
Introduction

The flow properties and microstructural characteristics
of immiscible phases is of interest in many fields of
science and technology, and especially so with regard to
the physical properties of processed polymer blends.
Over the past decade, several notable attempts have
been made to model the orientational and deforma-
tional dynamics of the dispersed phase, and to couple
this dynamics with a rheological equation of state for
describing the mechanical properties of the deforming
microstructure (Doi and Ohta 1991; Wagner et al. 1999;
Grmela and Ait-Kadi 1994, 1998; Grmela et al. 1998,
2001; Almusallam et al. 2000; Maffettone and Minale
1998; Lee and Park 1994; Bousmina et al. 2001). These
models are typically written for blends composed
of equidensity and equiviscosity Newtonian fluids, with
a second-rank tensor describing the shape and orienta-
tion of the interfacial area between the two fluids.

Consequently, two immediately identifiable physical
shortcomings are evident. First, the fluids under inves-
tigation are not Newtonian, and thus any model
behavior predicted at relatively high deformations is
circumspect. Second, the volume of the dispersed phase,
as quantified by the second-rank tensor variable, is
allowed to vary, even though the blended fluids are
believed to be incompressible.

To make up for the second shortcoming, Almusallam
et al. (2000) have recently derived a model for equidensity
Newtonian polymer blends that enforces a constraint
upon the time evolution of the second-rank tensor vari-
able. This constraint approximates the volume of the
dispersed phase, but is not the true volume. A true con-
stant volume constraint has been implemented in rhe-
ological models on occasions in the past (Leonov 1976;
Ait-Kadi et al. 1999; Edwards et al. 2002), but has only
been incorporated into a specific model for polymer
blends on a single occasion (Maffettone andMinale 1998).
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Recently, a methodology has been developed (Ed-
wards et al. 2002) that allows for the direct incorpora-
tion of microstructural constraints into the derivation of
mutually consistent dynamical evolution equations for
microstructural variables and the corresponding rhe-
ological properties. Presently, this methodology is used
for the purpose of deriving a simpler (with regard to ease
of use) version of the model of Almusallam et al. (2000),
which also appears to shore up some inadequacies of the
previous model, as explained below.

Microstructural variables and models
for polymer blends

The first theoretical development to have a significant
impact on the description of polymer blends was the
introduction of the Doi-Ohta (DO) Model (Doi and
Ohta 1991). This equidensity, equiviscosity, Newtonian
model of incompressible, isothermal, and spatially
homogeneous polymer blends was written in terms of
a second-rank tensor, nn, representing the average
dyadic product of the unit normal to the interfacial
area separating the two fluids. In terms of this entity,
two pertinent variables were defined to quantify the
dynamical evolution and resulting stress within the
blend:

Q � tr nn; q � nn� Q
3

d: ð1Þ

As defined by these expressions, the scalar Q quantifies
the amount of interfacial area and the second-rank
tensor q describes its orientation and anisotropy.

The dynamical evolution equations for these quanti-
ties,
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consist of both a convective and relaxational mecha-
nism. The first terms on the right-hand sides of the
above expressions describe the convection of the inter-
facial area and shape, respectively:
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The second expression is indicative of a tensor that
deforms covariantly. The relaxational contributions to
the evolution equations are given by
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where C is the interfacial surface tension (energy/area),
g0 is the viscosity of both fluids, and c1, c2 are phe-
nomenological constants. According to these expres-
sions, the interfacial surface energy strives to decrease
the amount of interfacial area, Q, and to drive the sys-
tem toward the isotropic state.

The relaxation expressions of Eq. (4) are able to
describe the demixing effect of continuous blends, but
are not appropriate for describing the anisotropic and
rheological response of dispersed phases in which one
fluid exists as droplets within the other. For this case,
another area relaxation term is used that prohibits
further changes in the shape of the droplets once they
have become spherical:
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In conjunction with, but independently of, the evolution
equations described above, an expression for the
rheological properties of the blend was derived as well.
The extra stress tensor of the DO Model quantifies the
effects of the interfacial area and shape upon the blend’s
rheological characteristic functions:

rab ¼ gm ravb þrbva
� �

� C qab

� gm � gd

V

Z

uanb þ naub
� �

dS: ð6Þ

In this expression, u is the local fluid velocity at the
interface, gm is the matrix phase viscosity, and gd is the
dispersed phase viscosity. The first term in this expres-
sion is the stress contribution arising from the Newto-
nian fluid. The second and third terms were derived by
Batchelor (1970) as the interfacial tension contributions
arising due to the hydrodynamic interaction at the
droplet surface. For an equiviscosity blend, the third
term on the right-hand side of this expression vanishes.
Equation (6) was used by Onuki (1987) to describe
stresses and viscosities in phase separating fluids near the
critical point.

Several attempts to improve upon the DO Model
were made over the previous decade, each trying to
obtain more realistic relaxation expressions over
Eqs. (4) and (5) without changing the microstructural
variables Q and q (Grmela and Ait-Kadi 1998; Grmela
et al. 1998; Lacroix et al. 1998; Wagner et al. 1999; Lee
and Park 1994). Lee and Park (1994) modified the DO
model to incorporate additional relaxation mechanisms
to Eq. (4). Grmela and Ait-Kadi (1994) (see errata in
Grmela and Ait-Kadi 1998) derived a dynamical evo-
lution equation for a new variable,
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c � Qqþ 1

3
Q2 d; ð7Þ

that deforms as a covariant tensor. They argued that,
according to Eq. (1), the variables Q and q are interre-
lated through the dyad nn: note that trc ¼ Q2. By using
the Poisson bracket for a covariant deformation tensor,
they were able to derive a dynamical evolution equation
for this tensor, and its corresponding expression for the
extra stress tensor. The evolution equation was of the DO
type; however, the extra stress tensor expression had an
additional term over the Batchelor expression, Eq. (6).
Note, however, that the expressions for the lower-con-
vected derivatives appearing in Grmela and Ait-Kadi
(1994, 1998) are incorrect, as are the corresponding
Poisson brackets. The correct form of the lower-con-
vected Poisson bracket can be found in Appendix B of
Beris and Edwards (1990a) and Appendix C of Beris and
Edwards (1994). Lastly, Wagner et al. (1999) retained the
independence of the DO variables, yet applied the GE-
NERIC formalism (Grmela and Öttinger 1997; Öttinger
and Grmela 1997) to obtain additional relaxation
mechanisms allowing for better representations of flow
start-up behavior and blends in which the coalescence
and break-up of droplets is suppressed.

More recent theoretical work in this area has begun to
take into consideration the physically intuitive notion
that an incompressible fluid should have a constant vol-
ume. In other words, if a second-rank tensor field is used
to describe themicrostructure of the dispersed phase, then
this tensormust be constrained in some fashion so that the
volume of the dispersed phase remains constant. Fur-
thermore, recent work has started to consider blends on
polymers that are not equiviscosity. Maffettone and Mi-
nale (1998) introduced amodel with such a constraint, but
in terms of a second-rank tensor,S, which is effectively the
inverse of the DO tensor q. Thus the mutually perpen-
dicular eigenvalues of S describe the orientation and
shape of the dispersed phase droplets, and the determi-
nant quantifies their volumes. S is thus a contravariant
deformation tensor, although Maffettone and Minale
consider a non-affinely convecting microstructure.

In the Maffettone and Minale (MM) Model (Maf-
fettone and Minale 1998), the evolution equation for the
microstructural variable is
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s
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� �

; ð8Þ

where D and W are the symmetric and antisymmet-
ric contributions to the velocity gradient tensor field,
respectively. Also in this expression, s � gmr0=C is a
characteristic time constant of the droplet shape relax-
ation, f1 is a phenomenological constant that depends on
the viscosity ratio of the dispersed and matrix phases,

M � gd=gm, and g(S) is a function that guarantees that
the volume of the droplets is constant:

g ¼ 3
IIIS

IIS
: ð9Þ

In Eq. (9), the numerator is the third invariant of S, i.e.,
the determinant, and the denominator is the second,
IIS ¼ 1

2 S2
aa � SabSab

� �

. As mentioned above, the tensor S
is physically a contravariant deformation tensor. How-
ever, due to the implementation of the non-affine motion
assumption, the usual upper-convected derivative in
the evolution equation for S has been replaced with the
modified Jaumann, or corotational, derivative, in terms
of the phenomenological parameter f2. When f2 ¼ 1 and
s!1, the upper-convected time derivative is recov-
ered. Note that the MM Model does not provide a
relationship for the extra stress tensor field. A relation-
ship for the corresponding extra stress tensor was
derived by Grmela et al. (2001).

In order to return to DO-type variables, and at the
same time provide a compatible expression for the extra
stress tensor while maintaining the constant volume
constraint, Almusallam et al. (2000) derived a new
model for polymer blends. The Almusallam-Larson-
Solomon (ALS) Model is written in terms of an an-
isotropy tensor that is not traceless,

q̂qab �
1

Vd

Z

nanb d2n; ð10Þ

where the average is normalizedwith respect to thedroplet
volume,Vd. The surface area is still defined analogously to
Eq. (1), Q̂Q � tr q̂q. With these variables, the Batchelor
expression for the extra stress tensor field is modified to

rab ¼ g0 ravb þrbva
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� / C q̂qab �
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3
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� �

: ð11Þ

where / is the volume fraction of the droplets. The
evolution equation for the anisotropy tensor in the affine
deformation case is given by

@q̂qab

@t
¼ @q̂qab

@t

�
�
�
�
conv
þ@q̂qab

@t

�
�
�
�
relax

ð12Þ

where
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In these expressions, n ¼ 3=2, and the Choi-Schowalter
expression (Choi and Schowalter 1975) was used to de-
termine the empirical function,

f ðM ;/Þ¼ 160ð27þ30
ffiffiffi

3
p
Þ
ðn�1Þ

=6 ðMþ1Þ2

ð19Mþ16Þð8M2þ5ð19/þ4ÞMþ4ð20/þ3ÞÞ:

ð15Þ
The function gðq̂qÞ was determined as explained below.
The evolution equation for Q̂Q, if desired, can be obtained
by taking the trace of Eqs. (12), (13), and (14).

With the anisotropy tensor q̂q defined as in Eq. (10)
above, the volume of the droplet is not so easily deduced
as in the MM Model. Almusallam et al. (2000) thus
approximate the volume of the droplet as

Vd ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IIIq̂q 10 II3=2q̂q þ I3q̂q
	 


r ; ð16Þ

where the constant c ¼ 4p=3 27þ 30
ffiffiffi

3
p� �1

2. To reiterate,
this expression for the volume is only approximate, and
only applicable to ellipsoidal droplets. As in the MM
Model, the function gðq̂qÞ acts to guarantee that the evo-
lution equation for q̂q, Eqs. (12), (13), and (14), belongs
to the space where the approximate volume, Vd , is con-
served. One realization of this function can be derived by
requiring the time derivative of Vd to vanish at all times.
This leads to a very long expression for gðq̂qÞ:
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Note that this expression, and hence the entire evolution
equation for q̂q, is limited to situations where the compo-
nents q̂q13 ¼ q̂q31 ¼ q̂q23 ¼ q̂q32 ¼ 0. Furthermore, note
that the constant-volume constraint is applied only
to the relaxational part of the evolution equation for q̂q,
Eq. (14).

As was the case with the original DOModel, the ALS
Model rests upon a derivation in which the extra stress
tensor and the evolution equation for q̂q were derived
independently. Furthermore, the expression for gðq̂qÞ is
just one possibility among many, and it is not necessarily
the best or simplest of these.

A volume-constrained blend model

The methodology used herein takes advantage of the
underlyingmathematical structure of a complex fluid that
is present on any level of description. This structure has
been investigated extensively over the past fifteen years
(Grmela and Carreau 1987; Grmela 1988, 1989; Beris and
Edwards 1990a, 1990b,1994; Edwards and Beris 1991a,
1991b; Grmela and Öttinger 1997; Öttinger and Grmela
1997; Dressler et al. 1999). Most of this work was con-
cerned with complex fluids that were free of microstruc-
tural constraints. Recently, Edwards et al. (2002)
extended this methodology to constrained microstruc-
tures, and it is natural to apply it to the volume constraint
studied by Almusallam et al. (2000). (A detailed de-
scription of the methodology may be found in the
previous article, so we offer only a limited discussion
here.)

For an unconstrained complex fluid, a proper
dynamical description can be written in terms of the
variable set f ¼ ðu; q;CÞ, where u is the fluid momentum
density ðu ¼ qvÞ, q the mass density, and C the ‘‘con-
formation density’’ ðC ¼ qcÞ. The dynamics of an arbi-
trary functional of these variables, F ¼ ½u; q;C�, can then
be expressed as

dF
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¼ fF ;Hg þ ½F ;H �; ð18Þ
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and the dissipation bracket is
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d3r:

ð20Þ

The Poisson bracket of Eq. (19) is different than in
Edwards et al. (2002) in that the current version is for a
covariant deformation tensor (Beris and Edwards 1990a,
1994). The quantities K and Q appearing in the dissi-
pation bracket are phenomenological matrix operators
that quantify the microstructural relaxational effects and
viscous dissipation, respectively (Grmela 1988; Beris and
Edwards 1990a, 1990b, 1994).

The matrix L appearing in Eq. (20) approximates
the effects of non-affine motion between the droplets
and the surrounding fluid. In reality, the presence of
non-affine motion is an indication that the variable set
used to describe the problem is inadequate. In these
cases, the time derivative of the microstructural tensor
should be included in the set of dynamical variables
(Edwards et al. 1991). It is only when this variable is
neglected, and its evolution equation set to zero and
solved for @q=@t, that non-affine motion appears in the
reduced variable description. In this paper, we set L=0

solely to study the basic elements of the proposed
model without the added complications of non-affine
motion.

To apply this methodology to the volume constraint
associated with the constancy of Eq. (16), we first need
to find a mapping of the covariant, unconstrained
microstructural tensor C to a variable whose invariants
are forced to maintain the proper relationship at all
times. Let us multiply the left-hand side of Eq. (16) by a
constant such that the initial (quiescent) volume of the
microstructure is scaled to unity:
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To ensure that the volume as given by Eq. (21) is unity
under all conditions, one can use the mapping
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provided that the evolution equation for @q=@t is derived
appropriately. This is very hard to do using traditional
methodologies, but quite tractable under the present
auspice.

To accomplish the abovementioned derivation of the
evolution equation for q, it is necessary to derive the
proper functional derivatives appearing in Eqs. (19) and
(20) (Edwards et al. 2002). For the mapping of Eq. (22),
these functional derivatives are calculated as
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With these definitions, the evolution equations for the
variable set f ¼ q; u; qð Þ can be obtained as in Edwards
et al. (2002):
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and the evolution equation for q is given by Eq. (2) with
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Equation (27) was obtained from a non-canonical
Poisson bracket; it describes the affine advection and
deformation of the microstructural variable defined by
Eq. (10), as subjected to the constraint of Eq. (16).
Ergo, there is no approximation whatsoever appearing
in the time evolution equation, Eq. (27). In other words,
once the microstructural variable and its corresponding
constraint have been determined, the affine spatio-
temporal evolution of this variable, in conjunction with
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the evolution of the other system variables, is entirely
determined by the Poisson bracket. One does not need
to apply any closure approximations to the affine de-
formation. The additional terms appearing in Eq. (27)
beyond those normally present for affine deformation
appear due to the volume constraint and are thus part
of the affine motion for this constrained variable.

The extra stress tensor field appearing in Eq. (26) is
defined as

rab ¼ Qbacercve � 2qac
dA
dqbc
þ 1

3
dabqce

dA
dqce

þ 1

3a2
qcaqqg IIIq

15 II1=2q Iqdcb � qcb
� �

þ 3 I2q dcb

n o dA
dqqg

; ð29Þ

and the pressure according to the standard equilibrium
thermodynamical relationship, p ¼ �aþ q @a

@q . In these
expressions, the Hamiltonian is assumed to have the
form

H ½q; u; q� ¼
Z

1

2q
ucuc d3r þ A ½q; q�

¼
Z

1

2q
ucuc d3r þ

Z

aðq; qÞ d3r: ð30Þ

Once A½q; q� and the operator matrices are specified, the
entire set of evolution equations for the polymer blend
with the volume-preserving microstructural constraint
is completed. Note that the functional derivatives
appearing in Eqs. (28) and (29) usually take on the
simple form

dA
dqab

¼ @a
@qab

; ð31Þ

although sometimes more complicated expressions are
required (Beris and Edwards 1994).

Note that the expression for the extra stress tensor,
Eq. (29), has an additional term over the expression of
the ALS model, Eq. (11). This discrepancy occurs
because in a traditional modeling methodology, such
as employed by Almusallam et al. 2000), the stress
tensor and dynamical evolution equations are derived
independently. Thus the microstructural constraint, in
this case volume preservation, is not applied directly
to the stress tensor field. In the present methodology,
both the stress tensor and evolution equations are
derived simultaneously using the same underlying
mathematical structure imbedded in the Poisson and
dissipation brackets. Also note that both the relax-
ational and convective contributions to the evolution
equation for q satisfy the constraint of Eq. (23),
whereas the convective contribution of the ALS model
does not do so. Hence the model described above al-
ways satisfies the mathematical constraint that
Eq. (16) remains constant rigorously, whereas the ALS

model does not do so, in general, as illustrated in the
next section. However, one should keep in mind that
the volume expression used for the constraint,
Eq. (16), is only approximately correct and only
applicable to ellipsoidal droplets. Thus this approxi-
mation is propagated into the current model as well as
the ALS Model.

Some comments are also in order about the ex-
pression for the extra stress tensor, Eq. (29), and its
relationship with the same quantity in the ALS Model
and the Batchelor expression, Eq. (6). The first term in
Eq. (29) is the viscous contribution to the extra stress
tensor. Once Q has been specified as the isotropic,
incompressible dissipation matrix of Eq. (33), below,
all three expressions agree. The second, third, and
fourth terms on the right-hand side of Eq. (29) are
due to the interfacial energy, but for a fluid that is
described by a microstructural variable that is con-
strained to keep Eq. (16) constant. The Batchelor
expression was not derived under such a constraint, so
the third and fourth terms on the right-hand side of
Eq. (29) go beyond the Batchelor expression. These
additional terms are also different than the additional
term that appears in the ALS Model stress tensor of
Eq. (11). It is believed that this discrepancy occurs
because the stress tensor of the ALS Model was not
derived simultaneously with the evolution equation for
the microstructural variable using a properly consis-
tent method, such as embodied by the Poisson
bracket.

To continue, we must declare A, Q, andK. Although
these are arbitrary in the general form of the model
above, we choose them here so that the present model
matches the ALS Model as closely as possible. Under
this directive, we set

A ¼
Z

/
2

C Iq d3r; ð32Þ

Qabce ¼ gm dacdbe þ daedbc
� �

; ð33Þ

Kabce ¼
f ðM ;/Þ

gm / a
n� 1ð Þ=3

qn
acqbeþ qn

aeqbcþ qn
bcqaeþ qn

beqac

	 


:

ð34Þ

With these declarations, the extra stress tensor field
becomes

rab ¼ gm ravb þrbva
� �

� / C qab þ
/
6

C Iqdab

þ 5 /
2 a2

C I2q II1=2q IIIq qab

� 5 /
2 a2

C Iq II1=2q IIIq qcaqcb þ
/

2 a2
C I3q IIIq qab;

ð35Þ
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and the relaxational contribution to the evolution
equation for q is

@qab

@t

�
�
�
�
relax
¼� C f ðM ;/Þ

gm a
n� 1ð Þ=3

qn
acqbc þ qn

bcqac

	 


þ C f ðM ;/Þ

3 gm a
n� 1ð Þ=3

In
q qab

þ C f ðM ;/Þ

3 gm a2 a
n� 1ð Þ=3

qab IIIq

� 15 Iq II
1=2
q qn

ceqce

 

�15 II
1=2
q qn

cqqeqqce þ 3 I2q qn
ceqce

!

:

ð36Þ

The extra terms appearing in Eq. (36) as compared to
the ALS relaxational equation, Eq. (14), are the present
model’s equivalents of the ALS g function. Note that
our relaxation expression, as opposed to the ALS ex-
pression, is completely general for arbitrary q, i.e., when
this tensor possesses a full compliment of components.

Sample calculations

In this section, we wish to explore some of the initial
implications of the present model. In order to under-
stand the basic physics of the model, we reduce it to its
bare minimum of features. This allows us to grasp more
easily the root behavior of the model without having to
sort through extraneous issues associated with slight
modifications to the core model behavior. To this end,
we set the parameter n equal to unity, and gm ¼ 0 so that
only the elastic contribution to the extra stress tensor is
present. Also, we define a modified capillary number as
Ca � gmr0

Cf ðM ;/Þs , so that the function f ðM ;/Þ is normalized

out of the evolution equation for q. Also, we effectively
remove some of the parameters from the problem by
working in terms of dimensionless variables, defined
with tildes as ~qqab ¼ r0qab, ~tt ¼ t=s, and ~rra~vvb ¼ sravb.

The resulting dimensionless equations were solved for
transient shear flow using a fourth-order Runge-Kutta
algorithm. Both start-up and relaxation behavior was
examined for various capillary numbers and dimen-
sionless shear rates. In the following paragraphs, we will
not place the tildes on all displayed symbols, it being
understood that all quantities described are dimension-
less.

Figures 1 and 2 show the start up behavior of the
anisotropy tensor as a function of shear strain, c, for one
dimensionless shear rate, _cc ¼ 10, and three values of
the capillary number, Ca ¼ 1; 10; 100ð Þ. For Ca ¼ 1, the
steady state of all components is attained after the

application of about 15 strain units. For larger capillary
numbers, the components do not approach steady-state
values until very large shear strains are attained, c ¼ 120

Fig. 1 Dimensionless anisotropy tensor components q11 and q12 as
functions of shear strain for _cc ¼ 10 and several capillary numbers
after start up of shear flow

Fig. 2 Dimensionless anisotropy tensor components q22 and q33 as
functions of shear strain for _cc ¼ 10 and several capillary numbers
after start up of shear flow
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for Ca ¼ 10 and c ¼ 300 for Ca ¼ 100. Even at these
large strain values, on a logarithmic scale, one can still
notice significant variations in the components with
time. These large strain values induce such dramatic
morphology changes in the droplets that they essentially
become very thin sheets. Such changes are probably not
realistic physically, but since the model does not allow
droplet break up, the mathematical model is forced into
an aphysical behavior. Although it appears that the
values of some of the components vary in a peculiar
non-monotonic way with capillary number, this is not
the case. Were the figure abscissas extended to much
higher strains, the expected behavior would be observed.
This behavior is very similar to that of the ALS Model
(Almusallam et al. 2000, Figs. 7 and 8). Since we have
set the parameter n equal to unity, rather than the value
of 1.5 used by Almusallam et al. (2000), and since we
have normalized out the function f ðM ;/Þ, we believe
that this qualitative behavior of the q components with
strain and capillary number is a generic feature of these
volume-constrained models. Note that for the ALS
Model the qualitative behavior of the diagonal compo-
nents of q seems to be independent of the closure ap-
proximation which is employed in the solution of the
time evolution equation of the anisotropy tensor.
Therefore, it appears evident that this qualitative be-
havior is also independent of a reasonable choice for a
closure approximation. This might be important, as it
appears that for higher capillary numbers the ALS
Model encounters difficulties in describing the depen-
dency of q33, regardless of the particular closure ap-
proximation employed.

Before discussing the viscometric functions obtained
with the model, we offer a few remarks on the detailed
experiments performed by Almusallam et al. (2000).
These authors performed start-up of shearing flow and
step-strain relaxation experiments on single polybut-
adiene (PBd) droplets (with a diameter of 190 microns)
in a polydimethylsiloxane (PDMS) matrix at room
temperature. It turned out that the morphological
properties of polymer blends consisting of a continuous
phase and a dispersed droplet phase could be charac-
terized effectively by the average droplet properties that
are condensed in the anisotropy tensor. However, as
already mentioned, the ALS Model encounters signifi-
cant difficulties in predicting accurately droplet mor-
phologies in start up of shear flow for high capillary
numbers. The rheological properties of droplet mor-
phologies were measured by Almusallam et al. (2000) for
concentrated PBd/PDMS blends, which is an effective
ensemble of many (ideally) non-interacting droplets.
Even for small capillary numbers, the concentrated
blends displayed a very complex rheological behavior.
At both low and high capillary numbers, the transient
shear stress, r12, approaches steady state very slowly.
This type of asymptotic behavior is not described well by

the ALS Model, which predicts a rather fast approach to
a steady-state value. Furthermore, an experimentally
observed overshoot in the shear stress increased strongly
with capillary number, which is also not described well
by the ALS Model.

The first normal stress difference, N1, increases non-
monotonically showing a steep increase at low shear
strains, a weaker increase at high shear strains, and an
overshoot in between these two regimes (Almusallam et
al. 2000, Fig. 10). This quantity does not reach a steady
state in the range of shear strains investigated experi-
mentally. Thus, N1, could not be predicted with reli-
ability using the ALS Model. Still, older rheological
models for polymer blends do not even capture quali-
tatively the stresses in concentrated PBd/PDMS blends.
Therefore, the ALS Model represents a remarkable step
towards a more reliable prediction of the blend’s visco-
metric functions. However, more work needs to be done
since the ALS Model fails in predicting the stresses
quantitatively, even at low capillary numbers. A possible
reason for the poor performance of the ALS Model in
start up of shear flow is that the convective contribution
to the total evolution equation for q, Eq. (13), has not
been modeled appropriately; i.e., this contribution does
not preserve the approximate expression for the volume
of the droplets, Eq. (16). This is demonstrated in Fig. 6,
below, and also from applying the constraint (Eq. 23) to
Eq. (13). In a regime where relaxational contributions to
Eq. (12) are negligible with respect to the convective
contributions, such as at low strains, the ALSModel will
break down in the sense that it will not necessarily fulfill
the constant-volume constraint.

Figure 3 shows the shear stress as calculated from
Eq. (35) for _cc ¼ 10 and three different capillary numbers,

Fig. 3 The elastic shear stress after start-up of shear flow as a
function of shear strain for _cc ¼ 10 and three different capillary
numbers
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Ca ¼ 1; 10; 100ð Þ. The shear stress displays an overshoot,
which increases and broadens with increasing capillary
number. Notice from Fig. 3 that for higher capillary
numbers higher strains have to be applied to reach a
steady-state value of the shear stress. Furthermore, our
calculations show a rather fast relaxation of the shear
stress for low capillary numbers and a slow relaxation for
higher capillary numbers. The behavior of the shear stress
as a function of shear strain and capillary number is in
qualitative agreement with the experiments on concen-
trated PBd/PDMS blends, and it is similar to the predic-
tions of the ALSModel (Almusallam et al. 2000, Fig. 10).
This is evident even though the function f M ;/ð Þ has been
normalized out of our evolution equation.

Figure 4 shows the first and the second normal stress
differences for _cc ¼ 10 and three different capillary
numbers. For the smallest value of the capillary number,
the first normal stress difference shows an overshoot at a
strain of about 5 and a steady-state value for high shear
strains. For the intermediate capillary number,Ca ¼ 10,
the overshoot shifts towards higher shear strains and
the steady-state value is approached rather slowly. For
high capillary numbers, the overshoot still appears,
shifted to even higher strains, and the steady-state value
is reached for even higher shear strains. Note that the
first normal stress difference predicted by Eq. (35) is
larger in magnitude than the shear stress. This is cor-
roborated by experimental observations on PBd/PDMS
blends (Almusallam et al. 2000). The ALS Model makes

similar predictions for the relative magnitudes of the
shear stress and the first normal stress difference.

The second normal stress difference in Fig. 4 shows a
non-linear behavior which is very similar to that of the
first normal stress difference. Even the absolute value of
this quantity is very similar to that of N1; however,
neither experimental data nor theoretical estimates for
N2 are presented by Almusallam et al. (2000).

In Fig. 5, a comparison is made between the dimen-
sionless shear stress and first normal stress difference for
the new model and the ALS Model at a dimensionless
shear rate of unity and a low value of the capillary
number, Ca ¼ 1. According to Jansseune et al. (2001),
the ALS Model cannot describe the experimental
behavior of their polymer blends in start-up of shear
flow at low capillary numbers because it does not attain
a steady state at experimentally accessible times—see
their Fig. 2 and comments immediately following. As
indicated in Fig. 5, the new model seems to alleviate
some, if not all, of this deficiency, since it attains a
definite steady state, and much more quickly than the
ALS Model. The ALS model only approaches a steady
state at much high values of strain.

Note that the ALS model presented in this Fig. 5 and
the subsequent figure is evaluated in the same simple
state as the present model; i.e., n ¼ 1, viscous contribu-
tions have been neglected, and f has been incorporated
into the capillary number. Hence the comparison is
meaningful, but limited to the elastic contributions to
the extra stress tensor. (Consideration of the viscous

Fig. 4 The normal stress differences after start-up of shear flow as
functions of shear strain for _cc ¼ 10 and three different capillary
numbers

Fig. 5 The dimensionless shear stress and first normal stress
difference vs dimensionless shear strain for start-up of shear flow
at _cc ¼ 1 and Ca ¼ 1. The dashed lines are the ALS Model
predictions and the solid lines correspond to the present model
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contributions will not change the conclusions anyway.)
Thus it appears that the proper specification of the
volume conserving constraint in the convective part of
the evolution equation is essential for describing the
physics of the blends.

In Fig. 6, Vd is plotted vs strain for a dimensionless
shear rate of unity and Ca!1 for both the ALS
Model, Eq. (16), and the current model, Eq. (21). Note
that the volume of the ALS Model has been scaled to
unity as the strain goes to zero by dividing by 4p=3.
When Ca!1, the relaxation terms become negligible
relative to the convective terms, and only the convective
parts of the evolution equations for the microstructural
tensors are relevant. As evident in the figure, the current
model has a constant value of Vd, whereas the ALS
Model does not.

In the remaining figures, we present the relaxational
behavior of the models. The ALS Model seems to per-
form better in relaxation than in start-up of shear flow.
The reason for this might be due to the problem men-
tioned earlier: the convective part of the evolution
equation is not volume constrained. In relaxation ex-
periments, the convective contribution to the evolution
equation is negligible relative to the relaxational con-
tribution.

Figure 7 shows the relaxation of the diagonal com-
ponents of the anisotropy tensor for Ca ¼ 10 after a step
shear of c ¼ 15 with two different shear rates,
_cc ¼ 1; 10ð Þ. Similarly to the ALS Model, the thermody-
namically consistent model qualitatively describes the
anisotropy data for relaxation without the f M ;/ð Þ
function or a non-unit value of n. Note that the model
also predicts qualitatively the complicated relaxational
behavior of the constant-volume droplets as observed in

the experiments. The lengths of the smaller two droplet
axes (corresponding to the two largest diagonal com-
ponents of q), relax to equivalent values before the re-
laxation of all three axes to the isotropic state occurs:
there is an initial fast relaxation followed by a second,
slower relaxation process. The first arrow in Fig. 7
marks the position where the initial relaxation process is
completed and the droplet has recovered an axisym-
metric shape. The second arrow marks the point where
the droplet has resumed a spherical shape. The de-
scription of this two-stage relaxation process is a strin-
gent test for any constrained-volume model, as pointed
out by Almusallam et al. (2000). It is satisfied also by the
MM Model, but not by the DO Model which does not
satisfy volume preservation.

Figure 8 displays the diagonal components of the
anisotropy tensor for _cc ¼ 1, Ca ¼ 10, and four different
step shears, c ¼ 2; 5; 10; 12ð Þ. The arrows in this figure
mark the time where the curves for the various compo-
nents cannot be further distinguished anymore from
each other. They give a rough estimate of the time that
the droplets need to recover their spherical shape. The
shift of the arrows towards increasing times for higher
step shears corresponds to a slower effective relaxation
of the anisotropy tensor. This increase is also a basic
feature of the ALS Model.

The relaxation of the shear stress and the first normal
stress difference of the constrained-volume model is
presented in Fig. 9 for _cc ¼ 1, Ca ¼ 10, and the same four
step shears of Fig. 8. The points where the droplets have

Fig. 7 The diagonal components of the anisotropy tensor as
functions of time after a step strain of c ¼ 15 for two different
shear rates and Ca ¼ 10. Note the fast relaxation to an axisym-
metric droplet at the outset and the subsequent slow relaxation to a
spherical shape. Finally, notice the overshoot in q33 due to volume
preservation of the structural anisotropy tensor

Fig. 6 The droplet volume plotted vs dimensionless strain for _cc ¼ 1
and Ca!1. The dashed line is the ALS Model volume and the
solid line is the present model volume
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reached a spherical shape are marked with an arrow in
this figure. Note that experimental data on PBd/PDMS
blends show a fast decay observed at the beginning of
relaxation and a slower decay at later times (Almusallam
et al. 2000). The fast decay observed at the beginning
of relaxation is believed to be due to relaxation of the
deformed ellipsoidal droplets to an axisymmetric shape;
however, such a transition from fast to slow relaxation
at this point cannot be observed in Fig. 9. This problem

can presumably be corrected with an appropriate spec-
ification of a non-unit value of the parameter n.

Figure 10 shows the relaxation of the second normal
stress difference for the same parameters and the same
step shears as those in Figs. 8 and 9. For all cases, there
is the characteristic relaxation time to equilibrium, and
this appears to be only a function of the fast droplet
relaxation mode: after the axisymmetric shape of the
droplet has been reestablished, the second normal stress
difference vanishes because the appropriate components
of q have equivalent values.

The thermodynamically consistent model gives a
satisfactory description of blend morphology in start up
of shear flow as well as in step strain relaxation experi-
ments of polymer blends. The description of the visco-
metric properties of polymer blends is less satisfactory
than the description of the morphological properties.
However, keep in mind that we have only investigated
the basic physics of the model by adopting a very
simple thermodynamic potential and normalizing most
parameters out of the model. To achieve better agree-
ment with experimental data, more reasonable param-
eter values should be adopted.

Conclusion

In this paper we introduced a volume-preserving model
for polymer blends that maintains the crucial charac-
teristics of the blend model of Almusallam et al. (2000),
while shoring up some of its deficiencies. Specifically, the
ALS Model was not completely general for an arbitrary
orientation/shape tensor, and the convective contribu-
tion to the evolution equation for this tensor was not

Fig. 9 The elastic shear stress
and the first normal stress
difference as functions of time
after various step strains for
_cc ¼ 1 and Ca ¼ 10. The arrows
mark the approximate time
where the droplets have recov-
ered their spherical shape; they
correspond to the times marked
in Fig. 8

Fig. 8 The diagonal components of the anisotropy tensor as
functions of time after various step strains for _cc ¼ 1 and
Ca ¼ 10. The arrows on the abscissa indicate the approximate time
at which a spherical droplet shape is attained
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guaranteed to be volume preserving. Furthermore, a
different extra stress tensor was calculated that was
guaranteed to be compatible with the evolution equation
for the orientation tensor. Sample calculations revealed
model predictions that always satisfied the constraint of

volume conservation, yet were sufficiently wieldable to
provide reasonable predictions of real material behavior.
At low capillary numbers, the new model attains steady-
state much more rapidly than the ALS Model.
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