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Transient shear properties of dilute polymer solutions are investigated in the shear
rate regions where shear thickening can occur. Comparison of transient rheological
and optical data with the tvo coupled Maxwell modes model offers insight into the
physical mechanisms that give rise to this anomalous behavior, Specifically, shear
thickening occurs due to the deterioration of the size and anisotropy of structures
deformed at lower shear rates. Coincident theoretical and experimental discontinu-
ities in the transient profiles of the dichroic orientation angle appear to confirm the
prior statenient.
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Introduction

Itis well known that dilute polymeric solutions typically display shear-thinning beha-
vior under the application of shear; i.c., their viscosities decrease with increasing
shear rate (Bird et al., 1987). However, some of these fluids exhibit an anomalous
behavior at high shear rates: it has been observed that, under very specific con-
ditions, their viscosities actually increase with the magnitude of applied shear rate,
provided the rate of shear is large enough (Kishbaugh, 1992; Kishbaugh and
McHugh, 1993; Layec-Raphalen and Wollf, 1976; Vrahopoulou and McHugh
1987). This phenomenon is called shear thickening. One of the manifestations of
shear thickening can occur in dilute, low-viscosity solutions when the molecular
weight of the dissolved polymer is very high, the concentration of polymer lies within
a certain range, and the shear rate is relatively large.

Ten years ago, the cause of shear thickening in these dilute solutions was finally
resolved. The work by Kishbaugh and Mcl lugh (Kishbaugh, 1992; Kishbaugh and
M_CHugh. 1993a.b) provided the definitive connection between the anomaly of shear
thlckening at high shear rates and shear-induced structure formation. They found
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that shear thickening arises due to intermolecular interactions, not intramolecular
interactions, as ascertained through extensive experimentation: a rheo-optical tech-
nique was used to measure the rheological and optical responses of the solutions
in the initial shear-thinning regime and subsequent shear-thickening region. The
results of the experiments conclusively demonstrated that the sh ar-thickening beha-
vior was associated with supermolecular structure formation.

Although the experimental investigations of Kishbaugh and McHugh could
delineate the phenomenon of shear thickening in polymeric solutions, there was no
self-consistent theory that could potentially describe all of the experimental observations
at that time. However, the recent work by Edwards et al. (2002) provided a single theory
that could explain both the rheological and optical behavior simultaneously, while
offering predictions for rheological characteristic functions, such as the first and second
normal stress coefficients, that were not measured experimentally.

According to the two coupled Maxwell modes (TCM M) model (Edwards et al.,
2002), associations (or structures) of the individual polymer chains start growing
in size and aspect ratio at small values of the shear rate below 7e» the critical shear
rate for the onset of shear thickening (see Figure 1). These associations actually
lower the viscosity in the solution by relieving some of the stress acting on the poly-
mer chains as the structures increase in size and aspect ratio. This augments the natu-
ral intramolecular chain shear thinning of the dilute solutions. At the critical shear
rate, 7., these structures become too distended to be supported by the hydrodynamic
forces acting on them. This results from the decrease in viscosity of the shear-
thinning solution. Thus the structures begin to decrease in size and aspect ratio in
response to the lowered degree of shear force exerted upon them. This reduction
in size restricts the stress relief offered to the solution dynamics, and. consequently,
the viscosily increases with increasing shear rate. At higher values of the shear
rate, the structures become totally isotropic, at 7,,. at which point a shear-thinning

—
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Figure 1. Generic profile of viscosity versus shear rate for a dilute polymer solution that exhi-
bits shear thickening,
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pehavior resumes as the intra-chain dynamics again dictate the qualitative behavior
of the shear viscosity curve (sce Figure 1).

In the previous publication (Edwards et al., 2002), the analysis was limited to
steady-state shear flow: however, the rheological and optical experimental data of
Kishbaugh and McHugh (Kishbaugh, 1992; Kishbaugh and McHugh,1993a) also
contained limited transient data taken during start-up, steady state, and cessation

of the shear flow experiments. This transient behavior is very interesting in its own
.1uht and can also be described by the TCMM model. Indeed, as we shall see, it
can also be used to add further credibility to the predictions of f said model. Conse-
quently, in this article, we extend the analysis of Edwards et al. (2002) from the
steady flow regime to the transient flow regime and compare predictions of the
TCMM model with the transient flow experiments of Kishbaugh and McHugh
(Kishbaugh, 1992; Kishbaugh and McHugh. 1993a). Also, as in the preceding arti-
cle. we offer predictions for rheological properties (but time-dependent predictions
this time) that have not been measured experimentally.

The Two Coupled Maxwell Modes Model

The TCMM model characterizes the essential qualitative and semi-quantitative
behavior of polymeric fluids (Edwards et al., 1996). It has evolved from the thermo-
dynamic methodology developed by Grmela (1988, 1989) and Beris and Edwards
(Beris and Edwards, 1994; Edwards and Beris, 1991a,b). The multiple coupled
Maxwell modes model was first introduced in Beris and Edwards (1994) and reduced
to a two-mode version in Edwards et al. (1996). Use of this two-mode model was
shown to reproduce faithfully (Edwards et al., 1996) all of the essential qualitative
features of polymeric viscoelastic fluids: quantitative reproductions can be achieved
through the use of additional (often uncoupled) modes.

To examine the behavior of dilute polymer solutions with structure formation,
the TCMM model is applied using two second-rank mode-conformation tensors,
¢! and €. The first mode-conformation tensor, ¢'(x,r), is the second moment of
the orientational distribution function, y(x. R.¢) (Bird et al.. 1987):

= /RR;.&;!-"R (1)

In this expression, R is the end-to-end vector of a dissolved polymer chain and x is
the Eulerian coordinate denoting the spatial position of the chain’s center of mass.
According to Equation (1), ¢! has units of length squared. The second mode tensor,
¢*(x, 1), quantifies the size. shape. and orientation of the intermolecular structures
that are formed during shear (Edwards et al., 2002). Using as the size distribution
function f(x, a, r). with a the vector spanning the major axis of a spheroidal struc-
ture, the second mode tensor can be deflined as (Edwards et al., 2002)

o= [aa.f' da (2)

The eigenvalues and eigenvectors of these second-rank tensors quantify the degree
of orientation and the characteristic directions, respectively, of the two relaxation
modes (Edwards et al., 1996, 2002).

In a homogeneous flow field, the evolution equations for the mode-
conformation tensors can be decoupled from the Cauchy momentum equation and
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solved independently for known kinematics. These evolution equations are
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In these expressions, kg 1s the Boltzmann constant, 7 is the absolute temperaty
K. K> are the Hookean spring constants of the [ree polymer chains and structur
(respectively), /. 7> are the relaxation times of the two modes, ;. 11> are the effecty
concentrations, and 0 is the degree of interaction between the two modes. For il
model to be physically feasible. 4;. 2>, i and n> must all have values greater ths
or equal to zero. Thermodynamically. it appears that ¢ should lic within the ran
of [—1.1]. It is typically a small positive [raction (Edwards et al.. 1996: Beris an
Edwards. 1994).

Rheological Properties
According to the TCMM model (Edwards et al., 1996; Beris and Edwards, 1994), th
extra stress tensor is given by a lincar sum over the two mode-conformation tensor
Gyp = Z (H,-;‘V_.,K,-t'ilr; — I?,‘;‘V_]f\'ﬁ.?‘fi”;) (3

i=1 i

where N, is Avogadro’s number. This second-rank tensor has units of force Pﬂ
length squared. and the shear \-'isms'ily 5. 1s caleulated by dividing the shear stres |
component, a1, by the shear rate, 7. The [irst and second normal stress coefficients
are defined as W) = (a1 — a22)/5° dnd ¥, = (022 — 633) /77, respectively.

Optical Properties: Dichroism

The TCMM model deseribes more than just the rheological properties of polymert
materials: it can also be used to determine the optical properties of the deforﬂ'liﬂE
liquid. The dichroic signal, An”, is calculated using both modes by summation

the following two equations (Kishbaugh, 1992: Kishbaugh and McHugh, 1993"

Edwards et al.. 2002):
4; NS 5 -
Ar" —11\ %{:q — 2, [ré' -3 (@
Sn 5 5 h
Afh = 5 HJ'PH];V_IJ'{\'_“(DEI = I‘_T}: W{T_:_} '[ﬂ

The first equation, Equation (6). is the innate dichroism of the individual pol)"ﬂ‘f'

chains. The parameters appearing in this cquation are: wave number, & = (7}
= 5 . oVl

6.328 x 107 )m!, polymer concentration, ¢. molecular weight, A, the refracti'®]
1
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index of the solvent, m, = 1.475 (Kishbaugh. 1992: Kishbaugh and McHugh,
1993b), and the polarizability difference, {':ﬁ - J’.%]|, This last quantity was estimated
py Kishbaugh and McHugh as —1.25 x 10 £ em? /molecule using the method
of’ Gurnee (1954). Since tre! is always greater than three, this contribution to the
dichroic signal is always negative in sign.

The second equation, Equation (7), is the dichroism arising from the
supermolecular structures according to the Rayleigh scattering theory (Kishbaugh,
1992; Kishbaugh and McHugh. 1993b:; Edwards et al., 2002). The quantities
;,ppearing in this expression are the refractive index of the polymer, m, = 1.59
(Kishbaugh, 1992; Kishbaugh and McHugh, 1993b), and several other model-
specific functions. The first is an anisotropy function that depends on the shape of
the structure, p:

h =— (8)

with p taken as (Edwards et al., 2002)

b Do A 3a
p=A{L+ e 3))

(9)

The quantity & is a dimensionless measure of the shear rate relative to the size and
shape of the assumed structures. It is given by (Kishbaugh, 1992; Kishbaugh and
McHugh, 1993b)
neVpev(p) . ;
o= L0 (10)
J'r\';; 1

where V), 15 the volume of the structure,
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i = 2.79 ¢P for decalin, the solvent. at 25°C. and
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In Equation (11), (aa), is the diameter squared of the average structure in the limit
of vanishing shear rate. A measure of the structure size can be obtained from
a= /{7, — 1){aa),, where 7, is the primary eigenvalue of & (Edwards et al.,
2002). The last quantity appearing in Equation (7) is the polarizability difference
of the structures, (2 —23),. It is given by (Kishbaugh, 1992; Kishbaugh and

McHugh, 1993b; Edwards et al., 2002)

[6n2 = 1 = 1
V2 Li+1/(m2=1) L+ 1/(m; = 1)

where
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[t can be shown that the contribution to the dichroic signal arising from the sin
tures is always greater than or equal to zero.

It is important to note a hypothesis expressed in the previous study (Edwy
et al.. 2002): the dichroic orientation angle is dependent on which mode doming
the dichroism. When anisotropic structures are present, they dominate the dichre
signal since AnY is of greater magnitude than An{. Thus, for shear rates with signi
cant structural anisotropy. the dichroic orientation angle is quantified by {
primary eigenvector of &*. However. for ext remely high values of the shear rate, aft
the dichroic signal has switched from positive to negative. this signal is ng
dominated by the free polymer chains. and thus the dichroic orientation angle
quantified by the primary eigenvector of ¢'. This hypothesis will be confirmed in th
article.

Optical Properties: Birefiingence

The TCMM model also allows calculation of the lincar birefringence, Arr', accordin
to the following equation (Kishbaugh, 1992: Kishbaugh and McHugh, 1993%
Edwards et al.. 2002):

A’ = zn-”.’f’?Jm,(fu-e" =30 + [tré! - 3]0y, + 4re,0,) (1
Three types of birelringence contribute to An', but all of them arise from the fre
polymer chains: the birefringence associated with the anisotropy of the supermol
cular structures is several orders of magnitude smaller than that calculated accord
ing to the above expression (Kishbaugh, 1992: Kishbaugh and McHugh, 199313{
Edwards et al.. 2002), and is therefore excluded from Equation (17). The quantily
™ appearing in Equation (17) is a magnitude corrector for the birefringenct
(Edwards et al., 2002). 1t essentially acts as another fitting parameter in the preseat
study. |
The first term in Equation (17) represents the intrinsic optical anisotropy of th
free polymer chains. This term is proportional to ©,, which is given by (Kuhn and
Griin, 1942)
O; :f["ﬂ — %), (19
3 I

The polarizability difference, (o1 —22);, = =549 x 10- cm’/molecule, is assigned
the value calculated by Kishbaugh and McHugh (Kishbaugh, 1992: Kishbaugh
and McHugh, 1993b) using the method of Gurnee (1954). This contribution to th
birefringent signal is always negative in sign.

The second contribution to the overall birefringence is of macroform anisotrop)
(Copic. 1957). which is due to the difference in the refractive indices of the DOI}’I”EI
and solvent. In Equation (17). this contribution is given by (Kishbaugh. 19%
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Kishbaugh and McHugh, 1993b; Edwards et al., 2002)
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Note that p; appearing in Equation (20) is a function of the trace of the first mode-
conformation tensor, p; = (1 + 3 zll‘f.‘l — 3})" 5 (Edwards et al., 2002). Furthermore,
p = 1.065 g/mL for polystyrene and M? /v = 2.083 x 10> M"*2_ This contribution to
An' is always positive.

Microform anisotropy (Tsvetkov, 1964) accounts for the third contribution to
the birefringence. It increases with the extension of the polymer chain, although it
is still an effect arising from the difference in refractive indices between the polymer
molecules and solvent. The contribution is expressed by

0, =3 (Pit2) (M=) dnMale; (21
5 3 4, PN 4

where { = 5.4 is the number of monomeric units per statistical chain segment,
M, = 104 g/mol is the monomer molecular weight. and ¢, = 0.1 is the optical shape
factor for the segment (Kishbaugh, 1992:; Kishbaugh and McHugh, 1993b). This
contribution to A’ is also always positive.

with

Transient Rheo-optical Experiments

The steady-state rheo-optical data of Kishbaugh and McHugh (Kishbaugh, 1992;
Kishbaugh and McHugh, 1993a) was obtained using a Couette flow cell subjected
to the transient shear-rate profile depicted in Figure 2. In these experiments. the
shear rate was ramped up from rest to the steady-state shear rate value of interest,
Ty i @ 28 time interval. The shear rate was held constant for 5s, and then it was
ramped back down to rest in another 2s interval. The 5s steady-state interval was
sufficient to allow the solutions to attain time-independent rheological and optical
responses. ‘These experiments were performed on polystyrene/decalin solutions
made from monodisperse polymer samples of various molecular weights over a
range of concentrations at 25°C, :

Transient Data Fitting using the TCMM Model

The transient flow profiles for both the rheological and optical data reported by
Kishbaugh and McHugh (Kishbaugh, 1992; Kishbaugh and McHugh, 1993a) will
be analyzed in this section in terms of the TCMM model. In order to reproduce
the results obtained from the transient experiments, the TCMM model must be
applied to the transient shear profile of Figure 2. This is easiest to accomplish when
working in terms of dimensionless quantities. Subsequently. the model predictions
¢an be transformed back into dimensional quantities and compared with experi-
mental data.
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Figure 2. Trapezoidal velocity profile used for most of the rheo-optical measurements of
Kishbaugh (1992) and Kishbaugh and McHugh (1993a).

The evolution equations, Equations (3) and (4). are made dimensionless by
defining the dimensionless shear rate as 7 = 7v/7173. the dimensionless mode tensors
as E'i;.' = Kicoy/kpT. and dimensionless time as 7 = t/V/772. Consequently, the
spring constants, K, and K. drop out of the analysis, and one is left with only five
parameters. Zy, Zs, ny, na. and 0. that must be fit to the experimental data,

Fitting the model to experimental data was accomplished using two different
methods. In Method 1, values for the five parameters listed above, as well as
{aa),. can be taken directly from the previous study (Edwards et al., 2002; Jiang
et al, 2003). In other words, the parameters are fitted using only sready-state
viscosity versus shear rate data. Then the coupled, nonlinear, ordinary differential
evolution equations, Equations (3) and (4), were solved using the fourth-order
Runge-Kutta algorithm, in accordance with the transient shear flow profile of Figure
2. These equations are well conditioned. and hence stability issues were not relevant.
This method is very stable and calculates time-dependent components of the two
mode-conformation tensors to the desired degree of accuracy. in this case, to 12 sig
nificant figures. These components can then be converted into the requisite dimen-
sional rheological and optical properties In a post-processing operation using
Equations (5). (6), (7). and (17) and subsequently compared with available transient
experimental data.

The second method, Method 2. was more complicated than the first. In this
method, use is made of all available transient data taken for a given polymer mol
ceular weight and concentration. Multiple transient dichroism profiles for various
steady-state shear rates are fitted simultaneously using the Nelder and Mead down-
hill simplex method (Press et al., 1992) to find the best set of six parameters. A, 42
. 2. 0, and (aa),. that give the smallest objective function. This objective function
was defined as
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where 11y is the total number of experimental data points from all transient dichro-
ism profiles, 7., is the number of transient dichroism profiles, and 7/, is the number
of data points in the i-th data set. The weighting factor appearing in this expression
was defined as w(j) =10 when the experimental value of the dichroism was within
5% of its maximum value and 1 (j) =1 otherwise.

The objective function thus represents an average of differences between the
theoretical calculations and the experimental transient profiles for a given set of
parameters. The Nelder and Mead algorithm searches through the parameter space
trying to minimize the objective function, solving at each iteration the coupled
evolution equations, Equations (3) and (4), and then calculating the dichroism to
compare with the experimental transient dichroism profiles. (Dichroism profiles were
used for the fitting. as opposed to stress or viscosity profiles, because none of the
latter were presented in Kishbaugh (1992) and Kishbaugh and McHugh (1993a).
After the objective function was minimized, the parameters corresponding to this
value of objective function were used to compare the TCMM model with the
transient experimental profiles.

Results

In all cases. data fitting was hindered by the limited transient data presented in the
Kishbaugh and Mchugh publications (Kishbaugh 1992: Kishbaugh and Mchugh,
1993a). However, a sufficient amount of data could be gleaned from these sources
to come to some significant conclusions, as described below,

Dichroism

Two sets of experimental transient dichroism curves are presented in Kishbaugh
(1992) and Kishbaugh and McHugh (1993a). The first set is shown in Figure 3, along
with TCMM model fits for the two data-fitting methods described in the preceding
section. Experimental data in Figure 3 are for a solution of 6.8 x 10® g/mol poly-
styrene dissolved in decalin at a concentration of 0.30 g/dl. (In this and subsequent
figures, only a sampling of results at specific values of the steady-state shear rate are
shown; displayed results are typical.) The dashed curve corresponds to parameter
values obtained using Method 1; these parameter values were obtained in Edwards
et al, (2002) and are collected in Table I. Recall that these parameter values
were obtained using steady-state viscosity versus shear rate curves (Edwards et al.,
2002), such as represented symbolically in Figure 1. The solid curve corresponds
Lo parameter values obtained via Method 2, which are also collected in Table I.
Recall that these parameters were obtained by optimizing all available dichroism
versus time curves simultaneously,

As evident, both sets of parameters describe well the qualitative features of the
transient dichroism curves, but the latter set offers a fair amount of quantitative
improvement, especially at lower shear rate values. The reason for this is apparent:
the parameter values from Method | were obtained from the best model fit
to steady-state viscosity versus shear rate data, whereas Method 2 optimized the
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Figure 3. Transient dichroism for the solution with ¢ = 0.30 g/l at two steady-state sl

rates.
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Table 1 Parameter values for the 6.8 x 10 g/mol Polystyrene/Decalin solution with
¢=0.30g/dl at 25°C

SR - ; : 7
Z1(s) 4a(s) im(mol/m?) m(mol/m-) () (aa),(m?)

]\I_cih()di 0.004333  0.013 1.0x 10 [0 x10=8 0.10  4.20x10 0
Method 2 0.001117  0.011 42x10 3 41x107 017 535x10-16

Table II Parameter values for the 1.54x 10°g/mol Polystyrene/Decalin solution
Table o ysis {
with ¢ = 0.79g/dl at 25°C

Z1(s) 23(s8) m (mol/m?) im(mol/m?) (] {aa),(m?)
Method 2 0.002769  0.0052 4.183x10 © 4.181x10 ° 003 4.19x10 16

Table III Parameter values for the 6.8 x 10° g/mol Polystyrene/Decalin solution with
¢=0.10g/dl at 25°C

Z1(s) 73(s) i {mol/m?) n>(mol/m?) 0 )

Method 2 0.002258 0.0417 4.06x10 4 92725107 0.26 96.48

parameters to transient dichroism data. including those displayed in the figures. For
this particular solution, no shear thickening was observed in the steady-state vis-
cosity versus shear rate curve, nor did maximum occur in the steady-state dichro-
ism versus shear rate curve (Kishbaugh,1992: Kishbaugh and McHugh, 1993a:
Edwards et al., 2002). At this concentration, the structure size increased with increas-
ing shear rate, eventually reaching a limiting size at high shear rates (Edwards et al..
2002). According to the model and the experimental data, the size of the structures
increases and the shape elongates monotonically to the steady-state structure size
and shape upon start-up of shear, and decrease back to their quiescent values upon
flow cessation.

Note that both theory and experiment coincide on another point: the dynamical
response of the solution at any time is at a pseudo steady state. In other words.
during start-up and cessation of flow. the instantaneous value of the shear rate
determines the instantancous values of all rheological and optical properties as if
the flow field was at steady state with that particular value of the shear rate.

The orientation angles of the structures relative to the direction of flow are
displayed in Figure 4 for one value of the steady-state shear rate. Here, only the
TCMM model fit is displayed for the parameter values obtained via the more
accurate Method 2. The model predicts well the transient qualitative features of the
experimental data, including the initial rapid changes immediately after start-up and
immedialely before total flow cessation. Note that the experimental data contain
much noise at very small and long times due to the method by which the orientation
angle is calculated from the raw intensity data (Kishbaugh,1992: Kishbaugh and
MCHugh 1993a). This noise is not present in the TCMM model predictions, since
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Figure 4. The orientation angle of the dichroism for the 6.8 x 10" g¢/mol polystyrene/decalin
solution with ¢ = 0.30g/dl.

the computational algorithm is not subject to measurement error. At both values of
the steady-state shear rate. the orientation angle drops quickly from its zero shear
rate limit of 45" to a value fairly close to the direction of Tow and then returns to
45" upon flow cessation.

The second set of dichroism data are much more interesting than the first in that
this solution, a 1.54 x 10® g/mol polystyrene/decalin solution at a concentration of
0.79 g/dl. corresponds to a case in which the steady-state viscosity curve displays a
minimum and the steady-state dichroism curve displays a maximum. Results of the
TCMM model fit to the experimental data using the more accurate Method 2 are
presented in Figure 5; parameter values are displayed in Table 11. At the lowest value
of the shear rate (not shown), the TCMM model captures the qualitative shape of the
experimental curve, but the quantitative value is dramatically lower. This is consist-
ent with the steady-state analysis ol Edwards et al. (2002) and Jiang et al. (2003),
wherein it was observed that the model is not quantitatively accurate at low shear
rates. This problem is exacerbated by the greater degree of relative error in the exper-
imentally measured value of the dichroism due to its small magnitude at low defor-
mation rates. As the steady-state shear rate increases, the model becomes
quantitatively accurate as well as qualitatively so. At the higher values of the
steady-state shear rate, the curves display maxima upon start-up and cessation of
flow. This occurs because the structures increase and then decrease in size and shape
as the low field approaches its steady state. At the highest values ol the steady-state
shear rate, the dichroism decreases to the point where it actually has a negative value,
as indicated in Figure 5(c). At this point. the structures have become rather small and
optically isotropic (i.e.. spherical), and the dichroism is dominated by the inherent
anisotropy of the individual chains remaining in solution (Edwards et al., 2002)-
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Figure 5. Transient dichroism for the 1.54 x 10°g/mol polystyrene/decalin solution with
¢=0.79g/dl at three steady-state shear rates.
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Figure 5. (Continued).

(Remember that polystyrene has a negative intrinsic optical anisotropy.) At flow
cessation, the structures backtrack the path they took upon shear start-up until
the solution returns to its quiescent condition.

The most interesting prediction of this- analysis is obtained for the dichroic
orientation angle for this solution at 7, = 7037s ', as displayed in Figure 6. Recall
that at this shear rate, the steady-state dichroism has a negative value, implying that
the physical mechanism dominating the dichroic signal has switched from the struc-
tures to the individual polymer chains. Therefore, the model predicts that during
flow start-up and flow cessation a discontinuity should appear in the orientation
angle as the dominating mechanism switches from the structures to the chains.
Hence the orientation angle switches discontinuously from that of the structures
to that of the chains. (Although these data we not presented directly in Kishbaugh
(1992) and Kishbaugh and McHugh (1993a). raw data for this case were given, $0
that the current authors were able to calculate the experimental curve.) It is evident
that the experimental data display the same type of discontinuity at exactly the samé
times as the model predictions. This gives a strong validation of the notion initiated
by Edwards et al., (2002) that the dichroism switches from a structure-controlled
mechanism to an individual chain-controlled mechanism at very high shear rates.

Rheology

No transient rheological data are presented by Kishbaugh and McHugh for thell
rheo-optical experiments (Kishbaugh, 1992; Kishbaugh and McHugh, 1993a). How
ever, they do state that for all cases, whether or not shear thickening was present, the
shear stress curve almost exactly matched the trapezoidal shear profile of Figure 2.
In Figure 7, we present plots of the shear stress versus time for the solutions of

R e———
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figure 6. The orientation angle of the dichroism for the 1.54 x 10% g/mol polystyrene /decalin
jolution with ¢ = 0.79 g/dl at 3, = 7037 5 L

Figure 4. It is evident that the observed stress profiles are consistent with the state-
ment expressed above. Furthermore, the TCMM model also gives predictions for
transient rheological properties that have not been measured experimentally. In
Figures 8 and 9, we show predictions for both the first and second normal stress dif-
ferences as functions of time at several values of the applied steady-state shear rate.
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ISP- 7. The shear stesses for the 6.8 x 10°g/mol polystyrene/decalin solution with
-30g/dl at four steady-state shear rates.
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Figure 8. The first normal stress dilTerences for the 6.8 x 10° g/mol polystyrene/decalin sol-
ution with ¢ = 0.30 g/dl at four steady-state shear rates.

Birefiingence

The TCMM model also describes reasonably well the linear birefringence as a
function of time for shear-thickening dilute polymer solutions. In Figure 10, we plot
the transient birefringence for several shear rates of a polystyrene/decalin solution
from Kishbaugh (1992) and Kishbaugh and McHugh (1993a). For this set of
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Figure 9. The second normal stress dilferences for the 6.8 x 10° g/mol polysty J'L‘”L';'d“"]

solution with ¢ = 0.30 g/dl at lour steady-state shear rates.
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igure 10. Transient birefringence for the 6.8 x 10 g/mol polystyrene/decalin solution with

¢=0.10g/dl at three steady-state shear rates.
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Figure 10. (Continued).

transient data. no dichroism data were available, so we fit the TCMM model to
the birefringence data via Method 2, but using Equation (17) instead of the
corresponding dichroism equation; parameter values are presented in Table I11. At
low shear rates, the birefringence is positive as the signal is dominated by form 1
birefringence. As the steady-state shear rate increases, however, the birefringence =
turns negative as the intrinsic optical anisotropy of the stretched polystyrene chains
takes over from the form birefringence. The fits to the experimental data are quite
reasonable qualitatively, but differ quantitatively at the higher values of the
steady-state shear rate, As noted in.Edwards et al. (2002). the birefringence changed
by several orders of magnitude with increasing shear rate, thus rendering a quanti-
tative data fit quite difficult. The main problem with this fitting is that the birefrin-
gent signal must be positive at low shear rates and negative at high shear rates and
the negative signals are of much larger magnitude than the positive ones. The issu¢
then becomes whether one wants an accurate fit at low shear rates or at higher
values. If one wants to fit higher values only, the parameter o appearing in Equation
(17) is not required.

[

Conclusions

In this article, we have focused on the transient analysis of the shear thickening 11
dilute polymer solutions. Using the TCMM model, we were able to reproduce the
experimental results of the transient analysis with considerable accuracy. The analy-

sis of the transient data is useful in the determination of the kinetics and reversibility
of the structure formation process. Hence the TCMM model not only offers 2
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consistent explanation for the rheological and optical behavior associated with shear
thickening (Edwards et al., 2002), but also provides valuable information about the
kinetics of the phenomenon.

Some of the important conclusions of this analysis are as follows. The TCMM
model was able to capture the reversibility and instantaneity of the structure
formation as it showed the rapid increases and declines under the application of a
trapczoidal shear rate profile. For the solutions that exhibit shear thickening, the
transient dichroism changes sign for each steady-state shear rate above j,. The
orientation angle of the dichroism does not change sign, but we observe discontinu-
ities in this quantity that correspond to the sign change in the dichroism signal from
positive to negative. This gives a very good indication that the physical mechanism
that dominates the dichroic signal has changed at this point in time, as suggested in
Edwards et al. (2002).
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