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dcfiJ/"/lIcd at 100I'crshcar /"(1ft's.('oil/cidcl/t thcorctical al/d cxpcri/1lcl/tal discol/til/u-
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Introduction

It iswell known that dilute polymeric solutions typically display shear-thinning beha-
vior under the application of shear; i.e., their viscosities decrease with increasing
shear rate (Bird et a!., 1987). However, some of these fluids exhibit an anomalous
behavior at high shear rates: it has been observed that, under very specific con-
ditions, their viscosities actually increase with the magnitude of applied shear rate,
provided the rate of shear is large enough (Kishbaugh" 1992; Kishbaugh and
McHugh, 1993; Layec-Raphalen and Wolff. 1976; Vrahopoulou and McHugh
1987),This phenomenon is called shear Ihickming. One of the manifestations of
shear thickening can occur in dilute. low-viscosity solutions when the 1110iecuiar
weight(')fthe dissolved polymer is very high, the concentration of polymer lies within
a certain range, and the shear rate is relatively large.

Ten years ago, the cause of shear thickening in these dilute solutions was finally
resolved.The work by Kishbaugh and McHugh (Kishbaugh, 1992; Kishbaugh and
McHugh, I993a,b) provided the definitive connection between the anomaly of shear

1 thickening at high shear rates and shear-induced structure formation. They found
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that shear thickening arises due to illtermolecularinteractions, not intramolecular
interactions, as ascertained through extensive experimentation: a rheo-optical tech- i
nique was used to measure the rheological and optical responses of the solutions I I

in the initial shear-thinning regime and subsequent shear-thickening region. The 1
results of the experiments conclusively demonstrated that the shear-thickening beha- Ivior was associated with supermolecular structure formation.

Although the experimental investigations of Kishbaugh and McHugh could
delineate the phenomenon of shear thickening in polymeric solutions. there was no
self-consistent theory that could potentially describe all of the experimental observations
at that time. However. the recent work by Edwards et al. (2002)provided a single theory
that could explain both the rheological and optical behavior simultaneously. while
offering predictions for rheological characteristic functions, such as the first and second
normal stress coefficients. that were not measured experimentally.

According to the two coupled Maxwell modes (TCMM) model (Edwards et aI.,
2002), associations (or structures) of the individual polymer chains start growing
in size and aspect ratio at small values of the shear rate below i'e' the critical shear
rate for the onset of shear thickening (see Figure I). These associations actually
lower the viscosity in the solution by relieving some of the stress acting on the poly-
mer chains as the structures increase in size and aspect ratio. This augments the natu-
ral intramolecular chain shear thinning of the dilute solutions. At the critical shear
rate. ;\.. these structures become too distended to be supported by the hydrodynamic
forces acting on them. This results from the decrease in viscosity of the shear-
thinning solution. Thus the structures begin to decrease in size and aspect ratio in
response to the lowered degree of shear force exerted upon them. This reduction
in size restricts the stress relief ofTered to the solution dynamics. and. consequently,
the viscosity increases with increasing shear rate. At higher values of the shear
rate. the structures become totally isotropic. at ;\". at which point a shear-thinning
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Figure I. Generic profile or viscosity versus shear rate f~)ra dilute polymer solution that exhi-
bits shear thickening.
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behavior resumes as the intra-chain dynamics again dictate the qualitative behavior
of the shear viscosity curve (see Figure I).

In the previous publication (Ed\vards et aI., 2(02), the analysis was limited to
steady-state shear flow; however, the rheological and optical experimental data of
Kishbaugh and McHugh (Kishbaugh, 1992; Kishbaugh and McHugh,1993a) also
contained limited transient data taken during start-up, steady state, and cessation
of the shear flow experiments. This transient behavior is very interesting in its own
right and can also be described by the TCM M model. Indeed, as we shall see, it
can also be used to add further credibility to the predictions of said model. Conse-
quently, in this article, we extend the analysis of Edwards et al. (2002) from the
steady flow regime to the transient flow regime and compare predictions of the
TCMM model with the transient flow experiments of Kishbaugh and McHugh
(Kishbaugh, 1992; Kishbaugh and McHugh, 1993a). Also, as in the preceding arti-
cle, we offer predictions for rheological properties (but time-dependent predictions
this time) that have not been measured experimentally.

The Two Coupled Maxwell Modes Model

The TCMM model characterizes the essential qualitativ:e and semi-quantitative
behavior of polymeric fluids (Edwards et aI., 1996). It has evolved from the thermo-
dynamic methodology developed by Grmela (1988, 1989) and Beris and Edwards

t (Beris and Edwards, 1994: Edwards and Beris, 199Ia,b).The multiple coupled
.

l
Maxwell modes model was first introduced in Beris and Edwards (1994) and reduced

. to a two-mode version in Edwards et al. (1996). Use of this two-mode model was
shown to reproduce 1~lithfully(Edwards et aI., 1996) all of the essential qualitative

j features of polymeric viscoelastic fluids: quantitative reproductions can be achieved
, through the use of additional (orten uncoupled) modes.

~ To examine the behavior of dilute polymer solutions with structure formation,
.. the TCMM model is applied using two second-rank mode-conformation tensors,

l

eI and c". The first mode-conformation tensor, Cl(x, f), is the second moment of
the orientational distribution function, tj;(x, R.!) (Bird et aI., 1987):

. CI=/RR'fJ(f'R (I)

i In thisexp,ression,R is the end-to-end vector of a dissolvedpolymer chain and x is
, the Euleriancoordinate denoting the spatial position of the chain's center of mass.

According to Equation (I), Cl has units of length squared. The second mode tensor,

\ C2(x,f), quantifies the size. shape, and orientation of the intermolecular structures

I that are formed during shear (Edwards et aI., 2002). Using as the size distribution
I functionf(x, a, f), with a the vector spanning the major axis of a spheroidal struc-

I ture, the second mode tensor can be defined as (Edwards et aI., 2(02)

t c"= / aaf d'([ (2)

, The eigenvalues and eigenvectors of these second-rank tensors quantify the degree
I of orientation and the characteristic directions, respectively, of the two relaxation
Imodes (Edwards et aI., 1996, 2002).
1 In a homogeneous flow field, the evolution equations for the mode-
\conformation tensors can be decoupled from the Cauchy momentum equation and

\

t



92 P. A. Kalllerka/" et af.

solved independently for 'known kinematics. These evolution equations are

DC~/I I I I I kBT. () ~12 I-
D -C1.,.\7;.I'/I-c/I;.\7;,I'x=--;-C1./I+-;- K ()x/I- 2/, T -v"t . /., /., I I\B 1/1 /.1/.2

X [K2(C;/'~;' + C;/)I;') - 2kBTc;/I]

DC;/I, , I, k BT . () ~12 I-
D - c;..\7;.I'/1- c,I..\7;.\,x= - --;-C;/I+ -;-K ()x/I - 2 /, T - v' .t, , /.2 /.2 2 "8 III /.1/.2

X [KI (c;/111' + C;/-),J - 2kBTc;/I]

In these expressions, k II is the Boltzmann constant, T is the absolute temperatul
KI. K2 are the Hookean spring constants of the free polymer chains and structur
(respectively), ;.1, ;.2are the relaxation times of the two modes. 111,112are the effect~
concentrations. and () is the degree of interaction between the two modes. For tI
model to be physically feasible,-;.1. ;,2, 111,and 112must all have values greater thi
or equal to zero. Thermodynamically. it appears that () should lie within the rani
of [-I. I]. It is typically a small positive fraction (Edwards et aL 1996: Berisad
Edwards. 1994).

Rlu!ological Prope/'ties I

According to the TCM M model (Edwards et al.. 1996:Beris and Edwards, 1994),t

1cWa stee" tcnsac is giwn : a,linea, "n~~w, the twn mode-con"""",,,ion leOSO
ax/I - 2..: (lIiN//(i( x/I -lIiN,/I\BT()x/l) (

whccc N., is Avogadco's nu;~:e' This ,"cond-nmk t~n;o' has units of fo'" J.
length squared, and the shear viscosity. 'I. is calculated by dividing the shear stre
component, a12. by the shear rate, )', The first and second normal stress coefficien
are defined as '¥I ==(ail - (22)/)'2 and '¥2 ==(a22- a.1.1)/f. respectively.

Optical Properties: Dichroism

~
The TCM M model describes more than just the rheological properties of polyme'
materials: it can also be used to dctermine the optical propcrties of the deformio,

liquid. The dichroic signal. 1111",is calculatcd using both modes by summation oj
the following two equations (Kishbaugh. 1992: Kishbaugh and McHugh, I993b,:
Edwards et aI., 20(2): 1

1/ 4n 1cN,III\" ,
[

I
All = -t,-- ~ (7.' - 7., ) tr c- - '1]
u I 5 \ :\I 'I 2 I .

(6)

,,8n . 2 2
)

h
1111,= -111 ,,112N ,1\.1('Y-1- 1., , -

(I '-/
'

, 15 ,- + 3\1 a',

The first equation. Equation (6), is the innate dichroism of the individual polymerln
chains. The parameters appearing in this equation are: wave number, k == (2,n/

J

' I"
6.328 x 10-7)m-l. polymcr concentration, (', molecular wcight, AI, the refractI\'c it

(7)

'1\1
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index of the solvent, /11.\= 1.475 (Kishbaugh, 1992; Kishbaugh and McHugh,
1993b),and the polarizability difference, (i1~- CI.~kThis last quantity was estimated
by Kishbaugh and McHugh as -1.25 x 10-.)2cm'jmoleculc using the method
of Gurnee (1954). Since tre' is always greater than three, this contribution to the
dichroic signal is always negative in sign.

The second equation, Equation (7), is the dichroism arising from the

supermolecular struct ures according to the Rayleigh scattering theory (Kishbaugh,
1992;Ki'shbaugh and McHugh, 1993b; Edwards et aI., 2002). The quantities
appearing in this expression are the refractive index of the polymer, III" = 1.59
(Kishbaugh, 1992; Kishbaugh and McHugh, 1993b), and several other model-
specificfunctions. The first is an anisotropy function that depends on the shape of
the structure, p:

Ii'
lL.r
I~

II

III~
I

! II
I l

l

~

Ij

,
h = p- - I

p2 + I
(8)

with p taken as (Edwards et aI., 2002)

p = (I +~[tre2- 3])1/,) (9)

)

; I

i I
i
I

The quantity (j is a dimensionless measure of the shear rate relative to the size and
shape of the assumed structures. It is given by (Kishbaugh, 1992; Kishbaugh and
McHugh, 1993b)

~

(j = 'Is VI'\'(p) .
kJlT Y

(10)

where V" is the volume of the structure,

4n: 1 4n: -, ,/"
VI' = -::;-:;(/' = --o([trc- - 3](aa)0)--

-,p- 3p-
( II )I'

t
t

'7s= 2.79 cP for decalin, the solvent, at 25°C, and

I p2

(
2p2 - 1 1

[

p + JP2=l
] )

-=- -1+ 11

I'(p) p.)+ I 2p Jp2 - I p - Jp2 - I

I
t
r
J In Equation (II), (aa)o is the diameter squared of the average structure in the limit

I of vani~hing shear rate. A ~ne~lSllre of .the stru.cture size C~I~,be obtained from
a = J(/.1' - I)(aa)o, where )"1' IS the pnmary eigenvalue of c (Edwards et a!..

t
2002).The last quantity appearing in Equation (7) is the polarizability difference
of the structures, (C(~- CI.~h. It is given by (Kishbaugh, 1992; Kishbaugh and

f McHugh, 1993b; Edwards et aI., 2002)

( 12)

I
.1

16n:2, ,

(
1

)
2

(
1

)
2

V~ (IXT-Cl.:ih= L1+lj(III~-]) - L2+lj(III~-I)
( 13)

I where
,

] - e2

(
I

[

1+ e

] )LI =-,- -I +-In -Coo 2c 1 - e
( 14)

..

L
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1

L2=~
2

,

(
I

)e- = I - 1"
p-

It can be shown that the contribution to the dichroic signal arising from the st~
tures is always greater than or equal to zero. I

It is important to note a hypothesis expressed in the previous study (Edw~
et a!., 2002): the dichroic orientation angle is dependent on w'hich mode dominal

the dichroism. When anisotropic structures are present, they dominate the dichi
signal since L1112is of greater magnitude than L1/1r Thus, for shear rates with sign~
cant structural anisotropy, the dichroic orientation angle is quantified bytl

primary eigenvector of c2. However, for extremely high values of the shear rate, a1
the dichroic signal has switched from positive to negative, this signal is n~
dominated by the free polymer chains, and thus the dichroic orientation angleJ
quantified by the primary eigenvector of Cl. This hypothesis will be confirmed int.article.

Optical Properties: Birefringence

The TCM M model also allows calculation of the linear birefringence, L111',accordi!
to the following equation (Kishbaugh, 1992: Kishbaugh and McHugh, 1993,Edwards et aI., 2(02):

, II, N .,
([ -I ' J0 [ -J

] 0 )L1/1= 27[~11/, tre -.' -; + tre - 3 0fi + 47[('1- IW '. (I

-i.'I
H

::1

,II

.~

1 J :1
0;=-=-(Y.1-Y.2), (l8{f U

5 1
The polarizability difference, (Y.I - Y.2) I = -5.49 X 1O-2~cm~/molecule, is assigned),,:

the value calculated by Kishbaugh and McHugh (Kishbaugh, 1992; Kishbaugh t~!
and McHugh, 1993b) using the method of Gurnee (1954). This contribution to the t .,

~

:

birefringent signal is always negative in sign..The second contribution

,

to the overall birefringence is of mac

,

rofonn anisotropY

I

~

(Copic, 1957), which is duc to the difference in the refractive indices of the polymer,
and solvent. In Equation (17), this contribution is given by (Kishbaugh, 1992;

J

j

Three types of birefringence contribute to L111', but all of them arise from the f~
polymer chains: the birefringence associated with the anisotropy of the supermole
cular structures is several orders of magnitude smaller than that calculatedaccor~
ing to the above expression (Kishbaugh, 1992; Kishbaugh and McHugh, 199~~
Edwards et a!.. 2(02), and is therefore excludedfrom Equation (17). The quantltj

(I) appearing in Equation (17) is a magnitude corrector l'or the birefringenj
(Edwards et aI., 20(2). It essentially acts as another fitting parameter in the presenj
study. ~

The first term in Equation (17) represents the intrinsic optical anisotropy ofth\

free polymer chains. This term is proportional to 0;, which is given by (Kuhn an1Griin, 1942)
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Kishbaugh and McH ugh, [993b; Edwards et aI., 2002)

, '

(

' '

)

~

- . - (111~ + 2)- Ill;' - 1Il~ M~
0/- --

. 3 47flllspN.., l'
([ 9)

~t
I' :

with

I'
i
I
I q

I

ei = ([ - ~). Pi

Note that PI appearing in Equation (20) is a function of the trace of the first mode-
conformation tensor, PI = ([ + 4[trel - 3])3/4(Edwards et aI., 2002).Furthermore,
p = 1.065 g/mL for polystyrene and M2/1' = 2.083 X [025 MOA2. This contribution to
~Il' is always positive.

Microform anisotropy (Tsvetkov, [964) accounts for the third contribution to
the birefringence. It increases with the extension of the polymer chain, although it
is still an effect arising from the difference in refractive indices between the polymer
moleculesand solvent. The contribution is expressed by

(20)

I
: I,

I Ii

II

II

i II

, 2

(

' '

)

2 ~

3

(111~ + 2) Ill;' - 11I~ 47fMo~e.\.
0~=- ---

. 5 3 4mll.\ pNA
(2[ )

where (= 5.4 is the number of monomeric units per statistical chain segment,
Mo = 104 g/mo[ is the monomer molecular weight, and es = 0.1 is the optical shape
factor for the segment (Kishbaugh, [992; Kishbaugh and McHugh, [993b). This
contribution to !':1n'is also always positive.

I II

Transient Rheo-optical Experiments

The steady-state rheo-optica[ data of Kishbaugh and McHugh (Kishbaugh, 1992;
Kishbaugh and McHugh, 1993a) was obtained using a Couette Ilow cell subjected
to the transient shear-rate profile depicted in Figure 2. In these experiments, the
shear rate was ramped up from rest to the steady-state shear rate value of interest,
Ys."in a 2s time interval. The shear rate was held constant for 5s, and then it was
ramped back down to rest in another 2s interval. The 5s steady-state interval was
sufficient to allow the solutions to attain time-independent rheological and optical
responses. ,These experiments were performed on po[ystyrene/deca[in solutions
made from monodisperse polymer samples of various molecular weights over a
range of concentrations at 25°C. .

Transient Data Fitting using the TCMM Model

I T~e transient flow profiles for both the rheological and optical data reported by
Kishbaugh and McH ugh (Kishbaugh, [992; Kishbaugh and McHugh, [993a) will
be analyzed in this section in terms of the TCM M model. In order to reproduce

I the results obtained from the transient experiments, the TCMM model must be
applied to the transient shear profile of Figure 2. This is easiest to accomplish when
working in terms of dimensionless quantities. Subsequently, the model predictions
can be transformed back into dimensional quantities and compared with experi-

I mentaldata.
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Figure 2. Trapezoidal velocity profile used for most of the rheo-optical measurements of
Kishbaugh (1992) and Kishbaugh and McHugh (1993a).

The evolution equations. Equations (3) and (4). are made dimensionless by
defining the dimensionless shear rate as i~=: )\/;., ).2. the dimensionless mode tensors
as i.'~/1=: Ki('~/;//.:HT. and dimensionless time as I=: t1-';;1 ;.2. Consequently, the
spring constants. K, and K2. drop out of the analysis. and one is left with only five
parameters. ).,. ).2.111.112.and O. that must be fit to the experimental data.

Fitting the model to experimental data was accomplished using two different
methods. In Method I. values for the five parameters listed above. as well as
(aa)o' can be taken directly from the previous study (Edwards et aI., 2002; Jiimg
et al.. 2003). In other words, the parameters are fitted using only stcady-stale
viscosity versus shear rate data. Then the coupled. nonlinear, ordinary differential
evolution equations. Equations (3) and (4), were solved using the fourth-order
Runge-Kutta algorithm. in accordance with the transient shear flow profile of Figure
2. These equations are well conditioned. and hence stability issues were not relevant.
This method is very stable and calculates time-dependent components of the two"

mode-conformation tensors to the desired degree of accuracy. in this case. to 12sig-
nificant figures,These components can then be converted into the requisitedimen-
sional rheological and optical properties in a post-processing operation using
Equations (5), (6), (7). and (17) and subsequently compared with available transient
experimental data.

The second method, Method 2, was more complicated than the first. In this
method, use is made of all available transient data taken for a given polymer mol-
eCldar weight and concentration. Multiple transient dichroism profiles for various
steady-state shear rates are fitted simultaneously using the Neider and Mead down- ;

hill simplex method (Press et aI., 1992) to find the best set of six parameters, J.j, h i
III. 112,O. and (aa)o, that give the smallest objective function. This objective functionwas defined as

1

~ :
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1n ,';,

(

" "

)

2
. ,,' 'i 'i' .' ~lIo,pt - ~1I11]()lkl

./"h/ = '2:)"h)1I1 . ./"h)= L 1\ (./) ~ "
i= 1 J= 1 lIo'IH

(22)
2

~ where III is the total number of experimental data points froin all transient dichro-
ism profiles, 11\('1 is the number of transient dichroism profiles, and 11;/is the number
of data points in the i-th data set. The weighting factor appearing in this expression
was defined as )I'(j)= 10 when the experimental value of the dichroism was within
5% of its maximum value and !I'(j)= I otherwise.

The objective function thus represents an average of differences between the
theoretical calculations and the experimental transient profiles for a given set of
parameters. The NeIder and Mead algorithm searches through the parameter space
trying to minimize the objective function, solving at each iteration the coupled
evolution equations, Equations (3) and (4), and then calculating the dichroism to
compare with the experimental transient dichroism profiles, (Dichroism profiles were
used for the litting, as opposed to stress or viscosity profiles, because none of the
latter were presented in Kishbaugh (1992) and Kishbaugh and McHugh (l993a).
After the objective function was minimized, the parameters corresponding to this
value of objective function were used to compare the TCM M model with the
transient experimental profiles.

I,

:

.

~
.

~

11-

'f

Results

In all cases, data fitting was hindered by the limited transient data presented in the
Kishbaugh and Mchugh publications (Kishbaugh 1992; Kishbaugh and Mchugh,
1993a). However, a sufficient amount of data could be gleaned from these sources
to come to some significant conclusions, as described below.

Dichroism

I

i

~

.
,
,.
l

I
1,.

Two sets of experimental transient dichroism curves are presented in Kishbaugh
(\992) and Kishbaugh and McHugh (l993a). The lirst set is shown in Figure 3, along
with TCMM model tits for the two data-fitting methods described in the preceding
section, Experimental data in Figure 3 arc for a solution of 6.8 x 106 g/mol poly-
styrene dissolved in decalin at a concentration of 0.30 g/dl. (In this and subsequent
figures, only a sampling of results at specific values of the steady-state shear rate are
shown; displayed results are typicaL) The dashed curve corresponds to parameter
values obtained using Method I; these parameter values were obtained in Edwards
et aI., (2002) and are collected in Table I. Recall that these parameter values
were obtained using steady-state viscosity versus shear rate curves (Edwards et a!.,
2002), such as represented symbolically in Figure I, The solid curve corresponds
to parameter values obtained via Method 2, which are also collected in Table I.
Recall that these parameters were obtained by optimizing all available dichroism
versus time curves simultaneously,

As evident, both sets of parameters describe well the qualitative features of the
transient dichroism curves, but the latter set offers a fair amount of quantitative
improvement, especially at lower shear rate values. The reason for this is apparent:
the parameter values from Method I were obtained from the best model tit
to steady-state viscosity versus shear rate data, whereas Method 2 optimized the

~
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Figure 3. Transient dichroism 1'01'the solution with (' = 0.30 gill I at two steady-state sheaI'l
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Table I Parameter valucs for the 6.8 x 106g/mol Polystyrcnc/Decalin solution with
c == 0.30g/dl at 25°C

- J,(s) Ids) III(mol/m3) 1/2(mol/m3) () (aa)o(m2)
Method 1
Method 2

0.004333
0.001117

0.013
0.011

Lax 10-3
4.2 x 10-5

1.0 X 10-6

4.lxlO-7
0.10
0.17

4.20 X 10-1(1

5.35 X 10-16

Table II Parameter valucs for the 1.54x 106g/mol Polystyrene/Dccalin solution
with c = 0.79 g/dl at 25°C

Method 2

).1(s)

0.002769
0.03

h(s) III (mol/m3)

4.183x 10-6

1/2(mol/m.1)

4.18 I x 10 -6

() (lIa)o(m2)

4.19x 10-1(1
0.0052

Table III Parameter values for the 6.8 x 106g/mol Polystyrene/Decal in solution with
c = O.lOg/dl at 25°C

I.I(S) h(s)

0.0417

1/1(mol/m1)

4.06 x lO --I

1/2(molj m3)

9.22 x 10-7

() (()

Method 2 0.002258
0.26 96.48

parameters to transient dichroism data, including those displayed in the figures. For
this particular solution, no shear thickening was observed in the stcady-statc vis-
cosity versus shear rate curve, nor did a maximum Occur in thc steady-state dichro-
ism versus shear rate curve (Kishbaugh,1992; Kishbaugh and McHugh, 1993a;
Edwards et a!., 2002). At this concentration, the structure size increascd with increas-
ing shear rate, eventually reaching a limiting size at high shear rates (Edwards et a!.,
2002).According to the model and the experimental data, the size or the structures
increasesand the shape clongates monotonically to the steady-statc structure size
and shape upon start-up of shear, and decrease back to their quiescent values uponflow cessation. .

Note that both theory and experiment coincide on another point: the dynamical
response of the solution at any time is at a pseudo steady state. In other words,
during start-up and cessation of flow, the instantaneous value of the shear rate
determines the instantaneous values of all rheological and optical properties as if
the flow field was at steady state with that particular value or the shear rate.

The orientation angles of the structures relative to the direction of flow are
displayed in Figure 4 for one value of the steady-state shear rate. Here, only the
TCMM model fit is displayed for the parameter values obtained via the more
accurate Method 2. The model predicts well the transient qualitative features or the
experimental data, including the initial rapid changes immediately after start-up and
immediately before total flow cessation. Note that the experimental data contain
much noise at very small and long times due to the method by which the orientation
angleis calculated from the raw intensity data (Kishbaugh,1992;Kishbaugh and

I McHugh 1993a). This noise is not pO""nt in th, TCMM model p"dictions, siuce

t
,
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-Method 2

-- Experimental

Ys.,= 2513s-1

2 4

Time(al

7 8

Figure.t. Thc oricntation angle of the didHoism for thc 6.8 x 101>g/mol polystyrcne/decalin
solution with c = 0.30 g/di.

thc computational algorithm is not subjcct to mcasurcmcnterror. At both valuesof
the steady-state shear ratc. thc orientation angle drops quickly from its zero shear
rate limit of 45° to a value fairly closc to the dircction of flow and then returns to
45° upon flow cessation.

The second sct of dichrois~n data are much more interesting than the first in that I. ithis solution. a 1.54 x 106 gjrilOl polystyrenejdecalin solution at a concentration of .

0.79 gjdL corresponds to a case in which the steady-state viscosity curve displays a i
minimum and the steady-state dichroism curve displays a maximum. Results of the I

TCMM model fit to the experimental data using the more accurate Method 2 are:
presented in Figure 5; paramctcr values are displayed in Table II. At the lowest value.

of the shear ratc (not shown). the TCMM modcl captures the qualitative shape of the t\cxperimental curve. but the quantitative value is dramatically lowcr. This is consist- /
ent with the steady-state analysis of Edwards et al. (2002) and Jiang et al. (2003),
wherein it was observed that the model is not quantitatively accurate at low shear
rates. This problem is exacerbated by the greater degree of relative error in the exper-
imcntally measured value of the dichroism due to its small magnitude at low defor-
mation rates. As the steady-state shear ratc incrcascs. the model becomes

j

l
quantitatively accurate as well as qualitatively so. At the higher values of the..

steady-state shear rate, the curves display maxima upon start-up and cessation of \

flow. This occurs because the structures increase and then dccrease in size and shape
as the flow field approaches its steady state. At the highest values of the steady-state
shear rate, thc dichroism decreases to the point wherc it actually has a negative value,

I

as indicatedin Figure5(c).At this point. thc structures havebccomcrathcr smalland.
optically isotropic (i.e.. spherical). and the dichroism is dominatcd by the inherent.

ani,olmpy or Ihe individm,l chain, ,'cmaining in ,o]ulion (Edwa,ds C1al.. 2002). j
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Figure 5. Transient dichroism for the 1.54 x 101,g/mol polystyrene/decalin solution with
c ==0.79 g/dl at three steady-state shear rates.
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Fi~ure 5. (Continueu).

(Remember that polystyrene has a negative intrinsic optical anisotropy.) At flow
cessation, the structures backtrack the path they took upon shear start-up until

the solution returns to its quiescent condition. . I

. The. most interestil~g pred.iction .of this' analysis is. obtaine? fo.r the dichroIcI
orrentatlon angle for tll1S solutIOn at ~'s., = 7037s-1 , as dIsplayed 111Figure 6. Recall
that at this shear rate, the steady-state dichroism has a negative value, implying that I

the physical mechanism donlinating the dichroic signal has switched from the struc-
tures to the individual polymer chains. Therefore, the model predicts that during
now start-up and now cessation a discontinuity should appear in the orientation
angle as the dominating mechanism switches from the structures to the chains.
Hence the orientation angle switches discontinuously from that of the structures
to that of the chains. (Although these data we not presented directly in Kishbaugh
(1992) and Kishbaugh and McHugh (l993a), raw data for this case were given, so
that the current authors were able to calculate the experimental curve.) It is evident
that the experimentaldata <Jisplaythe same type of discontinuityat exactlythe same
times as the model predictions. This gives a strong validation of the notion initiated
by Edwards et al., (2002) that the dichroism switches from a structure-controlled
mechanism to an individual chain-controlled mechanism at very high shear rates.

Rheology

No tran~ient rheo.logical da.ta are presented ~y Kishbaugh and McHugh for thei~ '\
1
. I

rheo-optlcal experrments (Kishbaugh, 1992; Kishbaugh and McHugh, 1993a). How

ever, they do state that for all cases, whether or not she.ar thickening \~as p~'es~nt,the t :\:
shear stress curve almost exactly matched the trapezoidal shear profile ot FIgure2.

In Flgu" 7, we p"sent plots of Ihe shea, sl.." ,e,.s", time fm the solutionsof I

J
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Yn = 7037s-1

6

Time(s)

Figure6. Theorientationangleof the dichroismfor the 1.54x 106gjmol polystyrenejdecalin

rtiM with.' ~ 079 g/dl ,";" ~ 7037 .,-'. ..
Figure4. It ISeVident that the observed stress profiles are consistent with the state-
~ent expressed above. Furthermore, the TCMM model also gives predictions for

transient rheological properties that have not been measured experimentally. In
figures 8 and 9, we show predictions for both the first and second normal stress dif-
ferencesas functions of time at several values of the applied steady-state shear rate.
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y" = 5529s.'

y" =35195'

y" =25135"

y" = 10055.1
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,
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Time(s)

Figure 8. The first normal stress differences for the 6.8 x f06g/mol polystyrene/decalin sol.
ution with (' = 0.30g/dl at four steady-state shear rates.

Bircji-illgCIlCC

The TCMM model also describes reasonably well the linear birefringence as a
function of time for shear-thickening dilute polymer solutions. In Figure 10,we plot

1

1

the transient birefringence for several shear rates of a polystyrenejdecalin solution!
from Kishbaugh (1992) and Kishbaugh and McHugh (1993a). For this set of .
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Figure 9. The second normal stress dilTercll<:csfor the 6.8 x 10(,g/mol polystyrene/decalin
solution with (' = 0.30 g/dJ at four steady-state shear ratcs.
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Figure10. Transient birefringence for the 6.8 x 10('gjmol polystyrenejdecalin solution with
c = 0.10 gjdl at three steady-state shear rates.
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Figure 10. (Continued)-

transieI1t data, no dichroism data were available, so we fit the TCMM model to
the birefringence data via Method 2, but using Equation (17) instead of the
corresponding dichroism equation: parameter values are presented in Table III. At
low shear rates, the birefringence is positive as the signal is dominated by form
birefringence. As the steady-state shear rate increases, however, the birefringence
turns negative as the intrinsic optical anisotropy of the stretched polystyrene chains
takes over from the form birefringence. The fits to the experimental data are quite
reasonable qualitatively, but differ quantitatively at the higher values of the
steady-state shear rate, As noted in.Edwards et al. (2002), the birefringence changed
by several orders of magnitude with increasing shear rate, thus rcndering a quanti-
tative data fit quite difficult. The main problem with this fitting is that the birefrin-
gent signal must be positive at low shear rates and negative at high shear rates and
the negative signals are 'of much larger magnitude than the positive ones. The issue
then becomes whether one wants an accurate fit at low shear rates or at higher
values. If one wants to fit higher values only, the parameter (r)appearing in Equation
(17) is not required.

Conclusions

In this article, we have focused on the transient analysis of the shear thickening in
dilute polymer solutions. Using the TCMM model, we were able to reproduce the
experimental results of the transient analysis with considerable accuracy. The analy-
sis of the transient data is useful in the determination of the kinetics and reversibility
of the structure formation process. Hence the TCM M model not only offers a

.;
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consistent explanation for the rheological and optical behavior associated with shear
thickening (Edwards et aI., 2002), but also provides valuable information about the
kinetics of the phenomenon.

Some of the important conclusions of this analysis are as follows. The TCMM
model was able to capture the reversibility and instantaneity of the structure
formation as it showed the rapid increases and declines under the application of a
trapezoidal shear rate profile. For the solutions that exhibit shear thickening, the
transient dichroism changes sign for each steady-state shear rate above YIIl'The
orientation angle of the dichroism does not change sign, but we observe discontinu-
ities in this quantity that correspond to the sign change in the dichroism signal from
positive to negative. This gives a very good indication that the physical mechanism
that dominates the dichroic signal has changed at this point in time, as suggested in
Edwards et al. (2002).
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