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Abstract We examine the effects of
matrix phase viscoelasticity on the
rheological modeling of polymer
blends with a droplet morphology.
Two contravariant, second-rank
tensor variables are adopted along
with the translational momentum
density of the fluid to account for
viscoelasticity of the matrix phase
and the ellipsoidal droplet shapes.
The first microstructural variable is
a conformation tensor describing the
average extension and orientation of
the molecules in the matrix phase.
The other microstructural variable is
a configuration tensor to account for
the average shape and orientation of
constant-volume droplets. A Hamil-
tonian framework of non-equilib-
rium thermodynamics is then
adopted to derive a set of continuum
equations for the system variables.
This set of equations accounts for
local conformational changes of the

matrix molecules due to droplet
deformation and vice versa. The
model is intended for dilute blends
of both oblate and prolate droplets,
and droplet breakup and coalescence
are not taken into account. Only the
matrix phase is considered as visco-
elastic; i.e., the droplets are assumed
to be Newtonian. The model equa-
tions are solved for various types of
homogeneous deformations, and
microstructure/rheology relation-
ships are discussed for transient and
steady-state conditions. A compari-
son with other constrained-volume
rheological models and experimental
data is made as well.
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Introduction

Polymer blends are systems of technological importance
since the blending of materials with specific properties is
cheaper than the chemical synthesis of new polymers.
From a scientific point of view, these systems are inter-
esting since a set of generally accepted macroscopic time
evolution equations to describe their complicated rheo-
logical response is not yet available. A main problem in
the macroscopic description of polymer blends with a
droplet morphology lies in the choice of the appropriate

microstructural variable to account for the droplet
shape. Two different second-rank tensor structural
variables have been proposed in the literature thus far: a
droplet shape tensor manifesting as a contravariant,
second-rank structural tensor whose eigenvalues are the
squared magnitudes of the droplet axes (Maffettone and
Minale 1998), and an anisotropy tensor defined as a
covariant, second-rank structural tensor which is the
area average of the dyadic of the surface normal vector
divided by the droplet volume (Almusallam et al. 2000;
Doi and Ohta 1991). Following initial work on this
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subject by Doi and Ohta (1991), several attempts were
undertaken recently to establish a more fundamental set
of macroscopic time evolution equations for polymer
blends, working either in terms of the droplet shape
tensor (Maffettone and Minale 1998) or the anisotropy
tensor (Almusallam et al. 2000). Recently, non-equilib-
rium thermodynamics has been used to obtain dynami-
cally consistent time evolution equations for polymer
blends with a droplet morphology and to propose
expressions for the extra stress tensor that are thermo-
dynamically consistent with the time evolution equation
for the structural variable and the momentum balance
(Ait-Kadi et al. 1999; Edwards and Dressler 2003; Ed-
wards et al. 2003; Grmela et al. 2001).

A shortcoming of almost all theoretical works on
polymer blend rheology, and in particular of the works
dealing with the droplet shape tensor theory and the
anisotropy tensor theory, is that they treat blends of
Newtonian fluids, hence neglecting non-Newtonian flow
behavior of the matrix fluid. Therefore, in these models
the viscoelastic response of the blend is exclusively due
to the elastic interface between the components. It is
clear that the limitation of Newtonian blend compo-
nents is a very severe one since commercial polymer
blends are made of high molecular weight polymers with
a characteristic non-Newtonian flow behavior. If the
blend consists of a continuous matrix of one polymer
with microscopic droplets of a second phase, the visco-
elastic response is due to the matrix and not just the
interface. Recently, Greco (2002) has treated the prob-
lem of drop deformation for non-Newtonian fluids in
slow steady flows using a perturbative approach to find
particular solutions of the relevant continuum equa-
tions. In the present work, we wish to propose a ther-
modynamic description for polymer blends consisting of
a continuous phase with microscopically small droplet
inclusions of a second phase, the former having a dis-
tinct viscoelastic flavor. We do this in order to explore
the consequences that matrix phase non-Newtonian
characteristics have on flow-induced droplet morphol-
ogy, and to discern when such effects become relevant.
In the next section we give a brief summary of relevant
theoretical work, which, up to now, has been presented
in the field of polymer blend rheology.

Models for polymer blends with droplet morphology

Over the past 15 years, non-equilibrium thermodynam-
ics has become a well established theory with which to
investigate fluids with internal microstructure (Beris and
Edwards 1990a, 1990b, 1994; Edwards and Beris 1991a,
Edwards et al. 1991; Grmela 1988, 1989; Grmela and
Carreau 1987; Grmela and Ottinger 1997; Ottinger and
Grmela 1997). Recently, polymer blends have become
the subject of investigation in applied non-equilibrium

thermodynamics, with the goal being to derive dynam-
ical time evolution equations for these systems. The first
attempts (Grmela and Ait-Kadi 1998; Grmela et al.
1998; Lacroix et al. 1998; Wagner et al. 1999) in this
direction focused on blends of Newtonian liquids with a
co-continuous morphology and, in particular, on the
improvement of the Doi-Ohta (DO) Model (Doi and
Ohta 1991). This model was developed for blends of
equi-density and equi-viscosity Newtonian liquids. The
research efforts of Grmela and Ait-Kadi (1998), Grmela
et al. (1998), Lacroix et al. (1998), and Wagner et al.
(1999) tried to obtain more realistic relaxation expres-
sions within the context of the Doi-Ohta theory without
changing the microstructural variable (the anisotropy
tensor) of the original model. Recently, Lhuillier (2003)
has examined coherently a blend of Newtonian fluids
with unequal viscosities.

Since 1998, research activities in theoretical polymer
blend rheology also shifted towards blends with a
droplet morphology, where a disperse phase is present as
microscopically small droplets in a continuous matrix.
Maffettone and Minale (1998) introduced the first con-
strained-volume model for the deformation, orientation,
and advection of ellipsoidal droplets of a Newtonian
fluid in a second Newtonian matrix fluid. In this model,
the droplet is described in terms of a second-rank,
contravariant microstructural tensor with constant
determinant to account for volume preservation of the
disperse phase. The time evolution equation of the
Maffettone-Minale (MM) Model is

as,
?:ﬂ = _UVV"/S“ﬂ + % (So(yvyvﬁ + Sﬂ“/v}'v“)

L (5, T, +-53,Va0,) — & (- )
(1)

where S is the droplet configuration tensor, v is the
velocity field, tr denotes the trace, fi, f> are phenome-
nological parameters, and 4 is the relaxation time related
to the interface between the two Newtonian fluids. In
Eq. (1), an isotropic relaxation mechanism due to
interfacial tension between the blend components is used
implicitly to describe a viscoelastic recovery of the
droplet phase and the concept of non-affine motion is
adopted to recover non-axisymmetric droplet configu-
rations with three different semiaxes. Note that the MM
Model, as developed by Maffettone and Minale (1998),
is purely phenomenological and does not give an
expression for the extra stress tensor. Ait-Kadi et al.
(1999) were the first researchers to undertake a ther-
modynamic study of general constrained-volume models
which lead to a restricted set of time evolution equations
for these systems. Later, this restricted set of time evo-
lution equations was generalized by Edwards and
Dressler (2003). Grmela et al. (2001) adopted a non-
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equilibrium thermodynamics approach and introduced a
phenomenological expression for the elastic free energy
to obtain a thermodynamically consistent expression for
the extra stress tensor for the MM Model, which has
been evaluated and compared with experimental data
for emulsions by Yu et al. (2002a, 2002b).

An alternative constrained-volume model for blends
of Newtonian liquids with a droplet morphology was
presented in Almusallam et al. (2000). The Almusallam-
Larson-Solomon (ALS) Model is written in terms of a
modified anisotropy tensor of the DO type with non-
vanishing trace, q. For this variable, an approximate
volume for the droplet inclusions is defined in terms of
the scalar invariants of ¢, and a set of time evolution
equations is proposed, which was intended to conserve
the approximate volume related to the anisotropy ten-
sor. However, this is a quite difficult task, which was
fully accomplished only recently by Edwards and
Dressler (2003) adopting the methodology proposed by
Edwards et al. (2003).

The DO Model and the constrained-volume rheo-
logical models have been invoked in several instances
(see, e.g., Jansseune et al. 2000, 2001) to recover mor-
phological properties of polymer blends from rheologi-
cal measurements. The idea of these works was to
measure transient and steady-state shear stresses and
first normal stress differences, which could be linked to
an orientation angle via a stress-optical rule. Then, a
rheological blend model such as the MM Model, the DO
Model, or the ALS Model was invoked to obtain the
average size of the dispersed droplets (Jansseune et al.
2000). A posteriori stress tensor expressions, such as the
formula of Batchelor, have been adopted to obtain vis-
cometric properties from morphological measure-
ments—see, e.g., Minale and Maffettone (2003).

A common limitation of the DO Model, the MM
Model, and the ALS Model, is that they make the
assumption of Newtonian blend components. In the
subsequent section, we wish to derive a set of continuum
equations for polymer blends with a droplet morphology
taking into account the non-Newtonian flow behavior of
the viscoelastic matrix. We will develop our description
in terms of the droplet shape tensor, S, since it has a
clear connection to the underlying spherical micro-
structure of the blend and it allows a rigorous, yet
simple, representation of the droplet volume in terms of
the determinant of the droplet shape tensor.

Thermodynamic description of matrix-phase
viscoelasticity in polymer blends

In this section we develop a description for polymer
blends with a droplet morphology that incorporates two
second-rank structural tensor fields that are allowed to

interact with each other under flow. The blend is mod-
eled as a thermodynamic continuum with internal
microstructure consisting of two immiscible phases. The
thermodynamic variables in a continuum description of
matter are statistical mechanical averages over all con-
stituent molecules and other microstructural compo-
nents which constitute a single fluid particle of the
continuum. The average elongation and orientation of
the matrix molecules at a fixed position in space is de-
scribed in terms of a conformation tensor field. The
shape and orientation of the droplets at a certain loca-
tion in the continuum is accounted for in terms of a
droplet shape tensor field, which can be viewed as a
statistical mechanical average over the size and config-
uration of all droplets in a single fluid particle. The
macroscopic flow of the blend is quantified in terms of
the momentum density field, defined as the velocity of a
fluid particle times its density. In the present work, we
adopt the approximation of ellipsoidal droplet shapes
with constant volume. For single droplets with diame-
ters larger than microns (40-500 pum), this approxima-
tion has been investigated experimentally by Guido and
Villone (1998) and by Hu and Lips (2003) in simple
shear flow and in planar hyperbolic flow, respectively.
Implicitly, we assume the validity of the ellipsoidal
droplet and constant-volume assumptions on smaller
length scales than those examined experimentally. Fur-
thermore, we neglect break-up and coalescence phe-
nomena, this being a reasonable approximation in
appropriate deformation and strain rate regimes. Note
that the continuum equations to be derived in this sec-
tion are not limited to a small deformation regime which
is typically encountered in low amplitude oscillatory
shear flow. In the subsequent section various sample
calculations referring to the non-linear viscoelastic
material behavior will be presented. We assume that the
dispersed phase concentration and the material proper-
ties of the blend components are such that breakup and
coalescence do not occur.

We wish to present only the most important steps in
the construction of the relevant macroscopic flow
equations since the basic ideas of the thermodynamic
description of complex materials in terms of multiple
conformation tensors are explained elsewhere (Beris and
Edwards 1994; Edwards et al. 1996). The dynamical
evolution equations for the polymer blend are obtained
from a master equation

W HY+ FoH),

where F'= F[x] is an arbitrary functional of a set of field
variables x, H denotes the Hamiltonian or the generator
of the dynamics, {-,}, [',] denote the Poisson and dissi-
pation brackets, respectively, and d-/d¢ is the time
derivative. Equation (2) is a special case of the more
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general GENERIC expression of Grmela and Ottinger
(1997) and Ottinger and Grmela (1997), applied herein
to isothermal and incompressible fluids. The physical
variables for the description of the blend are the
momentum density, M= pv (p being the effective mass
density of the medium and v the velocity field), an
unconstrained contravariant second-rank tensor, C,
describing the microstructure of the continuous phase,
i.e., the conformation of the polymer molecules in the
matrix, and a constrained contravariant second-rank
tensor, S, to describe ellipsoidal droplet shapes: hence
x=[M,C,S]. Since the disperse phase is assumed to be
incompressible, we impose the microstructural con-
straint, detS=1, to account for volume preservation of
the deforming micro-droplets. Further droplet configu-
ration tensors or conformation tensors may be included
into the above set of variables to describe systems with
non-uniform droplet size distribution or rheologically
more complex matrix fluids, if desired.

To derive a set of continuum equations using Eq. (2),
one has to specify the Poisson and dissipation brackets,
as well as the generator of the dynamics. The Poisson
bracket for a viscoelastic fluid described in terms of x
has been derived in Beris and Edwards (1990a, 1990b,
1994), Edwards and Beris (1991a, 1991b), and Edwards
et al. (1991, 2003). For the dissipation bracket, we adopt
the following expression:

+= / A(xﬁ e SonSsf ;SF ;;H
B / Aupre (55CF/;£S’H * 5()CH,;55SF )d3
4—; / Aupye (%Spns;e %Sﬂﬂsye )d

(3)

with the three phenomenological matrices A€, AS, and
A. The above dissipation bracket represents a general-
ization of the dissipation bracket for the Two Coupled
Maxwell Modes Model of Beris and Edwards (1994) to a
system that is described in terms of an unconstrained
conformation tensor, C, and a constrained droplet ten-
sor, S, with detS=1. The first integral in the above
dissipation bracket is the relaxation of the viscoelastic
matrix. The second and the third integral account for the
relaxation of the droplet inclusions under the auspices of
the constraint detS=1, and were derived by Edwards
et al. (2003). The last two integrals, involving the phe-
nomenological matrix A, describe the coupling of the
viscoelastic matrix fluid with the droplet interface and

they have been derived with the procedure developed in
Edwards et al. (2003). In the above dissipation bracket,
we neglect viscous dissipation of the matrix fluid since it
appears implicitly in the Maxwell viscosity
(nckgTAc—see below for definitions of these symbols if
unclear) and droplet diffusivity. The latter phenomenon
can be included in the dissipation bracket to obtain a
more sophisticated set of equations for this system, if so
desired.

The Poisson and dissipation brackets yield a set of
dynamical evolution equations of the form

v,
’08701 = —pul;V,;va — Vap + Vﬂaaﬂ7 (4a)
0C,;  0C, oG,

p_ OCq bl (4b)

ot ot cons ot diss

8S1[; aSa/; aSoc/J
_ 4
TR v (4)

Equation (4a) is the momentum balance equation in
a spatial description of macroscopic fluid flow, where the
pressure and the extra stress tensor have been denoted
with p and g, respectively. Pressure and velocity are thus
viewed as averaged quantities at each location in space-
time coordinates; i.e., they are coarse-grained averages
of the matrix fluid particles and droplets contained in the
fluid particle at (x,z). They arise naturally through
the mathematical structure of the Poisson bracket. The
pressure obeys a Poisson equation with appropriate
boundary conditions, and the extra stress tensor is
derived as

OH
Seso

SH 2
28
+ T3%45s,

oH
Oop = 2C,, oy 5S

Y 5C“,’/f (5)

Oup-
Equations (4b) and (4c) are the time evolution
equations for the structural tensors, each with a con-

servative and a dissipative part. The conservative terms
in the time evolution equations are given as

ac,
Bl — 0, V,Cop + Cy Vg + Cpy Vs (6a)
at cons
as, 2
Bl = 0V, S0 — = V0,805 + Suy V05 + Spy V05
at cons 3

(6b)

Equation (6a) is the upper-convected derivative of
the second-rank tensor, C, and Eq. (6b) is the corre-
sponding derivative for a tensor with the determinant
constrained to unity. The dissipative contributions to
Eqgs. (4b) and (4c) follow from the dissipation bracket,

Eq. (3):
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+34pe 3 3Cpy S Sup-
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With the procedure developed by Edwards et al.
(2003), it can be shown for Egs. (6b) and (7b) that detS
is a conserved quantity independent of the mathematical
form of the phenomenological matrices AS, AS, A, and
the Hamiltonian, H[M,C,S]. In order to obtain a specific
set of system equations from the set of Egs. (4, 4b, 4c),
we have to define expressions for the Hamiltonian and
the phenomenological matrices appearing in the dissi-
pation bracket, Eq. (3). These are the four ingredients
required to reduce the set of general time evolution
equations (Egs. 4a, 4b, 4c, 5, 6a, 6b, 7a and 7b) to a
specific model for the polymer blend.

In what follows, we wish to study a system which can
be envisioned as a Maxwell fluid with characteristic
elastic constant, K, coupling non-linearly to an elastic
interface with interfacial tension, I'. One particular
realization of such a system can be described in terms of
the Hamiltonian

Hm [M7 C7 S]

MM, 1
— L
/ [ p 2"

1 1
—5ncksT(1 = ¢)In (det C) + oI5| dx,

— K[M] +4[C, 5]

(1 —¢)trC

(3)

where I is the second invariant of S, ¢ is the concen-
tration of droplets, nc is the degree of elasticity per unit
volume of the matrix, and I'=T"/R where R is the
average droplet radius in the undeformed state. Equa-
tion (8) represents the kinetic energy of the system (first
term in the integral) plus a linear superposition of the
elastic free energy of a system of Hookean springs
(second and third terms) and the energy of the elastic
interface, with 12s being associated with the droplet sur-
face area (fourth term). The subscript “m” in the
Hamiltonian denotes that the description of the polymer
blend is purely mechanical, i.e., we have not considered
a balance equation for the entropy density to account
for the transfer of mechanical energy into internal de-
grees of freedom. Note that the last term in the integral
of Eq. (8) is different from the expression for the ther-
modynamic potential introduced in Grmela et al. (2001).

A physical justification for the choice for this term is
that the specific surface energy is proportional to the
surface area (at least for small deviations from spheric-
ity) and it assumes a minimum for the spherical droplet.

Next, we specify the dissipative phenomenological
coefficients appearing in the bracket of Eq. (3). We
adopt the phenomenological matrix for the Maxwell
Model to describe the relaxation of the matrix fluid
(Beris and Edwards 1994):

C 1 kgT

Nitre = 3670 1 (CoOe + CocOpy + Cpydae + Cpedu),
©)

where Ac is a characteristic relaxation time associated
with the continuous phase and we have introduced the
elastic modulus of the continuous phase G=nckgT. In
conjunction with the C -terms in the above Hamiltonian,
Eq. (8), and with A =0, this expression gives the Upper-
Convected Maxwell Model (UCMM) for the matrix
phase. To fit the model to experimental data it is nec-
essary to incorporate the viscoelastic characteristics of
the matrix phase into the relaxation matrix AC Here we
use a variable relaxation time, i. = A.(1/ 3trC) (k being
a power law index, C = CK /kBT ), according to the Ex-
tended White-Metzner (EWM) Model of Souvaliotis
and Beris (1992) to incorporate the effects of matrix
shear thinning into the model. Furthermore, we adopt
the following anisotropic expression for the relaxation
matrix of the interface:

S 1 [(1 +P)2P
W= Tis| 2 (SoyOpe +Suc ) +Sp;00e +Spedoy )
[s[s (50;5/364‘5165&) (10)

where Ag is a characteristic time scale associated with the
elastic interface and I is the first invariant of S. The
quantity p is a phenomenological parameter which de-
pends on the viscoelastic properties of the phases and
will be specified below. The first term in the square
brackets accounts for droplets which deform into ob-
lates for startup of steady shearing flow, the second term
accounts for droplets which deform into prolates for
startup of steady shearing flow. The difference between
oblate and prolate droplet shapes is illustrated in sub-
sequent figures, which will be explained in more detail in
the next section.

The phenomenological matrix 4 is adopted in anal-
ogy with the coupling matrix introduced by Beris and
Edwards (1994):

1 (1+p)°0

1
=3 Gl (CoySpe + CaeSpy + CpySae + CpeSyy)

(11)

afiye
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where 0 is a phenomenological coupling parameter. This
relaxation matrix has to be generalized in analogy to
Eq. (9) if the shear thinning behavior of the matrix
phase is incorporated into the modeling, i.e.
o= AC(1/3tr(~7)k. For 6>0, the above phenomenolog-
ical matrix gives oblate droplet configurations. Note that
the coupling matrix vanishes for p=-1. The phenome-
nological coefficient § may be taken as a function of the
scalar invariants of the structural variables, if so desired;
however, here we want to work with 0 being a constant,
real number for simplicity. There is no universal recipe
available to determine the phenomenological parameter,
0, and we propose how this coefficient could be related
either to morphological or viscometric properties of the
blend: If morphological properties of the blend can be
measured easily in a well-defined flow field (e.g., in
steady shear flow) then one might study the corre-
sponding solutions of the system equations as a function
of 0 and use the value for 0 that gives the most satis-
factory fit to experimental data. If morphological
properties cannot be measured easily, then one might
refer to nonlinear viscometric properties of the blend
and to calculate these properties as a function of the
coupling parameter from the time evolution equations.
This method has been proposed in Edwards et al. (1996)
where the negative ratio of the normal stress differences
has been chosen as the viscometric property from which
to obtain a value for the coupling parameter.

In order to rationalize the thermodynamic admissi-
bility of the phenomenological matrices (Egs. 9, 10, and
11), we consider the rate of mechanical energy dissipa-
tion generated by the Hamiltonian, Eq. (8):

dHp
dr

which is a decreasing function of time (Beris and Ed-
wards 1994). Equation (12) is obtained from Eq. (2) by
exploiting the antisymmetry of the Poisson bracket and
the fact that mechanical energy has to be dissipated into
internal degrees of freedom in the long time limit.
Inequality (12) is the appropriate condition to give a
physically meaningful description of the system, and it
can lead to counterintuitive results for the range of
thermodynamically admissible phenomenological coef-
ficients adopted herein. Mathematical criteria which are
imposed directly onto the dissipative phenomenological
coefficients, e.g., on the relaxation times, Ac and Ag, on
the coupling parameter, 0, or on the dissipative coeffi-
cient, p, do not necessarily satisfy the inequality (12),
and may therefore lead to aphysical results. This will
become evident in the following paragraph, where we
notice that the dissipative phenomenological coefficient,
p, has to be negative to account for a physically mean-
ingful droplet relaxation according to the phenomeno-
logical matrix of Eq. (10).

[Hm,Hm]< 0, (12)

For the dissipation bracket of Eq. (3), the inequality
(Eq. 12) is equivalent to

[HmaHm] = [Hm7Hm]C + [HmyHm]s + [Hmva}cs
1—¢) K kT
:_ﬂ/ <_[C+B_[El —6>d3x

2)¢ kT ' ' K
_(1+P)2P¢2r/ 3_11515 d3x_P¢2F
2Js 37172 s

S
></1§<3 /i 2—1>d3x
(72)

2
(1+p)°p(1 - $)0VGT K
Vicis ksT

2
X / <1,S CopSup — CoSppSaup — §1F1§> d*x<0,

(13)

where €, =C, ' =I$/IS. The first integral is the
mechanical energy dissipation of a Maxwell fluid,
[Hm,Hyulc, the second and third integrals are the
mechanical energy dissipation due to droplet relaxation
including oblate and prolate relaxation, [H,,Hy]s, and
the fourth integral is the rate of mechanical energy dis-
sipation due to the irreversible coupling of the matrix
fluid and the droplet interface, [H, Hy]cs. Each of the
first three integrals on the right-hand side of Eq. (13) has
to be negative since they account for matrix chain
relaxation and droplet retraction, respectively. This
specifies the range of thermodynamically admissible
phenomenological coefficients, Ac, As, p. Furthermore,
the last integral has to be negative since the irreversible
coupling between the two phases should not lead to an
increase of mechanical energy in the long time limit. If
one of the four integrals was positive, the mechanical
dissipation rate could become positive for specific values
of the physical variables.

In the following, we want to evaluate generically the
four integrals in Eq. (13) for start-up of homogeneous,
weak shear flow, y<<1, and for vanishing coupling
parameter, 0=0, to find the correct range of the ther-
modynamically admissible phenomenological coefficient
p. Numerical calculations (cf. Fig. 1) corroborate that
the scalar invariants of the structural variables increase
upon start-up of steady shear flow (except the third
invariant of the droplet shape tensor, detS=1). The
invariant If, assumes values above its equilibrium value,
I€, = 3K /(kgT); however, the variations in /€, are small
compared to the variations of I{. Therefore, the first
integral in Eq. (13) is negative since the expression in
parentheses is positive (the relaxation times, Ac, s, and
the elastic moduli, G, T', are positive numbers). Due to
I3>3 and I5>3, the expressions in parentheses in the
second and the third integrals are negative. Conse-
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Fig. 1 The invariants of the
structural variables, C and S,
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quently, the phenomenological friction coefficient, p, has
to be negative to give a negative dissipation rate due to
droplet relaxation.

Neglecting the prolate contribution in Eq. (10) for
the time being (but still keeping 0 =0), we notice that the
range of thermodynamically admissible phenomenolog-
ical coefficients Ac, As, and p in the two relaxation
matrices at Eqgs. (9) and (10) is different, although both
expressions have an identical mathematical form. The
deduction of the thermodynamic admissibility criterion
p <0 from Eq. (10), arguing that the droplets relax to the
lowest energy state of the spherical droplet in absence of
entropic forces and flow, is not obvious. Instead the
admissibility criterion p <0 is obtained from Eq. (12).
Our analysis shows that the constraint detS=1 and the
functional form of the thermodynamic potential,
Es = 1/2I'¢I5, produce this counterintuitive example of
a phenomenological dissipative coefficient being nega-
tive. Nevertheless, if p is taken as positive, then there is a
direct violation of the Second Law of Thermodynamics.

For a vanishing coupling parameter, =0, the last
integral in Eq. (12) is zero. For a small value of the

shear strain, Y

coupling parameter, 0 < <1, the coupling parameter has
to be positive to yield a negative dissipation of me-
chanical energy due to the coupling between the two
variables. Note that the possibility of a negative phe-
nomenological friction coefficient was also found in
Edwards et al. (1996), where the coupling parameter was
shown to be 0€[—-1,1]. Furthermore, note that the aspect
of a negative friction coefficient in the droplet configu-
ration equation is not worked out rigorously by Grmela
et al. (2001) and Yu et al. (2002a).

Since experimental evidence suggests that the defor-
mation behavior of droplets in a continuous phase into
prolates and oblates (see, e.g., Guido and Villone 1998;
Levitt et al. 1996) depends on the viscosity ratio and the
linear viscoelastic properties of the blend components,
we take p as the negative viscosity ratio, p = —nq/n.. If the
viscosity of the interface is considered the only relevant
quantity to characterize the droplet phase and it is taken
as a viscosity defined in analogy with the Maxwell
Model, nq4=T41g, then the viscosity ratio, p, is not an
independent quantity since we have p=—(I'lg)/(Gic),
which is determined once the linear viscoelastic
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properties of the matrix and the interface are defined.
We clarify that the quantity 54 is not the Newtonian
viscosity of the droplet phase but it is the Maxwellian
viscosity which is related to the interfacial elastic mod-
ulus, T', and the droplet relaxation time, Ag.

In what follows, we motivate this choice of the rele-
vant physical parameter to describe droplet deformation
in blends with matrix phase viscoelasticity and we pro-
vide a clarification concerning the effects of the matrix
phase on the dynamics of droplets as compared to
blends of Newtonian liquids. For blends of Newtonian
liquids the droplet dynamics is governed by two
dimensionless groups: the viscosity ratio and the Capil-
lary number. For the present study we assume that
droplet deformation and retraction are only due to
interfacial tension between the two phases since there is
no secured knowledge on the physical mechanisms of
droplet dynamics in blends of non-Newtonian liquids.
Therefore, the elastic free energy in Eq. (8) has been
chosen to depend on the surface area of the droplets, 12,
and the relaxation matrix of Eq. (10) accounts for vis-
coelasticity of the interface. It will become evident in the
next section when we render the equations dimensionless
that this means a reduction of the number of dimen-
sionless groups since the Capillary Number becomes the
negative inverse of the viscosity ratio. However, it is also
possible to introduce explicitly the Newtonian viscosity
of the droplet phase, n*, along with .= G/c but instead
of nqy=T/s. In this case p=—n*/n. becomes the negative
ratio of the Newtonian viscosities of the blend compo-
nents, and droplet dynamics are governed by the vis-
cosity ratio, p, and interfacial modulus, T', as known
from blends of Newtonian liquids.

Evaluating the Volterra derivatives of the Hamilto-
nian (8) and inserting the phenomenological matrices of
Egs. (9) and (10) into Egs. (7a and 7b), we obtain the
dissipative contributions to the time evolution equations
of the structural variables:
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Eq. (14a) is the dissipative contribution to the con-
formation tensor dynamics. For 0=0, we obtain the
relaxation terms of the UCMM and our set of equations
reduces to an uncoupled multi-mode model. For 6 # 0
and p # —1, we have a non-trivial coupling of the droplet
phase to the matrix. This means that the droplet defor-
mation induces changes in the average conformation of
the molecules in the matrix phase. Equation (14b) rep-
resents the dissipative contributions to the droplet
relaxation dynamics. The first term on the right-hand
side of Eq. (14b) accounts for oblate droplets and the
second term accounts for prolate droplets. The third
term captures the influence of the local polymer con-
formation in the matrix phase on the shape and relax-
ational behavior of the droplets, and it gives oblate
droplets for 0> 0.

For p=-1, i.e., equi-viscosity blends, the oblate term
in the droplet configuration equation and the coupling
terms drop out and we recover a model of the MM type
together with a UCMM. Note that for equi-viscosity
blends, the droplet deformation in the MM model is
described by the upper-convected time derivative and
the prolate relaxation term since the degree of non-affine
motion was taken as f,=35/(3—2p) in Maffettone and
Minale (1998); consequently, it vanishes for equi-vis-
cosity liquids. For p # —1, the prolate contribution in
the droplet configuration equation and the coupling
terms become different from zero, and the droplets de-
form into non-axisymmetric shapes for start-up of
steady shearing flow. In the MM model this effect is
obtained through the inclusion of the Gordon-Schow-
alter derivative into the droplet configuration equation.
For p - 0 (i.e.,, Ca — «, cf. the next section), the
interfacial tension between the two phases is negligible,
and variations of the droplet shape are due to the cou-
pling of the viscoelastic matrix to the droplets, i.e., the
last term in Eq. (14b). Vice versa, droplet deformation
induces structural changes in the matrix fluid via the
coupling term in Eq. (14a). The coupling term in
Eq. (14a) is a consequence of the modeling approach
and it ensures thermodynamic consistency of the partial
differential equations. Consequently, droplet deforma-
tion is always coupled with structural changes in the
matrix for thermodynamic consistency requirements.
However, for specific choices of the physical parameters
(G, Ac) and (T', Ag), the coupling terms in Eq. (14a) can
be small compared to those in Eq. (14b) so that there is
only a small effect of droplet deformation on the struc-
tural properties of the matrix. Note that in the limit
p — 07, the degree of non-affine motion as defined in
Maffettone and Minale (1998) is /,=5/3>1. For this
value of f5, the deformation of the droplets is not de-
scribed by the usual Gordon-Schowalter derivative since
fé€[-1,1]. For p - —o (i.e., Ca=0), the droplet relax-
ation terms in Eq. (14a) become the dominant ones, and
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the drops behave like rigid particles (note that the cou-
pling term in Eq. (14b) vanishes for S=4, i.e., in the
undeformed state or for non-deformable droplets). For
the dilute regime, ¢ — 0, only the coupling term in
Eq. (14b) is different from zero, which predicts oblate
droplet shapes. However, the presence of the droplet
phase allows changes in the local polymer conformation
of the matrix phase constituents.

The elastic extra stress tensor of the blend is the linear
combination of the extra stress tensor of the two com-
ponents. With Eq. (8), the general expression of Eq. (5)
for the extra stress tensor is equivalent to

Oup :GS/)’ + 05, = ncK(1 — ¢)Cyp — nckpT(1 — $)dyg
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For the dilute regime (¢ — 0), we have mainly a
stress contribution due to the matrix phase and the
droplet configuration is governed by the coupling term
in Eq. (14b). For the concentrated regime (¢ — 1), the
extra stress is due to the droplet phase and the non-
linear coupling terms are the only contributions in the
conformation tensor evolution equation, Eq. (14a).
Equation (15) is consistent with the extra stress tensor
obtained by Grmela et al. (2001).

Sample calculations for various types
of homogeneous deformations

The set of continuum equations (Egs. 4a, 4b, 4c), de-
rived in the previous section, has been solved for various
combinations of physical parameter values to determine
its characteristic features for various homogeneous
flows, characterized by the velocity gradient tensor, Vv.
These equations have been rendered dimensionless using
quantities 7 =t/+/Acds, C =K/kgTC, S =S, and ¢ =
o/(VGT). In all that follows, we omit the tilde over
dimensionless quantities. The equations have been
solved for various ratios of elastic strengths (G/T") and
relaxation times (Ac/4s), 1.€., viscosity ratios, p=—(I'As)/
(GAc), various droplet concentration regimes, ¢, and
coupling parameter values, 0, using a fourth-order
Runge-Kutta scheme. The Capillary Number is defined
as Ca=n.R/(I"Zs) in analogy with Edwards and Dressler
(2003), i.e., the intrinsic time scale of the viscoelastic
interface is adopted in the definition of the Capillary
Number instead of the time scale related to the velocity
gradient.

The groups that we adopt to render the system of
equations dimensionless thus only involve characteristic
material properties and intrinsic time scales. We feel that
once one incorporates matrix-phase viscoelasticity into
the problem, this is a more physically realistic definition;

however, this is largely a matter of taste and a ripe
subject for future debate. However, using the standard
definition of Ca, this quantity depends on space and
time for transient and non-homogeneous flow fields;
hence the advantage gained in using a Ca defined in
terms of material properties only.

With the above relationship, we see that the Capillary
Number is fixed once the viscoelastic properties of the
two phases have been specified: Ca=—1/p. The reason
for the Capillary Number being the only dimensionless
group lies in the choice of a single elastic modules, T,
and the corresponding relaxation time, Ag, to define the
physical properties of the droplet phase, i.e., we did not
introduce an additional droplet viscosity, n*, but set
na=Tls in analogy with the UCMM.

In the following, we discuss the basic features of the
set of continuum equations derived in the previous sec-
tion. We will focus mainly on (i) a dilute model blend
(Ca=4) whose linear viscoelastic properties are defined
as G/T'=4 for the ratio of elastic strengths and A/
As = lfor the ratio of relaxation times, and (ii) a model
blend (Ca=2) also with Ac/As=1. Furthermore, the
equations are also solved for Ca=0.1, 1, and 10 in order
to discuss the predictions over a larger range of Capil-
lary Numbers, and to compare our equations with the
predictions of the MM Model and the ALS Model to
examine the contribution of the viscoelastic matrix
phase. The dispersed phase concentration is taken as ¢
=0.1 in most sample calculations. The morphological
and viscometric properties of the model blend will be
studied for various coupling parameter values. In the
MM Model, the Gordon-Schowalter derivative has been
adopted to describe droplet deformation in blends of
Newtonian liquids with a viscosity ratio different from
unity. In this article, we do not want to adopt the
Gordon-Schowalter derivative since it is an irreversible
contribution to the system dynamics which does not lead
to dissipation of mechanical energy; i.e., it does not
contribute to Eq. (12), even though it is irreversible!
Instead, we wish to study the effect of the oblate relax-
ation term in Eq. (14b) and of the coupling terms in
Eqgs. (14a and 14b) on the rheological and microstruc-
tural properties of the blend. Finally, we will fit our
model to experimental data. For this purpose the vis-
cosity ratio will be used as an independent quantity and
the EWM Model will be adopted to account for the
shear thinning behavior of the matrix fluid.

Simple shear flow

First, we investigate the system equations for start-up of
steady shear flow, i.e., V,ov; =}, focusing on the non-
linear rheological features of the two coupled modes
description of the blend. Figure 1 illustrates the tran-
sient behavior of the scalar invariants of the structural



266

variables as a function of shear strain, y, for a given
shear rate, 9, and two values of the coupling parameter,
0, according to Eqgs. (4a), (4b), (4c), (6a), (6b),(14a)and
(14b). In this case, all fields are spatially homogeneous
and the integrals in Eq. (13) give the total system vol-
ume, Q. The calculations are for the Ca =4 model blend,
i.e., p=-0.25<0 to satisfy thermodynamic admissibility
criteria for the system equations. We note that the in-
variants of C (Fig. la—c) increase upon start-up of
steady shear flow, and that they each attain a value
greater than their equilibrium values. The solid lines in
Fig. la—c correspond to the single-mode UCMM, and
they can be obtained analytically solving this linear
viscoelastic model. The first and the second invariant of
S (Fig. 1d.e) show a strongly non-linear behavior which
is related to the increase of the surface area of the
ellipsoidal inclusions. The third invariant of S is always
unity, as prescribed by the constant-volume constraint.
Figure 1g displays the total rate of mechanical energy
dissipation, [Hy,,Hy,]/€2, according to Eq. (13).

Figure 2 shows the transient behavior of the confor-
mation tensor, C, which describes the average confor-
mation and orientation of the molecules in the matrix
phase. We notice that the 11- and the 12-components of
the conformation tensor attain a steady state before
approximately one shear strain unit has been applied,
whereas the 22- and the 33-components reach their
steady-state values only at much higher strain values.
The non-trivial behavior of the latter components is
directly attributable to the fact that 0 # 0 in Fig. 4b.
Only for 6=0 does the conformation tensor equation

Fig. 2 The components of the
conformation tensor, C, for

(Eq. 4b), reduce to the UCMM, for which C>,=C33=1
in simple shear flow.

The morphological properties of the polymer blend
are represented by the average magnitude of the three
semiaxes of the ellipsoidal droplets and the average
orientation of the droplets with respect to the flow
direction. The semiaxes of the droplets are the square
roots of the eigenvalues of the droplet configuration
tensor, S. The droplet semiaxes in the flow direction, in
the direction of the shear gradient, and in the direction
of the vorticity axis are denoted with L, B, W, respec-
tively. Upon inception of weak steady shear flow, y<I1,
the major droplet axis, L, increases and the minor
droplet axis, B, decreases. However, the vorticity axis,
W, can be greater than, smaller than, or equal to unity
upon start-up of flow and the droplets are thus either
oblate or prolate: one has oblate droplets for W >1 and
prolate droplets for W <1. The orientation angle, y, is
the angle between the eigenvector corresponding to the
largest eigenvalue of the S -tensor and the flow direction
and it is defined as y=1/2arctan[2S,/(S11—S5,)].

Figure 3 displays the start-up behavior of the three
droplet semiaxes upon inception of steady shear flow for
a fixed value of the coupling parameter and three dif-
ferent shear rates (Fig. 3a), as well as for a fixed shear
rate and three coupling parameter values (Fig. 3b). We
see that the model predicts a transition from the prolate
to oblate droplet configurations for increasing shear rate
or increasing coupling parameter value when 0 # 0. At
intermediate shear rates and coupling parameter values,
there is a competition between the prolate and the oblate
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Fig. 3 The same as Fig. 2 for a) G/T=4. M Jh=1 ¢ =0.1.6=0.1
the average semiaxes of the > reTs ’
ellipsoidal droplets, L, B, W, 25 ]
and the orientation angle, ¥, for : ' L L
start-up of steady shear flow for
(a) constant coupling parame- L B
ter, 0=0.1, and three shear 2
rates 7 = 0.05 (solid lines), 0.1
(dashes lines), 0.2 (dotted lines),
(b) constant shear rate, y = 0.05 1.5
and three coupling parameter
values 0=0.1 (solid lines), 0.2
(dashes lines), and 0.4. (dotted Ji
lines). Depending on the shear
rate and the magnitude of the 1.06
coupling parameter, the model
predicts either oblate droplets 1.04
(W=>1) or prolate droplets w X
(W<1). For y = 0.1 and small 1.02
shear strains, we observe a :
competition between oblate and
the prolate configurations 1
0.98
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droplet deformations that ends up in a prolate non-
equilibrium state for high shear strains.

Another example of the competition between oblate
and prolate droplet shapes is illustrated in Fig. 4 for the
Ca =2 blend with dispersed phase concentration ¢ =0.1.
In Fig. 4, the vorticity axis for an ellipsoidal droplet is
plotted as a function of shear strain for start-up of
steady shearing flow, 7, for five coupling parameter
values. It is seen that the droplets deform into prolate

4 6 8 100 2 4 6 8 10

shear strain, Yy

ellipsoids at high shear strains. The inset in Fig. 4 shows
the vorticity axis for small shear strains immediately
after start-up of flow. We see that for higher values of
the coupling parameter, 0, the droplets deform into
oblates immediately after start-up of steady shearing
flow. At a critical shear strain, the vorticity axis reaches
a maximum and then decreases below the equilibrium
value, where the prolate steady state is achieved at high
shear strains. Levitt et al. (1996) report an increase of the
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Fig. 4 The vorticity axis of ellipsoidal droplets for a Ca=2 blend
with dispersed phase concentration ¢ =0.1, five coupling parameter
values, 0=0.1 (solid line), 0.2 (long-dashed), 0.4 (dotted), 0.6
(dashed), 0.8 (dot-dashed), and shear rate y = 0.05. The inset shows
the behavior of the vorticity axis immediately after start-up of
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