap, as W < 1always. Consequently, there
re no maxima and minima in the flow curves that are due to the
witching of the direction of the major droplet axis—see Figs. 6a
nd c, and 8a. This is consistent with the previous results of Ref.
5] for this viscosity ratio. However, the vorticity axis does again
isplay a minimum, which is pushed toward the outer cylinder
s the rotation speed is increased and the gap width is decreased.
his is purely a function of the shear rate value, as determined by

he degree of coupling between the matrix and dispersed phases.
t this higher inverted viscosity ratio where the droplet phase is

he more viscous of the two, there is no significant force pushing

he droplets out of the shear plane, and hence the droplets are
rolate and lie in the flow plane. As the shear rate decreases with
ncreasing r̄ across the gap, even though the droplets are always
rolate, they become more prolate, and then less prolate, with
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Fig. 6. Droplet shape profiles for the p∗ = −1.25 polymer blend in the annular
gap κ = 0.5 for four inner cylinder velocities: Ui = 0.4 (solid lines), 0.6 (dotted
lines), 0.8 (dashed lines), and 1.0 (long-dashed lines). Other model parameters
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Fig. 7. The same as Fig. 6 for κ = 0.7 and Ui = 1.0 (solid lines), 1.2 (dotted
lines), 1.4 (dashed lines), and 1.6 (long-dashed lines).
re φ = 0.1, G/Γ = 4, λCλS/λ2
n = 1, θ = 0.1, and k = −2. (a) Major droplet

xis, (b) minor droplet axis, and (c) intermediate droplet axis.

he cross-over point (corresponding to the minimum in the W
urve) being pushed to larger radial values with increasing gap
idth.
The modeling of viscoelastic fluids requires several inde-

endent length scales related to the flow field and the
hermodynamic properties of the fluid. With the flow Eq. (3), we
ntroduced three length scales. First is the length scale of the flow
eld determined by the gap width of the concentric cylinders.
econd is the length scale of the matrix microstructure, which is
etermined by the characteristics of the polymer configurations.
hird is the scale of the droplets given by their equilibrium diam-
ter. Consequently, microstructural length scales depend on the
olymer blend and flow length scales are specified by the geom-
try of the flow field. Therefore, it is not possible to relate the
ajor droplet axis in Fig. 6a, L ≈ 5 (dimensionless units), to

he circumference of the inner cylinder, π (dimensionless units).
o recover the correct dimensional quantities, the length scales
f the material and the flow geometry have to be introduced

xplicitly, as already explained above.

The droplet deformation parameter is displayed in Fig. 8a
or a gap width of κ = 0.7 and several rotation rates. The num-

Fig. 8. The same as Fig. 7 for (a) the Taylor deformation parameter and (b) the
number density of droplets.
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Fig. 9. Couette flow profiles for the p∗ = −1.25 polymer blend in the annular
gap κ = 0.5 with co-rotating cylinders: Ui = 1.0 (solid lines), 1.5 (dotted lines),
2.0 (dashed lines), and 2.5 (long-dashed lines). Other model parameters are the
s
d
s

in Figs. 9a (κ = 0.5) and 10a (κ = 0.7), and the shear rate pro-
files are presented in Figs. 9b and 10b. We assume that the two
cylinders are rotating in the same direction, and at the same
speed. As κincreases, it is evident from these figures that both the
M. Dressler et al. / J. Non-Newto

er density of droplets is displayed in Fig. 8b. The qualitative
eatures of these graphs are independent of gap width. The defor-
ation parameter, D, has the expected behavior of decreasing
ith radial coordinate, and increasing with rotation speed. The
ualitative features are the same as for the material with the low
iscosity ratio; however, the value of D is less for the material
ith the high viscosity ratio, for comparable cylinder rotation

ates, although only slightly. The major difference between the
wo viscosity ratio blends lies in the number of droplets: the

aterial with the higher viscosity ratio has a factor of 3 more
roplets throughout the gap than the low viscosity ratio blend,
ndicating a more dramatic degree of droplet break-up. Further-
ore, the number of droplets increases marginally as the gap
idth increases, although their distribution across the gap is

ather independent of κ. One might have intuitively expected
hat the lower viscosity ratio blend would have a higher degree
f break-up (as known for blends of Newtonian liquids [16]);
owever, it is rather the interfacial energy that determines the
reak-up process. For constant interfacial energy, as is the case
ere, the higher viscosity ratio blend suffers more break-up since
his blend has a larger force applied to it at an equivalent shear
ate value (due to the larger shear stress associated with the
igher droplet viscosity). This trend is in contrast to the behav-
or of blends of Newtonian liquids [16], where droplet break-up
anishes as the viscosity ratio approaches values between three
nd four. A direct comparison of the calculations with data
n Refs. [16,12,11] is critical, however, because we consider
on-Newtonian flow behavior of the matrix phase and the inter-
ace. Matrix and interfacial elasticity are essential parts of
he model, and we believe that these properties alter signifi-
antly the dispersion characteristics in the concentric cylinder
evice. Note that the viscosity ratio enters quadratically into
he flow equations, which makes it more difficult to perform
he calculations at large viscosity ratios. This might be a crit-
cal point to be adjusted by redefining the phenomenological
oefficients related to the dissipative contributions of the flow
quations.

If our goal is to maximize the number of droplets in the model
olymer blend, and to have orientation in the plane of shear, then
hese results clearly indicate that in the Couette geometry, it is
etter to have a blend in which the droplet phase has a higher
iscosity than the matrix phase. After this overriding constraint,
t is apparent that one would prefer narrower gaps for this blend
ince there is a greater number of droplets produced in the nar-
ower gap, and since the drop distribution does not change much
ith gap size.

.2. Co-rotating cylinders for large viscosity ratio blends

Thus far, it appears that the preferred choice of polymer
lends are those in which the viscosity of the droplet phase
s larger than that of the matrix phase. Consequently, in the
emaining sections of this manuscript, we will only examine

he blend with the larger viscosity ratio value of −1.25. In this
ection, we will examine the morphological characteristics of the
odel blend in a geometry composed of co-rotating concentric

ylinders.

F
l
f
b

ame as in Fig. 6. (a) Circular velocity and (b) corresponding shear rate. The
ot-dashed horizontal line is a guide to the eye to show zones with shear rates
maller and larger than unity.

The velocity fields for two values of gap width are displayed
ig. 10. The same as Fig. 9 for κ = 0.7 and Ui = 1.0 (solid lines), 1.5 (dotted
ines), 2.0 (dashed lines), and 2.5 (long-dashed lines). The dot-dashed profile is
or Ui = 5.0 to illustrate that the TPBV problem can be solved computationally
eyond 2.5.
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elocity and shear rate profiles become more uniform throughout
he annular region. For the small κ value, there is a very distinct
inimum in the velocity profile, which is caused by the retard-

ng viscous response of the blend; i.e., the fluid is dragged along
y the rotating cylinders, since the no-slip condition is applied
t each cylinder. As the rotation rate increases, the minima in the
elocity profiles become more severe. These minima occur very
lose to the inner cylinder at large gap widths, but lessen in sever-
ty and creep toward the middle of the annulus as the gap width
ecreases. This is because of the balance between the shear and
entrifugal forces: the latter push the velocity profiles to larger
adial dimensions, and hence the profiles are weighted toward
he outer side of the gap. For the large κ value, the velocity pro-
les become nearly plug-like, with a very smooth distribution
cross the gap.

Figs. 9b and 10b show the shear rate profiles across the gap
n a semi-logarithmic representation. We see that shear rates are
ot uniform across the gap but vary over more than an order of

agnitude. The horizontal dot-dashed lines are introduced as
guide to the eye to display zones with shear rates above and
elow unity. Everywhere in the gap the shear rate, Eq. (10), is

ig. 11. The same as Fig. 10 for the semi-axes of ellipsoidal droplets and larger
alues of inner cylinder velocity: Ui = 2.0 (solid lines), 3.0 (dotted lines), 4.0
dashed lines), and 5.0 (long-dashed lines). (a) Major droplet axis, (b) minor
roplet axis, and (c) intermediate droplet axis.
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on-zero, which is consistent with non-spherical droplet shapes
hroughout the gap (cf. Fig. 11). An examination of the shear
ate profiles in a linear representation reveals that they are very
teep near the inner cylinder due to the large velocity change
hat occurs in its vicinity. Fig. 9b shows, e.g., that for Ui = 2.5
he shear rates vary between 32.10 and 1.0 in the inner part of
he geometry (r̄ < 0.5) and between 1.0 and 0.40 in the outer
art. For the large κ value (cf. Fig. 10b), the shear rate decreases
t the inner cylinder and increases at the outer cylinder to yield
more uniform profile. In Fig. 10b, we include the shear rate

rofile for Ui = 5 as a dot-dashed line to illustrate that the pro-
le does not change qualitatively if the inner cylinder velocity

s further increased. For κ = 0.7 and p∗ = −1.25, Ui = 0.5 is
pproximately the largest value which allows us to solve the
PBV problem.

The profiles of the droplet axes are displayed in Fig. 11 for
he smallest gap width, κ = 0.7. We show sample calculations
or larger values of inner cylinder velocities (between Ui = 2.0
nd 5.0) to illustrate that, near the inner cylinder, the profiles
f the intermediate droplet axis become non-monotonic. The
lots for all gap widths are qualitatively and quantitatively sim-
lar to those from the previous section where the outer cylinder
as stationary. All gap width effects are as reported there. The
rimary difference between the two cases is that the axes of
he co-rotating cylinders geometry have a wider range of val-
es at any radial position as functions of the rotation speed.
his wider distribution allows for a higher degree of control
hen attempting to fine-tune blend morphological characteris-
ics.
The most significant difference between the stationary outer

ylinder and co-rotating cylinder geometries is with regard to

ig. 12. The same as Fig. 10 and larger values of inner cylinder velocity: Ui =
.0 (solid lines), 3.0 (dotted lines), 4.0 (dashed lines), and 5.0 (long-dashed
ines). (a) The Taylor deformation parameter and (b) the number density of
roplets.
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he number density of droplets, as depicted in Fig. 12. Again,
he smallest gap width produces the maximum number of
roplets within the annular region, as well as the smoothest
istribution with respect to the radial coordinate. It is thus
ossible to conclude that the co-rotating cylinder geometry is
referred over the stationary outer cylinder geometry for the
ntelligent design and control of blend morphology, unless one
pecifically desires oblate droplet shapes lying perpendicular
o the flow plane, rather than prolate ones lying within it.

.3. Counter-rotating cylinders for large viscosity ratio
lends

In this section, we very briefly examine counter-rotating
ylinders, which are rotating at equivalent speeds in opposite
irections. Again, the smallest gap produces the most desirable
orphological characteristics, so we concentrate on this case

nly. The velocity and shear rate profiles exhibited in Fig. 13 are
ery similar qualitatively to the co-rotating geometry, except that
resently the velocity profiles at different rotation rates become
ore concentrated in distribution as the gap width decreases,
hich is opposite to the trend in the co-rotating case. All other

haracteristics of these profiles are essentially the same as in the
o-rotating case. Consequently, the droplet axes are also more
arrowly distributed throughout the gap, as illustrated in Fig. 14;
owever, all of the qualitative characteristics are again the same

s for the co-rotating geometry. The most interesting feature
f the counter-rotating case is that it produces the greatest
umber of droplets at the lowest rotation speeds of any of the
hree cases examined in this article—see Fig. 15. However, this

ig. 13. Couette flow profiles for the p∗ = −1.25 polymer blend in the annular
ap κ = 0.7 with counter-rotating cylinders: Ui = 0.6 (solid lines), 0.7 (dotted
ines), 0.8 (dashed lines), and 0.9 (long-dashed lines). Other model parameters
re the same is in Fig. 6. (a) Circular velocity and (b) corresponding shear rate.

Fig. 14. The same as Fig. 13 for the semi-axes of ellipsoidal droplets. (a) Major
droplet axis, (b) minor droplet axis, and (c) intermediate droplet axis.

Fig. 15. The same as Fig. 13 for (a) the Taylor deformation parameter and (b)
the number density of droplets.
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dvantage is mitigated by the fact that the distribution of number
ensity across the gap is less uniform than in the co-rotating
ase.

. Discussion and conclusions

In conclusion, it is apparent that small gap devices are the
referred geometries for inducing droplet break-up into a large
umber of micro-droplets. Which type of rotational geometry
s preferred, co-rotating, counter-rotating, or stationary outer
ylinder, depends on the tolerance limitations of the process
esign. For slow flows, the counter-rotating device is preferred
or inducing the formation of the largest number of droplets, but
ne pays the price of having a rather severe distribution of droplet
izes across the gap. If one can generate high enough rotational
peeds, the co-rotating cylinder geometry can produce the same
umber of droplets, with more uniform distributions of size and
hape across the gap. In either case, material parameters, such as
he viscosity ratio, relaxation times, etc., can be used to design
he specific blend for specified process conditions to produce
he desired blend microstructure, providing one has an accurate

odel of the polymer blend dynamics. Of course, no such model
et exists; however, much can be learned from examining the
ynamical behavior of the models which do exist, under realis-
ic processing conditions. Thus, the primary focus of this article
as to demonstrate how one might begin to simulate flow pro-

esses of these very complicated systems of partial differential
quations for polymer blend dynamics under inhomogeneous
ow conditions.
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21] H.C. Öttinger, M. Grmela, Dynamics and thermodynamics of complex
fluids. II. Illustrations of a general formalism, Phys. Rev. E 56 (1997)
6633–6655.

22] A. Souvaliotis, A.N. Beris, Applications of domain decomposition spectral
collocation methods in viscoelastic flows through model porous-media, J.
Rheol. 36 (1992) 1417–1453.

23] B.J. Edwards, M. Dressler, M. Grmela, A. Aı̈t-Kadi, Rheological models
with microstructural constraints, Rheol. Acta 42 (2003) 64–72.

24] R.I. Tanner, Engineering Rheology, 2nd edition, Oxford University Press,
New York, 2000.

25] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids:
Fluid Mechanics, vol. 1, John Wiley & Sons Inc., New York, NY, U.S.A.,

1987, nebis Signatur: 434 119: 1.

26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes, 2nd edition, Cambridge University Press, 1992.

27] R.G. Larson, E.S. Shaqfeh, S.J. Muller, A purely elastic instability in
Taylor–Couette flow, J. Fluid Mech. 218 (1990) 573–600.


	An examination of droplet deformation and break-up between concentrically rotating cylinders
	Introduction
	The thermodynamically consistent blend model
	Numerical methodology
	Sample results
	Inner cylinder rotation
	Small viscosity ratio blends
	Large viscosity ratio blends

	Co-rotating cylinders for large viscosity ratio blends
	Counter-rotating cylinders for large viscosity ratio blends

	Discussion and conclusions
	Acknowledgment
	References


