
Introduction

Many complex fluids are composed of microstructural
constituents that have physical restrictions associated
with any conceptual model employed for their descrip-
tion. As an example, although a deformable polymer
chain may be modeled as an elastic dumbbell, free of
constraints associated with its extension, a rigid rod-like
polymer must be modeled with a dumbbell of constant
extension (Bird et al. 1987). These physical restrictions
of some complex fluids place mathematical constraints
upon the entities used to model them; in the case of the
rigid rod-like polymer, the inextensibility of the dumb-
bell must be quantified mathematically through the use

of a vector of fixed length, thus describing the dumbbell
orientation only.

In many models of complex fluids, with or without
physical restrictions, a second-rank conformation tensor
is used to describe the distribution of the microstructural
constituents within the fluid: the eigenvalues and eigen-
vectors of this tensor quantify the extension, volume,
and surface area of the average microstructural con-
stituent. In this article, a sample of the scalar constraints
that can be imposed on a second-rank tensor through its
three invariants are examined mathematically. Thus, a
general class of rheological models may be determined
for each case that guarantees the satisfaction of the ap-
propriate constraint under all possible flow conditions.
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Each of the three scalar constraints on a second-rank
tensor associated with constancy of a specific invariant is
discussed below, allowing the reader to see clearly the
physical restriction on the microstructural constituents
that leads to the mathematical constraint under con-
sideration. (Recall that in virtue of the Cayley-Hamilton
theorem any other scalar associated with a second-rank
tensor can be written as a function of three scalar in-
variants, so that the procedure for dealing with any
scalar constraint can be inferred from examining only
these three cases.) Then, a general class of evolution
equations is derived, in a mathematically rigorous
fashion, for each particular constraint. This then allows
for the development of rheological models for complex
fluids whose microstructural constituents are guaranteed
to remain faithful to the physical restriction of the ma-
terial under investigation.

In this article, attention is focused on complex fluids
with a microstructure that can be quantified by a single,
second-rank conformation tensor. It is quite difficult, in
general, to derive constrained evolution equations for a
second-rank tensor directly from a molecular model of
the fluid’s microstructure. This problem is avoided pre-
sently by consideration of the common mathematical
structure underlying the dynamics of a second-rank
microstructural tensor variable (Grmela and Carreau
1987; Grmela 1988, 1989; Beris and Edwards 1990a,
1990b, 1994; Edwards and Beris 1991a, 1991b; Grmela
and Öttinger 1997; Öttinger and Grmela 1997; Dressler
et al. 1999). By first revealing this mathematical struc-
ture for an unconstrained fluid, the appropriate con-
straint can be applied to this underlying structure. Then
this constrained structure can be used to determine the
proper evolution equations for the constrained fluid in a
mathematically rigorous fashion.

The following section reveals the common under-
lying mathematical structure common to complex fluids
that have a microstructure free of constraints. In sub-
sequent sections, this structure is adapted to develop
the constrained evolution equations discussed above for
each scalar invariant of the second-rank conformation
tensor.

Complex fluids free of constraints

The underlying mathematical structure of a complex
fluid, with a microstructure free of constraints, has been
investigated extensively over the past 15 years (Grmela
and Carreau 1987; Grmela 1988, 1989; Beris and
Edwards 1990a, 1990b, 1994; Edwards and Beris 1991a,
1991b; Grmela and Öttinger 1997; Öttinger and Grmela
1997; Dressler et al. 1999). The culmination of this
investigation is the starting point for the current study: a
general, but succinct, equation expressing the underlying
mathematical structure (Grmela and Öttinger 1997;

Öttinger and Grmela 1997) common to all physically
realistic dynamical processes,

@f

@t
¼ LðfÞ � dEðfÞ

df
þMðfÞ � dSðfÞ

df
ð1Þ

This equation, usually called GENERIC, expresses the
dynamics of the complex fluid variables, represented
collectively by the symbol f. For the case at hand,
f ¼ ðu; q; e;CÞ; where u is the fluid momentum density
ðu ¼ qvÞ; � the internal energy density, q the mass den-
sity, and C the ‘‘conformation density’’ ðC ¼ qcÞ. In
Eq. (1), E and S are generating functionals representing
the global fluid energy and entropy, respectively, and L

and M are operator matrices that dictate the fluid dy-
namical properties of conservative and dissipative nat-
ure, respectively. This equation has been applied to
complex fluids free of internal constraints through the
abovementioned variable set, f, in the recent past
(Dressler et al. 1999).

As mentioned in the introduction, deriving general
equations for constrained microstructures can be quite
difficult when working in terms of the evolution equa-
tions for the appropriate variable set, such as those of
Eq. (1). However, this can be accomplished relatively
easily by using an equivalent expression to Eq. (1)
(Grmela and Öttinger 1997; Edwards 1998; Edwards et
al. 1998):

dF
dt
¼ fF ;Eg þ ½F ; S� ð2Þ

where F is an arbitrary functional of the variable set f,
and the French and square brackets denote the Poisson
and dissipation brackets, respectively. Equations (1) and
(2) are related through the relationship

dF
dt
¼
Z

dF
df
� @f
@t

d3r ¼
Z

dF
df
� L � dE

df
d3r

þ
Z

dF
df
�M � dS

df
d3r ð3Þ

and thus both the Poisson and dissipation brackets
are determined by defining the operator matrices L

and M.
In the remainder of this article, attention is restricted

to isothermal fluids. This allows the more convenient
bracket expression of Eq. (3) to be rewritten in terms of
a single generating functional, H, called the Hamilto-
nian, that represents the free energy of the fluid (Ed-
wards 1998; Edwards et al. 1998). Furthermore, the
variables of the mathematical problem description then
reduce to f ¼ ðq; u;CÞ. Consequently, Eq. (2) becomes

dF
dt
¼ fF ;Hg þ ½F ;H � ð4Þ

where

65



fF ;Hg¼�
Z

dF
duc
rb

dH
dub

uc

� �
� dH

duc
rb

dF
dub

uc

� �� �
d3r

�
Z

dF
dq
rb

dH
dub

q

� �
�dH

dq
rb

dF
dub

q

� �� �
d3r

�
Z

dF
dCab

rc
dH
duc

Cab

� �
� dH

dCab
rc

dF
duc

Cab

� �� �
d3r

�
Z

Cac
dH
dCab

rc
dF
dub

� �
� dF

dCab
rc

dH
dub

� �� �
d3r

�
Z

Cbc
dH
dCab

rc
dF
dua

� �
� dF

dCab
rc

dH
dua

� �� �
d3r ð5Þ

and

½F ;H � ¼�
Z

Kabce
dF

dCab

dH
dCce

d3r

�
Z

Babcegm rc
dF

dCab

� �
rm

dH
dCeg

� �
d3r

�
Z

Qabce ra
dF
dub

� �
rc

dH
due

� �
d3r ð6Þ

with L, B, and Q being phenomenological matrix op-
erators that quantify the microstructural relaxational
effects, microstructural diffusion, and viscous dissipa-
tion, respectively (Grmela 1988; Beris and Edwards
1990a, 1990b, 1994). The arbitrary functional, F, is as-
sociated with the global volume integral, F ½q;u;C� ¼R

f ðq;u;CÞd3r;where f is the local function of variables f.
Hence, for the present article, the functional derivatives
appearing in the bracket expressions, above, take on the
specific forms dF

df ¼
@f
@f ;as discussed more thoroughly be-

low.
Note that the Poisson bracket of Eq. (5) assumes that

C deforms as a contravariant second-rank tensor;
however, the methodology presented below applies
equally well to the covariant version of Eq. (5), as
expressed by Beris and Edwards (1990b). This covariant
version of the Poisson bracket was also derived using
Hamilton’s Principle of Least Action (Beris and
Edwards 1994).

Under the above definitions, the evolution equations
for the fluid variables can be identified as

@q
@t
¼ �rc qvc

� �
ð7Þ

q
@va

@t
¼ �qvbrbva �rap þrbrab ð8Þ

@Cab

@t
¼� vcrcCab þ Cacrcvb þ Cbcrcva � Kabce

dA
dCce

þrc Babcegmrm
dA

dCeg

� �
ð9Þ

with the extra stress tensor field appearing in Eq. (8)
defined as

rab ¼ 2Cbc
dA

dCac
þ Qbacercve ð10Þ

and the pressure according to the standard equilibrium
thermodynamical relationship, p ¼ �aþ q @a

@qþ Cab
@a
@Cab

.
In these expressions, the Hamiltonian is assumed to have
the form

H ½q; u;C� ¼
Z

1

2q
ucucd3r þ A½q;C�

¼
Z

1

2q
ucucd3r þ

Z
aðq;CÞd3r ð11Þ

Once A½q;C� and the operator matrices are specified, the
entire set of evolution equations for the complex fluid
without microstructural constraints is completed. The
functional derivatives appearing in Eqs. (9) and (10)
usually take on the simple form

dA
dCab

¼ @a
@Cab

ð12Þ

although sometimes more complicated expressions are
required (Beris and Edwards 1994). Equations (7), (8),
(9), and (10) thus represent a general class of thermo-
dynamically consistent evolution equations for this
material. (Note that in the following, the operator ma-
trices Q and B are neglected for simplicity. Also, a word
on alternative formulations is offered in the Appendix.).

Complex fluids with constant extension

Examples of complex fluids possessing a microstructure
with constant extension are numerous. Their micro-
structures span length scales from Angstroms to milli-
meters, from low molecular-weight liquid crystals to
short fiber-filled composites. Suspensions of rigid ellip-
soids, colloids, semi- and inflexible polymers, etc. all
possess microstructures whose base elements are not
deformable but only orientable. These materials are
described by mathematical entities that incorporate this
inability to deform directly into the problem formula-
tion by imposing the constraint that the first invariant of
the conformation tensor is equal to unity. Because
I1ðCÞ ¼ trC represents the sum of the eigenvalues of C, it
is really a physical measure of the extension of the local
material microstructure. By fixing the trace at a parti-
cular value, in this case unity, the physical restriction of
inextensibility is imposed upon the mathematical de-
scription of the material’s dynamical behavior.

The constant extension constraint is seemingly an
easy one to implement, whether directly into the evolu-
tion equations themselves or through the underlying
mathematical structure described above. Many specific
cases involving this constraint have been worked out in
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the past by inserting the constraint directly into the
evolution equations (for examples, Hand 1962; Hinch
and Leal 1976; Doi 1981; Doi and Edwards 1986;
Marrucci and Maffettone 1989; Leslie 1979), although
many of these have thereby produced dynamically in-
compatible evolution equations, as demonstrated below.
Edwards et al. (1990, 1991) derived a general class of
equations for liquid crystalline materials using the
methodology discussed below by applying the constraint
on the first invariant, I1ðCÞ ¼ trC ¼ 1; to the underlying
mathematical structure, embodied by the Poisson and
dissipation brackets. The methodology is in fact an ap-
plication of a general method of reductions of Poisson
structures known as Marsden-Weinstein reduction
(Marsden and Weinstein 1974). In this section this
methodology is illustrated for the constraint trC=1 so
that it may also be applied in the next two sections to the
other, more complicated, invariants of C.

The first step in applying a microstructural constraint
to the underlying mathematical structure is to define an
appropriate projection mapping of the variable C, which
is free of constraints, to a new variable, m, which must
comply with the constraint. This projection is called, in
the context of the Marsden-Weinstein reduction, a
‘‘moment mapping.’’ In the present case, this mapping is
(Edwards et al. 1990, 1991; Beris and Edwards 1994)

C! m ¼ C

trC
ð13Þ

Under this relationship it is easy to see that trm=1 under
all conditions. Given this transformation, the Volterra
derivatives appearing in the Poisson bracket must be
transformed according to the chain rule expression
(Edwards et al. 1990, 1991; Beris and Edwards 1994)

dF
dCab

! dF
dmce

@mce

@Cab
¼ dF

dmce

1

trC
dacdbe � mcedab
� �

ð14Þ

Under this transformation, the bracket of Eq. (5) be-
comes (Edwardsetal. 1990,1991;BerisandEdwards1994)

fF ;Hg¼�
Z

dF
duc
rb

dH
dub

uc

� �
�dH

duc
rb

dF
dub

uc

� �� �
d3r

�
Z

dF
dq
rb

dH
dub

q

� �
�dH

dq
rb

dF
dub

q

� �� �
d3r

�
Z

dF
dmab

dH
duc
rcmab�

dH
dmab

dF
duc
rcmab

� �
d3r

�
Z

mac
dH

dmab
rc

dF
dub

� �
� dF

dmab
rc

dH
dub

� �� �
d3r

�
Z

mbc
dH

dmab
rc

dF
dua

� �
� dF

dmab
rc

dH
dua

� �� �
d3r

þ2

Z
mabmce

dH
dmce
ra

dF
dub

� �
� dF

dmce
ra

dH
dub

� �� �
d3r

ð15Þ

The above bracket guarantees that the conservative
dynamics of the system satisfy the required constraint.
In order to guarantee the same for the dissipative dy-
namics, a similar substitution must be applied to the
dissipation bracket of Eq. (6); however, only one of the
two Volterra derivatives appearing in the first integral of
Eq. (6) must be transformed according to Eq. (14). The
Poisson bracket is linear in dF

dC and dH
dC ;whereas the dis-

sipation bracket is bilinear. Consequently, the constraint
can be guaranteed most simply by transforming just one
of the derivatives. As an analogy, for a bilinear equation
with two roots, say xy–y–2x+2=0, the expression is
satisfied when either x=1 or y=2. It is not necessary for
both x=1 and y=2 to be valid in order to satisfy this
equation. Given the phenomenological nature of the
dissipation, there is thus no point in transforming both
derivatives according to Eq. (14). Transforming the
Volterra derivative for the arbitrary functional F ac-
cording to Eq. (14) thus gives a proper, yet general,
dissipation bracket for the constrained variable m:

½F ;H � ¼ �
Z

Kabce
dF

dmab

dH
dmce

d3r

þ
Z

Khhcemab
dF

dmab

dH
dmce

d3r
ð16Þ

where it is realized that the matrix operator and the
Hamiltonian now depend on m rather than C: L(m) and
H [u,m]. Thus, for arbitrary expressions for these quan-
tities, the constraint on the microstructure is guaranteed
to be imposed upon the evolution equations determined
from these bracket structures. These evolution equations
can be obtained from Eqs. (4), (15), and (16) as Eqs. (7),
(8), and

@mab

@t
¼� vcrcmab þ mcarcvb

þ mbcrcva � 2mabmcercve

� Kabce
dA

dmce
þ K11cemab

dA
dmce

ð17Þ

where

rab ¼ 2mbc
dA

dmac
� 2mabmce

dA
dmce

ð18Þ

and p ¼ �aþ q @a
@q. Note that the Volterra derivatives

appearing in these expressions are defined analogously
to Eq. (12). Also note that the extra stress tensor for
materials with inextensible microstructures, Eq. (18),
possesses an additional term that arises solely on ac-
count of the mathematical nature of the imposed con-
straint. Thus the Poisson bracket, whence the extra
stress tensor field arises, demonstrates convincingly that
placing a microstructural constraint upon the evolution
equations implies a similar constraint upon the extra
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stress tensor associated with the microstructure. This
point has been neglected in many past works that dealt
with mathematical descriptions of materials with in-
extensible microstructures.

Equations (7), (8), (17), and (18) thus provide a
general class of evolution equations that describe ma-
terials with an inextensible microstructure. By defining
physically proper expressions for the free energy, A, and
the matrix operator, L, (and, if necessary, the other
dissipative matrix operators as well) specialized models
can be obtained for various complex fluids possessing
this microstructural restriction. Particular examples of
reasonable expressions for A and L may be found in the
literature (Grmela and Carreau 1987; Beris and Edwards
1990a, 1990b, 1994).

Complex fluids with volume preservation

Another important class of complex fluids with a phy-
sical restriction is composed of those fluids that experi-
ence volume-preserving microstructural deformations.
Mathematically, this volume preservation of the micro-
structure manifests through the constraint that the third
invariant of the conformation density tensor field,
I3(C)=det C, is a constant, herein taken as unity. This
implies that the result of the multiplication of all ei-
genvalues of this tensor field is unity as well. It is quite
reasonable to expect that incompressible polymer melts
or highly concentrated polymeric solutions might exhibit
volume-preserving microstructural dynamics. Even
more naturally, however, one would expect a suspension
of incompressible droplets within a solvent to have a
volume-preserving microstructure. If the droplets are
incompressible, then as they deform and orient with
regard to an imposed external field, the volume of the
microstructure should remain constant. Micellar and
colloidal systems also evince the possibility of requiring
this constraint.

Twenty-five years ago, Leonov (1976) studied the
dynamics of volume preserving deformations in poly-
meric fluids and, more recently, Ait-Kadi et al. (1999)
have extended the Leonov-like models to a general class
of constitutive equations, which was guaranteed to sa-
tisfy the volume-preserving constraint, detC=1. How-
ever, this class of constitutive equations was developed
by pasting the mathematical constraint cited above onto
the GENERIC framework, rather than by developing it
through the framework. As a consequence, the results
obtained by Ait-Kadi et al. (1999) are not as general as
they could be and, therefore, place severe restrictions on
the class of allowable constitutive equations. In this
section the volume-preserving constraint on the complex
fluid microstructure is inserted directly into the GEN-
ERIC framework, just as the inextensibility constraint
was so treated in the previous section.

To quantify the volume-preserving constraint math-
ematically, a new transformation of the variable C must
be defined to ensure that detC=1. This transformation
is similar to Eq. (13):

C! q ¼ C

�
detC

�1=3
ð19Þ

Hence detq=1 always. Note that this transformation
implies that

q�1 ¼ C�1 detCð Þ
1=3 ð20Þ

Also note that C is again assumed to be a contravariant
deformation tensor. For polymer blends, as well as other
multiphase materials, it might be more appropriate to
use a covariant deformation measure. Again, the meth-
odology described herein can be applied easily to a
covariant deformation tensor through the appropriate
modification of Eq. (5).

Under the transformation of Eq. (19), the Volterra
derivatives appearing in the Poisson bracket of Eq. (5)
become

dF
dCab

! 1

detCð Þ
1=3

dF
dqce

dacdbe �
1

3
qceq�1ab

� �
ð21Þ

Accordingly, the Poisson bracket of Eq. (5) becomes

fF ;Hg ¼ �
Z

dF
duc
rb

dH
dub

uc

� �
� dH

duc
rb

dF
dub

uc

� �� �
d3r

�
Z

dF
dq
rb

dH
dub

q

� �
� dH

dq
rb

dF
dub

q

� �� �
d3r

�
Z

dF
dqab

dH
duc
rcqab �

dH
dqab

dF
duc
rcqab

� �
d3r

�
Z

qac
dH
dqab
rc

dF
dub

� �
� dF

dqab
rc

dH
dub

� �� �
d3r

�
Z

qbc
dH
dqab
rc

dF
dua

� �
� dF

dqab
rc

dH
dua

� �� �
d3r

þ 2

3

Z
qab

dH
dqab
rc

dF
duc

� �
� dF

dqab
rc

dH
duc

� �� �
d3r ð22Þ

As before, the above bracket guarantees that the con-
servative dynamics of the volume preserving micro-
structure satisfy the constraint detq=1. Transforming the
Volterra derivative of the arbitrary functional, F, accord-
ing to Eq. (21), and then substituting into the dissipation
bracket of Eq. (6) subsequently leads to the dissipation
bracket for the volume preserving microstructure:

½F ;H � ¼ �
Z

Kabce
dF
dqab

dH
dqce

d3r

þ 1

3

Z
Kabceqqgq�1ab

dF
dqqg

dH
dqce

d3r ð23Þ

where now L(q,q) and H ½q; u; q�.

68



Using the Poisson and dissipation brackets of
Eqs. (22) and (23), the evolution equations for the vo-
lume preserving microstructural fluid are obtained as
Eqs. (7), (8), and

@qab

@t
¼ �vcrcqabþqcarcvbþqbcrcva�

2

3
qabrcvc

� Kabce
dA
dqce
þ1

3
Kqgceqabq�1qg

dA
dqce

ð24Þ

where

rab¼ 2qbc
dA
dqac
�2

3
dabqce

dA
dqce

ð25Þ

p¼�aþq
@a
@q

ð26Þ

As in the preceding section, the Volterra derivatives
appearing in Eqs. (24) and (25) are defined analogously
to Eq. (12). Again, one finds that the microstructural
constraint requires additional terms to be added to the
extra stress tensor field expression, as required by the
Poisson bracket of Eq. (22). For arbitrary L and A,
Eqs. (7), (8), (24), (25), and (26) thus provide a system of
evolution equations which are guaranteed to fulfill al-
ways this particular microstructural constraint.

A few remarks are in order regarding a comparison of
Eqs. (24) and (25) with those derived by Maffettone and
Minale (1998) and by Ait-Kadi et al. (1999). The Poison
bracket, Eq. (22), was not identified by Ait-Kadi et al.
(1999) and, as a consequence, the fourth term on the
right-hand side of Eq. (24) is missing there; however, this
term vanishes for incompressible fluids, which is the as-
sumption used by Ait-Kadi et al. (1999). The dissipative
part of the time evolution, i.e., the last two terms on the
right-hand side of Eq. (24), becomes the same as that
derived by Ait-Kadi et al. (1999) if the free energy
depends only on trC

ðdetCÞ1=3
and trC�1

ðdetCÞ1=3
;and the kinetic

coefficients are chosen as by Beris and Edwards (1994).
Maffetone and Minale (1998) derived a volume-preser-
ving set of time evolution equations in terms of a con-
formation tensor for characterizing droplets in
immiscible mixtures. However, their analysis does not
provide an expression for the extra stress tensor field.
Grmela et al. (2001) do provide it by identifying the free
energy for which the time evolution equations derived by
Ait-Kadi et al. (1999) reduce to those derived by Maf-
fettone and Minale (1998). Almusallam et al. (2000) also
derived a constitutive model that at least approximately
conserved volume for predicting droplet shapes and
stresses in immiscible blends. Their procedure for
ensuring volume preservation assumes that the droplet
volume can be defined by a scalar function of the three
invariants of a second-rank tensor; however, it appears
that their methodology for guaranteeing this constraint is
more restrictive than the methodology proposed herein.

Complex fluids with area preservation

The only remaining scalar invariant of C to be ex-

amined is the second, I2ðCÞ ¼ 1
2 trCð Þ2�tr C � Cð Þ
h i

.

Mathematically, the constraint that I2=1 at all times
can be construed as one of area preservation from the
corresponding expression for this invariant in terms
of the eigenvalues of C (see, for example, Beris and
Edwards 1994). This is also apparent by interpreting a
second-rank tensor as an average of the vector product
of R� Rh i2/ I2 RRh ið Þ. Physically, this constraint might
be used to enforce a microstructural requirement of in-
flexible appendages on a branched polymer or copoly-
mer. In a branched or star polymer where the branch
angles must remain constant, the microstructure must be
described with more than one end-to-end vector. To
describe the deformation of these molecules under flow,
these vectors form into multiple second-rank tensors.
The tensors involving dyads of different vectors should
be required to maintain the constraint that I2=1.

In order to derive a set of dynamical evolution
equations for a material with this sort of microstructural
constraint, it is necessary to proceed as in the preceding
sections. This constraint may be quantified mathemati-
cally using the transformation

zab ¼
ffiffiffi
2
p Cab

CccCee � CceCce
� �1=2 ð27Þ

Consequently, the Volterra derivatives appearing in the
Poisson bracket of Eq. (5) are

dF
dCab

¼
ffiffiffi
2
p
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� �1=2
� dF

dzab
� 1

2

dF
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zcezggdab þ
1

2
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zcezab

� �
ð28Þ

so that this bracket becomes
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d3r
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Z

zcezqgz11
dH
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dF
due
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� dF
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dH
due
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d3r
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Similarly, the proper dissipation bracket for this system
can be obtained as

½F ;H �¼�
Z

Kabce
dF
dzab

dH
dzce

d3rþ1

2

Z
Khhcezqgz11

dF
dzqg

dH
dzce

d3r

�
Z

Kabcezqgzab
dF
dzqg

dH
dzce

d3r ð30Þ

so that now H ½q;u;z� and L(q,z).
In light of the brackets of Eqs. (29) and (30), the

evolution equations for the area preserving micro-
structural fluid are calculated as Eqs. (7), (8), and

@zab

@t
¼� vcrczab þ zcarcvb þ zcbrcva � zabzcez11rcve

þ zabzceze1rcv1 � Kabce
dA
dzce
þ 1

2
Kqqcezabzgg

dA
dzce

� 1

2
Kqgcezabzqg

dA
dzce

ð31Þ

where

rab ¼ 2zbc
dA
dzca
� zabzqgz11

dA
dzqg
þ zbezeazqg

dA
dzqg

ð32Þ

and p ¼ �aþ q @a
@q. As in the prior cases, the Volterra

derivatives appearing in the expressions above are de-
fined analogously to Eq. (12), and again the expression
for the extra stress tensor field, Eq. (32), has additional
terms as required by the microstructural constraint
being applied through the Poisson bracket. For arbi-
trary A½q; z� and L(q,z), Eqs. (7), (8), (31), and (32)
thus provide the set of dynamical evolution equations
that are compatible with the present microstructural
constraint.

Conclusion

In this paper, consideration was taken of complex fluids
whose internal structure can be well characterized by a
symmetric second-rank conformation tensor field con-
strained by a mathematical restriction involving one of
its three independent scalar invariants. The main results
of the paper are families of governing equations (invol-
ving both the time evolution equations as well as ex-
pressions for the extra stress tensor) for rheological
models whose solutions are guaranteed to satisfy the
respective constraints and to agree with all known laws
of thermodynamics. These families are parameterized by
the fluid’s free energy, as well as the kinetic coefficients
entering into the dissipative part of the time evolution. It
is in these two types of quantities where the individual
nature of the complex fluid is expressed in the governing
equations. An application of these results to a specific
complex fluid consists of the following three steps: (i)
specification of the proper constraint, (ii) specification of

the free energy, and (iii) specification of the kinetic
coefficients.

All constraints beyond those considered herein can be
dealt with using the same methodology as illustrated in
the body of the article. All further constraints can be
represented as functions of the three independent in-
variants treated above. For example, if one wishes to use
the constraint that detC

trC ¼ 1;then the methodology out-
lined above can be applied using the transformation

C! q ¼ trC

detC

� �1=2
C ð33Þ

Furthermore, the results of this paper can also be easily
extended to the case in which the constraints are not
required to hold at all times, but to evolve in time in a
way that is independent of the evolution of the con-
formation tensor itself.

An example of a complex fluid to which the results of
this paper are applicable is a polymeric fluid (Bird et al.
1987). The conformation tensor represents, in this case,
the deformation tensor of the macromolecules. It has
been suggested (Bird et al. 1987) that the physical nature
of some particular macromolecules can be well expressed
by requiring that the trace of the conformation tensor is
either kept constant or allowed to evolve in time in a
way that is independent of the time evolution of the
tensor itself. This particular situation has been worked
out by Bird et al. (1987), and our results confirm their
analysis. When constraints involving the other two in-
variants become a part of the analysis, the results of this
paper represent new rheological equations of state. This
is well seen, for example, in the case where the de-
terminant of the conformation tensor is constrained.
This situation arises, for instance, in immiscible blends
where the conformation tensor serves to describe the
shape of the droplets. The requirement of the in-
compressibility of the fluid inside the droplets is then
expressed mathematically by constraining the determi-
nant of the conformation tensor. Rheological models of
this type have been investigated before by Leonov
(1976), Maffettone and Minale (1998), Ait-Kadi et al.
(1999), and Almusallam et al. (2000). The rheological
equations derived there are all particular cases of the
equations derived in this paper.

Appendix

Even though the formulation presented in the main
body of the paper is complete, it is useful to regard it
also in the light of some other types of formulations and
arguments. First, note that the terms representing the
dissipation in Eqs. (9) and (10), i.e., the last term on the
right-hand side of Eq. (10) and the last two terms on the
right-hand side of Eq. (9), can be recast in the forms of

70



� dW
d dH

duð Þ
and � dW

d dH
dCð Þ
;respectively, where the functional ,

called the dissipation potential, is given by

W ¼
Z

1

2
Kabce

dH
dCab

dH
dCce

d3r

þ
Z

1

2
Babcegm rc

dH
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� �
rm

dH
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� �
d3r

þ
Z

1

2
Qabce ra

dH
dub

� �
rc

dH
due

� �
d3r

ðA1Þ

The most significant aspect of the concept of the dis-
sipation potential is that it allows one to formulate the
dissipative part of the time evolution equations that
depends nonlinearly on dH

dC and dH
du . The physical and

geometrical significance of the dissipation potential has
been recently investigated by Grmela (2002). From the
historical point of view, the dissipation potential can be
regarded as an appropriate generalization of the dis-
sipation potential introduced by Rayleigh (1945). As in
the main body of the paper, one can arrive at the con-
strained version of the dissipative part of the time evo-
lution by a dissipation potential that depends, for the

constant extension example, on dH
dCab

only through its

dependence on dH
dCab
� 1

3
dH
dCcc

dab.

The second observation concerns the first term on the
right-hand side of the Eq. (10) for the extra stress tensor
field, r. Note that one can alternatively derive it by using
an argument that is weaker than the one used above. It
follows from Eq. (4) that in the limit of non-dissipative
time evolution, i.e., if F ;H½ � ¼ 0; then dH

dt ¼ 0 as a con-
sequence of the antisymmetry property of the Poisson
bracket. This now raises the following question: given
Eqs. (7), (8), and (9) with L=0 and B ¼ 0;what is the
expression for r appearing on the right-hand side of
Eq. (8) with which the given time evolution equations
imply dH

dt ¼ 0? This question has been answered by
Grmela (1985), and later in a more general setting by
Jongschaap (1990, 2001). The answer is the following:

rac ¼ � dH
dCbd

dNbd

dðramcÞ ;where NabðC;rbfvÞ denotes the right-
hand side of Eq. (9) with L=0 and B ¼ 0. One can
directly verify that this expression leads to the first term
on the right-hand side of Eq. (10). Thus, this provides an
alternative derivation of the first term on the right-hand
side of Eq. (10), one that is based on the conservation of
the free energy during the reversible time evolution. This
requirement is weaker than the requirement that the
reversible time evolution possesses a Hamiltonian
structure.

References

Ait-Kadi A, Ramazani A, Grmela M, Zhou
C (1999) "Volume preserving" rheolo-
gical models for polymer melts and so-
lutions using the GENERIC formalism.
J Rheol 43:51–72

Almusallam AS, Larson RG, Solomon MJ
(2000) A constitutive model for the
prediction of ellipsoidal droplet shapes
and stresses in immiscible blends. J
Rheol 44:1055–1083

Beris AN, Edwards BJ (1990a) Poisson
bracket formulation of incompressible
flow equations in continuum mechanics.
J Rheol 34:55–78

Beris AN, Edwards BJ (1990b) Poisson
bracket formulation of viscoelastic flow
equations of differential type: a unified
approach. J Rheol 34:503–538

Beris AN, Edwards BJ (1994) Thermo-
dynamics of flowing systems. Oxford
University Press, New York

Bird RB, Curtiss CF, Armstrong RC,
Hassager O (1987) Dynamics of poly-
meric fluids, vol 2, 2nd edn. Wiley, New
York

Doi M (1981) Molecular dynamics and
rheological properties of concentrated
solutions of rodlike polymers in iso-
tropic and liquid crystalline phases. J
Polym Phys Polym Phys Ed 19:229–243

Doi M, Edwards SF (1986) The theory of
polymer dynamics. Clarendon Press,
Oxford

Dressler M, Edwards BJ, Öttinger HC
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