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a b s t r a c t

A coarse-grained mesoscopic model was developed based on the ansatz that a specific polymer molecule
diffuses through the nearby neighboring chains more easily in the direction parallel to its molecular axis
than perpendicular to it. This idea is modeled using a mean-field approach in terms of an anisotropic dif-
fusion matrix, which represents enhanced diffusion along the chain background once a significant degree
of molecular extension and orientation has developed in response to an applied flow field. The rheological
and microstructural characteristics of this model are examined and compared with atomistic nonequilib-
rium molecular dynamics (NEMD) simulation data of short-chain polyethylene liquids and experiments
of semi-dilute DNA solutions under shear flow. Rheological and microstructural properties examined
include the viscosity, normal stress coefficients, conformation tensor, etc., to gauge the usefulness of the
model. In addition, this model was further coarse-grained to the continuum level through pre-averaging,
and was also compared with the simulation and experimental data to examine the relationships between
different levels of description on the rheological and structural properties of unentangled polymeric
materials under shear flow.

At the mesoscopic level, the polymer molecules are modeled as bead-spring chains using the finitely
extensible nonlinear elastic (FENE) force law. Brownian dynamics (BD) simulations of this coarse-grained
model displayed remarkable quantitative agreement with NEMD simulations of dense liquids and experi-
ments of semi-dilute DNA solutions for system properties with a single adjustable parameter representing
the relative magnitude of diffusive enhancement along the chain backbone. Furthermore, the BD simula-
tions revealed the dependence of system response on the chain stretching at low values of Weissenberg
number (Wi) and on the rotational motion of individual chains induced by shear flow at high values of
Wi, similarly to the NEMD simulation data. The continuum model matched the mesoscopic model at low
shear rates, but greatly diverged at high values of Wi where the tumbling dynamics of the individual
chains dominated the system response. This provides direct evidence that the onset of rotational motion
under shear in these liquids is responsible for the well-known breakdown in pre-averaged constitutive
equations at the continuum level of description. Furthermore, a possible explanation of the shear stress
plateau at intermediate ranges of shear rate is offered for experimental data of semi-dilute solutions,
wherein this phenomenon occurs with the onset of chain rotation within these fluids.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The description of fast flows of macromolecular fluids has
proven to be a difficult challenge for rheologists. Many theories
were proposed during the 20th century for the purpose of explain-
ing the rheological and morphological responses of the liquids
under flow, but they invariably diverged from experiment at high

∗ Corresponding author. Tel.: +1 865 974 9596.
E-mail address: bje@utk.edu (B.J. Edwards).

Weissenberg number, Wi, regardless of their degree of success at
describing the linear and weakly nonlinear viscoelastic regimes.
Many reasons have been proposed for these discrepancies at high
Wi, such as the onset of “convected constraint release,” the failure of
closure approximations, destruction of polymer network junctures,
etc. [1]. The second of these reasons, closure approximations, has
been a particularly egregious offender, and many instances have
been documented of their failure to describe even qualitatively the
theories that they were used to close [e.g., 2–7].

The first decade of the twenty-first century has elucidated
another possibility as an explanation for the failure of rheological
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theories under high Wi steady shear flow, at least for low molecular
weight short-chain liquids and semi-dilute solutions of linear, long-
chain macromolecules. These materials are composed primarily
of unentangled chains that are free to move segmentally as indi-
vidual entities, although bulk chain movement is still constrained
by the surrounding molecules. Evidence of this explanation has
been provided by both simulation and experiment, each of which
indicates that a significant degree of individual chain rotation and
tumbling occurs under high Wi shear flow. Indeed, this molecular
rotation corresponds to Wi regimes wherein intriguing phenom-
ena are evidenced in the measured rheological response of simple
experiments, such as the stress plateau observed in shear exper-
iments of semi-dilute and concentrated polymeric solutions, as
discussed later.

The possibility of rotational molecular tumbling as a root
cause of interesting rheological features as observed in experiment
should come as no surprise to liquid crystal theorists. For many
years, it was observed that the steady-shear, first normal-stress dif-
ference of a liquid-crystalline fluid would exhibit two sign changes
with increasing shear rate, one moving from positive to negative
at a lower shear rate, and one changing back from negative to pos-
itive at a higher shear rate. Indeed, this subject area provides one
of the classic examples of the failure of closure and pre-averaging
approximations. Thirty years ago, Doi [8] derived a theory of liquid
crystalline dynamics expressed in terms of a diffusion equation for
the probability distribution function of the orientation of a rod-like
molecule. With limited computational power available at that time,
he immediately reduced this theory to a continuum-level descrip-
tion written in terms of a second-rank order parameter tensor,
but was forced to introduce a closure approximation in order to
do so [8]. The predicted behavior of the pre-averaged model indi-
cated a purely flow-aligning behavior of the rod-like molecules,
and a monotonically increasing first normal-stress difference for
all values of shear rate. Years later, researchers discovered that
the suppression of molecular rotation at low and intermediate
shear rates was the probable cause of this departure from exper-
iment [4]. Subsequent simulation, either in terms of the original
expression for the probability distribution function [9] or in terms
of the second-rank tensor evolution equation developed without
a closure approximation or pre-averaging [10–13], demonstrated
unequivocally that the suppression of molecular rotation was
responsible for the failure of the closed model to describe the pecu-
liar rheological features of the first normal-stress difference under
shear flow. Despite this knowledge gained 20 years ago, the idea of
pre-averaging or closure approximations inducing a loss of system-
atic rotational motion of the constituent polymer chains has only
recently been considered as a possible mechanism for explaining
the unusual features of high Wi shear flow.

Recent advances in rheo-optical imaging have made possible
direct observation of the dynamics of individual molecules com-
prising dilute and semi-dilute solutions under shear flow using
fluorescently labeled DNA macromolecules dissolved in water
[14–18]. These experiments have revealed the rich dynamical
behavior of macromolecular solutions and the individuality of
expression of single chains within them. Such specific dynamical
events as chain stretching, recoiling, and tumbling were observed
as functions of shear rate.

Recent simulations have also captured this individuality of the
dynamical expression of single chains in dense short-chain liq-
uids under shear [19,20]. In particular, nonequilibrium molecular
dynamics (NEMD) simulations of the linear polyethylene liquid
C78H158 have revealed distinct, shear-rate dependent timescales
associated with the rotation of the molecules at high Wi, thus
assigning specific periods to tumbling cycles of individual chains.
Kim et al. [19,20] conjectured that the onset of fast molecular rota-
tion, which occurred at a Wi in the range of 2–5, was responsible

for many of the failures of pre-averaged rheological theories to
describe the properties of highly shearing liquids. Furthermore,
Baig et al. [21] noted the existence of an apparent critical value of
shear stress for the analogous liquid, C50H102, at which the stress-
optical law begin to diverge from simulated data. This critical shear
stress occurred within the same range of Wi as noted above, which
raises the possibility of an association between molecular tumbling
and the breakdown of the stress-optical law at high Wi.

The purpose of this article is to demonstrate that the rotation
and tumbling of individual macromolecules is responsible for much
of the peculiar behavior of unentangled chain liquids and solutions
at high Wi. To achieve this goal, it is first necessary to derive a
mesoscopic-level model that is able to quantify the molecular rota-
tion evident in experiment and atomistic simulation, and then to
examine the rheological consequences that it implies. Furthermore,
it is necessary to examine the effect on this model of the suppres-
sion of individual chain rotation, which can be accomplished by
reducing this mesoscopic model to a continuum model in terms of
a second-rank conformation tensor by introducing pre-averaging
and closure approximations.

In this article, a mean-field mesoscopic model is developed to
mimic the anisotropic diffusive motion of an arbitrary chain within
the confines of tube-like structures that are formed by the sur-
rounding stretched chains at high Wi. These tube-like structures
have been noticed in recent simulations of short-chain, unentan-
gled polyethylenes [22,23], and their apparent dimensions were
calculated by Kim et al. [23] for both shear and planar elongational
flows. The NEMD simulations have shown that a given molecule
will diffuse through a tube-like structure, formed by the surround-
ing stretched chains, during its periodic tumbling cycle [19,20];
however, this diffusive motion is highly anisotropic since the chain
can move more freely along its own (and the tube’s) axis rather
than perpendicular to it.

The model was derived using a bead-spring chain with a finitely
extensible nonlinear elastic (FENE) force law for each spring and
an anisotropic diffusion tensor. Brownian dynamics (BD) simula-
tions were used to examine the model’s behavior under shear flow,
and a pre-averaged version was obtained at the level of second-
rank conformation tensors representing the configurations of the
individual chain segments. An even more coarse-grained dumbbell
model was derived and examined as well.

2. Model development

The bead-spring chain model consists of N identical spherical
beads connected by N − 1 FENE springs. The FENE spring force law
for each spring

(
FSi
)

is written as

FS˛,i = KhiQ i˛, hi =
1

1 −
∣∣Qi∣∣2/bs , i = 1,2, . . . , N − 1, (1)

where the K and Qi denote the elastic spring constant and the con-
nector vector of the ith spring, respectively. The bs represents the
maximum extensibility of all springs. The hi determines the specific
form of elasticity inherent to the spring; when hi = 1, for example,
the force law devolves into the linear Hookean spring. Note that
Greek indices refer to the components of a Cartesian coordinate
system and that the Einstein summation convention is assumed.

For the unentangled liquids and semi-dilute solutions under
consideration, a mean-field assumption is assumed to describe the
effects of the oriented surrounding molecules on a test chain with
the properties set forth above. This mean field is expressed through
an anisotropic diffusion tensor,

�−1
˛ˇ,i

= �−1
0

[
˛ı˛ˇ + (1 − ˛)Q̃ i˛Q̃

i
ˇ

]
, (2)
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where ı˛ˇ denotes the unit tensor, Q̃ i˛ ≡
√
K/kBTQi˛ refers to the

dimensionless connector vector, and �−1
0 is the reciprocal of a

frictional drag coefficient, assumed to be the same for each of
the identical beads. The dimensionless parameter ˛ quantifies the
influences on an individual chain from its surrounding chains,
which are represented within the mean-field ansatz via the degree
of anisotropy in the diffusion matrix. Note that this form of the
diffusion tensor recovers the isotropic case when ˛= 1.

It is very important to understand the nature of this anisotropic
diffusion tensor, and how it compares to previous attempts to intro-
duce anisotropicity into kinetic theory models of polymeric liquids.
In the present case, it is specifically intended to model the test chain
diffusion in terms of a diffusivity coefficient parallel, �||, and per-
pendicular, �⊥, to the direction of the connector vector of each
spring.

In prior NEMD simulations of shear flow [22,23], the test liquid
C78H158 was conjectured to form tube-like structures composed of
highly extended molecules, through which other molecules rotated
in hairpin configurations, as had also been observed in experiments
of dilute DNA solutions [17,18]. Recent evidence of Kim et al. [19,20]
has confirmed this hypothesis, revealing definite correlations and
timescales associated with tumbling events of individual molecules
passing through tube-like structures of highly extended molecules.
In light of this new evidence, it is possible that a realistic model of
these linear, short-chain, unentangled molecular systems could be
modeled in terms of a test chain placed in a mean-field that quanti-
fied the surrounding tube-like structure of highly extended chains
through an anisotropic diffusion tensor, in which the diffusivity
coefficient parallel to the chain or segmental backbone was greater
than the coefficient perpendicular to the chain backbone.

The anisotropic form of the diffusion tensor possessing the fun-
damental properties described in the prior paragraph, as expressed
by Eq. (2), has been derived before [24–27] as

�i˛ˇ ≡�⊥ı˛ˇ + (�|| −�⊥)Q̃ i˛Q̃
i
ˇ. (3)

This expression may be rewritten as

�i˛ˇ ≡�||
[
˛ı˛ˇ + (1 − ˛)Q̃ i˛Q̃

i
ˇ

]
, (4)

where the dimensionless parameter ˛ appearing in Eqs. (2) and
(4) is defined as the ratio of the parallel and perpendicular diffu-
sion coefficients, ˛≡�⊥/�||. This expression precisely quantifies
the anisotropic diffusion tensor with respect to motions parallel
and perpendicular to the molecular contour for linear molecules,
such that translational diffusion is easier in the direction parallel to
the chain backbone when ˛< 1. When ˛= 1, there is no preferential
direction of translational motion, and Eqs. (2) and (4) must reduce
to the isotropic diffusion tensor (or reciprocal of the drag coeffi-
cient). This implies that �|| = �−1

0 [25,28,29], which motivates the
choice of symbols in Eq. (2).

During the previous three decades, various coarse-grained
mesoscopic models have been proposed that introduce some form
of anisotropic drag or mobility into the kinetic theory of elastic
dumbbells. Giesekus [30,31] introduced an anisotropic mobility
tensor that bears a similar form to Eq. (2),

�−1
˛ˇ,i

= �−1
0

[
(1 − ˛)ı˛ˇ + ˛Q̃ i˛Q̃ iˇ

]
; (5)

however, this form of mobility is conceptually different from a
modeling perspective than the anisotropic diffusion tensor with
the form of Eq. (3) in the sense that the latter is a direct product
of transport modeling in terms of physically meaningful diffusion
coefficients, which are required to remain positive at all times. Bird
and Deaguiar [32] developed an “encapsulated dumbbell” model
based on a modified form of Stokes’ law [27], which is exactly the

same as Eq. (2), and an anisotropic Brownian force, corresponding
to an additional tensorial quantity,

�−1
˛ˇ

= ˇı˛ˇ + (�− ˇ)
Q˛Qˇ∣∣Q2
∣∣ , (6)

with � and ˇ defined as parameters that quantified the degree of
anisotropicity. Phan-thien and Atkinson [33] demonstrated that the
encapsulated dumbbell model violated the fluctuation-dissipation
theorem; however, in the absence of the anisotropic Brownian
force, there was no violation of this principle. Using the gener-
alized bracket methodology, Beris and Edwards [25,29] derived a
modified form of the encapsulated dumbbell model that satisfied
this theorem. Öttinger [34] also proposed a “consistently averaged”
form of the Oseen-Burgers tensor, which shared the form of Eq. (6)
under the assignments ˇ = 1 and �= 2.

2.1. Atomistic level of description

The Siepmann–Karaboni–Smit (SKS) united-atom model for
linear alkanes [35] was applied to NEMD simulation due to its
wide employment for simulating equilibrium thermodynamics
properties and rheological behavior of alkanes and polyethylenes.
However, the rigid bond in the original united-atom model
between adjacent atoms was replaced with a harmonic poten-
tial function to relieve issues related to stiff integrations at small
timescales. In this model, the LJ potential for the intermolecular
and intramolecular atomic interactions is written as,

VLJ(r) = 4εij

[(�ij
r

)12
−
(�ij
r

)6
]
. (7)

The parameters εij and �ij were approximated through Berthelot
mixing rules. The εCH2 and εCH3 were 47 K and 114 K, respec-
tively, and the �CH2 and �CH3 were 3.93 Å each. Only atoms that
were separated by more than three bonds were considered for
the intramolecular LJ interaction energy. A cut-off distance, rc, of
2.5�CH2 (9.825 Å) was chosen for the LJ potential and the poten-
tial energy was assumed to vanish beyond the cut-off distance.
The bond-stretching interaction is defined by a harmonic potential
function,

Vstr(l) = 1
2
kstr(l − leq)2, (8)

where the bond-stretching constant was kstr/kB = 452, 900 K/Å2 and
the equilibrium length was leq = 1.54 Å. The bond-bending interac-
tion was governed by a harmonic potential,

Vben(�) = 1
2
kben(� − �eq)2. (9)

The equilibrium angle and the bond-bending constant in this
expression were �eq = 114 ◦, and kben/kB = 62, 500 K/rad2, respec-
tively. The bond-torsional interaction developed by Jorgensen et al.
[36] was written as

Vtor(	) =
3∑
m=0

am(cos 	)m. (10)

The parameters a0/kB, a1/kB, a2/kB, and a3/kB in this equation were
set at 1010 K, 2019 K, 136.4 K, and 3165 K, respectively.

2.2. Mesoscopic level of description

According to kinetic theory of polymeric liquids [27], three
external forces act on each bead of a bead-spring model; the hydro-
dynamic drag force, FHi , the effective spring force, FEi , and the
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Brownian force, FBi . Therefore, a force balance on the beads may
be expressed as

FH˛,i + FE˛,i + FB˛,i = 0, i = 1,2, . . . , N, (11)

where N is the total number of beads. Notice, as is usually the
case, that we have neglected inertial contributions [37]. In Eq. (11),
the hydrodynamic drag force on each bead

(
FHi
)

is quantified by
Stokes’s law, which is expressed as

FH˛,i = −�i˛ˇ
(
ṙiˇ − viˇ

)
. (12)

The ṙi
ˇ

and vi
ˇ

(
= v0

ˇ
+ 
ˇ˛ri˛

)
denote components of the veloc-

ity and streaming velocity profile of the ith bead, respectively,
where 
ˇ˛ is a component of the transpose of the velocity gra-
dient tensor and ri˛ is the position vector of ith bead. The �i

˛ˇ

represents an anisotropic friction matrix, which is the inverse of
an anisotropic diffusion matrix. The effective spring force on bead
i
(

FEi
)

is expressed as

FE˛,i = − ∂	
∂ri˛
, (13)

where 	 denotes the spring potential energy. The Brownian force
on each bead

(
FBi
)

is taken as

FB˛,i = −kBT
∂

∂ri˛
ln �, (14)

where kB and T denote the Boltzmann constant and temperature,
respectively. The �

({
ri
}
, t
)

represents the configurational dis-
tribution function. By substituting Eqs. (12)–(14) into (11), and
rearranging the equation, one obtains the equations of motion for
the position vectors, which are

ṙi˛ = v0
˛ + 
˛ˇriˇ − �−1

˛ˇ,i

[
FEˇ,i +

kBT

�

∂�

∂ri
ˇ

]
. (15)

From kinetic theory, the continuity equation of the distribution
function �

({
ri
}
, t
)

is expressed as

∂�

∂t
= −

N∑
i=1

∂

∂ri˛

(
ṙi˛�
)
. (16)

Therefore, the diffusion equation for �
({
ri
}
, t
)

can be obtained
by inserting Eq. (15) into Eq. (16), which results in the expression

∂�

∂t
= −

N∑
i=1

∂

∂ri˛

{(
v0
˛ + 
˛ˇriˇ − �−1

˛ˇ,i
FEˇ,i

)
� − kBT�−1

˛ˇ,i

∂�

∂ri
ˇ

}
.

(17)

For present purposes, this deterministic diffusion equation for
the probability distribution function is rewritten in terms of a
stochastic differential equation (SDE), which can then be split into
a coupled set of evolution equations for the position vectors. The
specific form of the diffusion equation for the distribution function
is converted into the corresponding form of a SDE according to [38]

∂�

∂t
= −

N∑
i=1

{
∂

∂ri˛

[
Ci˛�
]

+ 1
2
∂

∂ri˛

∂

∂ri
ˇ

[
�−1
˛ˇ,i
�
]}

→ dri˛ = Ci˛dt + Bi
˛dWi

 ,

(18)

where W represents the Wiener process. Bi is the ‘square root’ of
�−1
˛ˇ,i

(= Bi˛
Bi
ˇ), and is chosen as a lower triangular 3 × 3 matrix
using Cholesky decomposition [38], which satisfies

Bi · (Bi)
T =

⎡⎢⎣ B
i
11 0 0

Bi21 Bi22 0

Bi31 Bi32 Bk33

⎤⎥⎦ ·

⎡⎢⎣ B
i
11 Bi12 Bi13

0 Bi22 Bi23

0 0 Bi33

⎤⎥⎦ = �−1
˛ˇ,i
. (19)

Hence, Eq. (17) should be rearranged to have the specific form of
configurational distribution as in Eq. (18) at the mesoscopic level,

∂�

∂t
= −

N∑
i=1

[
∂

∂ri˛

{(
v0
˛ + 
˛ˇriˇ − �−1

˛ˇ,i
FEˇ,i + kBT

∂�−1
˛ˇ,i

∂ri
ˇ

)
�

}]

+ kBT
N∑
i=1

∂

∂ri˛

∂

∂ri
ˇ

(
�−1
˛ˇ,i
�
)
. (20)

Then one can obtain a SDE for the position vectors using Eqs. (18)
and (19),

dri˛ =
(

v0
˛ + 
˛ˇriˇ − �−1

˛ˇ,i
FEˇ,i + kBT

∂�−1
˛ˇ,i

∂ri
ˇ

)
dt + Bi˛ˇdWi

ˇ. (21)

The effective spring force on bead i
(

FEi
)

combined with the
anisotropic diffusion tensor is written as

�−1
˛ˇ,i
FEˇ,i =

⎧⎪⎪⎨⎪⎪⎩
�−1
˛ˇ,1F

S
ˇ,1

�−1
˛ˇ,i
FS
ˇ,i

− �−1
˛ˇ,i−1F

S
ˇ,i−1

−�−1
˛ˇ,N−1F

S
ˇ,N−1

if i = 1

if 1< i < N

if i = N
, (22)

where FSi is the spring force associated with spring i.
Since the anisotropic diffusion matrix and stress tensor depend

on the connector vector between adjacent beads, it is convenient
to express the equation of motion using this vector. Substitution
of the definition of the connector vector

(
Qi˛ = ri+1

˛ − ri˛
)

into Eqs.
(21) and (22) results in the SDE for the evolution of a connector
vector,

dQi˛ =
(

˛ˇQ

i
ˇ −

N−1∑
k=1

Aik

[
�−1
˛ˇ,k

FSˇ,k + kBT
∂�−1
˛ˇ,k

∂Qk
ˇ

])
dt

+Bi˛ˇ
(
dWi+1

ˇ
− dWi

ˇ

)
, (23)

where

Aik =

⎧⎨⎩
2 if

∣∣i− k∣∣ = 0

−1 if
∣∣i− k∣∣ = 1

0 otherwise

.

The Aik are the elements of the Rouse matrix [39]. Eq. (23) can be
made dimensionless with the transformations

Q˛ =
√
kBT

K
Q̃˛, t = L

Vc
t̃, �R = �0

4K
= �̃R

L

Vc
,

Wi = 
̇�R = Vc
L
�R, dWi

˛ =
√
dtdW̃i

˛

�−1
˛ˇ,k

= �−1
0 �̃−1

˛ˇ,k
, 
˛ˇ = Vc

L

̃˛ˇ, FSˇ =

√
KkBTF̃

S
ˇ,

Bi
˛ˇ

=
√

2kBT�−1
0 B̃i

˛ˇ
.

(24)

Note that the terms with a tilde are dimensionless. The Wi is the
Weissenberg number and �R is the Rouse time. The Vc and L are
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arbitrary velocity and length scales, respectively. As a result, the
dimensionless equation for dQi˛ is

dQ̃ i˛ =
(

̃˛ˇQ̃

i
ˇ − 1

4Wi

N−1∑
k=1

Aik

[
�̃−1
˛ˇ,k

F̃Sˇ,k +
∂�̃−1
˛ˇ,k

∂Q̃ k
ˇ

])
dt̃

+ 1√
2Wi

B̃i˛ˇ

(
dW̃i+1

ˇ
− dW̃i

ˇ

)
. (25)

Finally, we obtain the stochastic evolution equation of the con-
nector vector by substituting the FENE spring force law and the
anisotropic diffusion matrix into Eq. (25),

dQ̃ i˛ =
(

̃˛ˇQ̃

i
ˇ − 1

4Wi

N−1∑
k=1

Aik

{
hk

[
˛+ (1 − ˛)

∣∣∣(Q̃ kˇ)2
∣∣∣] Q̃ k˛

+2(1 − ˛)Q̃ k˛

})
dt̃ + 1√

2Wi
B̃i˛ˇ

(
dW̃i+1

ˇ
− dW̃i

ˇ

)
. (26)

2.3. Continuum level of description

At the continuum level of description, the exact locations of the
beads become irrelevant as only macroscopic averages are quan-
tified and described. To indicate that the distribution function is
independent of the location of the position of the beads, a factor-
ization was performed,�

({
rN
}
, t
)

= n 
({

QN−1
}
, t
)

, where n is
the number density of chains following Bird et al. [27]. With this
factorization, Eq. (16) was written as

∂ 

∂t
= −

N∑
i=1

∂

∂ri


(
 ṙi

)
,

or, via direct substitution,

∂ 

∂t
= −

N−1∑
i=1

∂

∂Qi˛

{

˛ˇQ

i
ˇ
 −

N−1∑
k=1

Aik�
−1
˛ˇ,k

[
FS
ˇ,k
 + kBT ∂ 

∂Qk
ˇ

]}
. (27)

The diffusion equation of the distribution function was further
coarse-grained through pre-averaging. By multiplying Qi˛Q

i
ˇ

on
each side of Eq. (27) and then integrating over all the configuration

space, one can derive the evolution equation for
〈
Qi˛Q

i
ˇ

〉
, which is

∂

∂t

〈
Qi˛Q

i
ˇ

〉
= 
˛ε

〈
QiˇQ

i
ε

〉
+ 
ˇε

〈
Qi˛Q

i
ε

〉
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k=1

Aik

[
2kBT

〈
∂

∂Qkε
�−1
˛ε,k

Qkˇ

〉
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〈
∂

∂Qkε
�−1
ˇε,k
Qk˛

〉

−2
〈
�−1
˛ε,k

QkˇF
S
˛,k

〉
− 2
〈
�−1
ˇε,k
Qk˛F

S
ˇ,k

〉]
, (28)

for i = 1, 2, . . ., N − 1. Here, the definition of the average property,〈
E
〉

=
∫
E dQ

i
, is used. In this study, the upper convected time

derivative is defined by

D

Dt

〈
Qi˛Q

i
ˇ

〉
= ∂

∂t

〈
Qi˛Q

i
ˇ

〉
− 
˛ε

〈
QiˇQ

i
ε

〉
− 
ˇε

〈
Qi˛Q

i
ε

〉
. (29)

Thus, Eq. (28) can be also written as

D

Dt

〈
Qi˛Q

i
ˇ

〉
=
N−1∑
k=1

Aik

[
2kBT

〈
∂
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˛ε,k
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〉
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S
ˇ,k

〉]
. (30)

Eq. (30) can be also expressed in dimensionless form using the
transformations of Eq. (24),

D

Dt̃

〈
Q̃ i˛Q̃

i
ˇ

〉
=
N−1∑
k=1

Aik

[
1
2

〈
∂
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�̃−1
˛ε,k

Q̃ kˇ

〉
+ 1

2

〈
∂
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�̃−1
ˇε,k
Q̃ k˛

〉

−1
2

〈
�̃−1
˛ε,k

Q̃ kˇF̃
S
˛,k

〉
− 1

2

〈
�̃−1
ˇε,k
Q̃ k˛F̃

S
ˇ,k

〉]
. (31)

Introducing the FENE spring force law and the anisotropic diffusion
matrix into Eq. (31) gives

D

Dt̃

〈
Q̃ i˛Q̃

i
ˇ

〉
=
N−1∑
k=1

Aik

[
− hk(1 − ˛)

〈
Q̃ kε Q̃

k
ε Q̃
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Q̃ k˛Q̃

k
ˇ

〉
+5(1 − ˛)

〈
Q̃ k˛Q̃

k
ˇ

〉
+ ˛ı˛ˇ

]
. (32)

In Eq. (32), the fourth-rank tensor can be written in terms of
second-rank tensors using any one of the multitude of closure
approximations that have been proposed in the literature, such
as the one proposed by Doi [8], which has been shown to
satisfy time-structure invariance by Edwards and Öttinger [2]:〈
Qk˛Q

k

Q

k
ε Q

k
ˇ

〉
ı
ε ≈

〈
Qk˛Q

k



〉〈
Qkε Q
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〉
ı
ε. In this work, the closure〈

Q̃ kε Q̃
k
ε Q̃

k
˛Q̃

k
ˇ

〉
⇒ 5

3

〈
Q̃ kε Q̃

k
ε

〉〈
Q̃ k˛Q̃

k
ˇ

〉
(33)

was used because it most closely matches the assumed closure used
to develop the FENE-P model; however, the former closure approx-
imation yields a result that more closely resembles the Giesekus
model. Under the assumption of Eq. (33), the constitutive equation
at the continuum level is obtained as

D

Dt̃

〈
Q̃ i˛Q̃

i
ˇ

〉
=
N−1∑
k=1

Aik

{
−hk
[

5
3

(1 − ˛)
〈
Q̃ kε Q̃

k
ε

〉
+ ˛
]〈
Q̃ k˛Q̃

k
ˇ

〉
+5(1 − ˛)

〈
Q̃ k˛Q̃

k
ˇ

〉
+ ˛ı˛ˇ

}
, (34)

for i = 1, 2, . . ., N − 1.
Another coarse-graining procedure was performed to reduce

the mesoscopic model to the dumbbell level of description using
only a single FENE spring and expressed in terms of the confor-
mation tensor. The dimensionless conformation tensor is written
as

C̃˛ˇ =
〈
R̃˛R̃ˇ

〉
, R̃˛ =

N−1∑
i=1

Q̃ i˛ = r̃N˛ − r̃1˛, (35)

where r̃i˛ denotes the dimensionless position vector of ith bead.
This quantity can be used to derive a dumbbell model in terms of
a single spring that is expressed in terms of this variable, which
recovers the typical FENE dumbbell model for ˛= 1 and N = 2:

C̃˛ˇ =
〈
R̃˛R̃ˇ

〉
=
〈
Q̃˛Q̃ˇ

〉
,

D

Dt̃
C̃˛ˇ = −h

[
5
3

(1 − ˛)trC̃ + ˛
]
C̃˛ˇ + 5(1 − ˛)C̃˛ˇ + ˛ı˛ˇ.

(36)

3. Simulation method

3.1. Atomistic level

The NVT NEMD simulations of the short-chain polyethylene
liquid (C78H158) were performed at the atomistic level under
shear flow to provide a fundamental description of the rheologi-
cal characteristic functions, such as viscosity, and the dynamical
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information concerning individual chains. Note that in all simula-
tions under shear flow in this study, the flow direction is along the
x axis and the flow gradient is along the y axis. The p-SLLOD equa-
tions of motion [40–42] combined with Nosé-Hoover thermostat
[43,44] were applied as

q̇ia = pia
mia

+ qia · 
T ,

ṗia = Fia − pia · 
T − ς̇pia,

ς̇ = pς
M
, ṗς =

∑
i

∑
a

p2
ia

mia
− DNkBT, M = DNkBT�2.

(37)

Note that the p-SLLOD equations of motion are equivalent to the
SLLOD equations of motion under shear flow [40–42]. The N, V, T
represent total number of particles, simulation box volume, and
absolute temperature, respectively. The pia, qia, and Fia are the
momentum, position, and force vector of the ath atom in the ith
molecule. The mia is the mass of the ath atom in the ith molecule.
The ς and Pς stand for the position and momentum analogues of
the Nosé-Hoover thermostat. The M refers to the inertial mass in
Nosé-Hoover thermostat and the D refers system dimensionality
(3). The � denotes the characteristic time scale of the system. The 
T

denotes the transpose of the velocity gradient tensor and is defined
as


T =

⎡⎢⎣ 0 0 0


̇ 0 0

0 0 0

⎤⎥⎦ . (38)

These equations of motion were integrated using the reversible
Reference System Propagator Algorithm (r-RESPA) with two
timescales [45] under Lees–Edwards boundary condition, which
guarantee periodic boundary conditions in the velocity-gradient
direction for shear flow [46]. The NEMD simulation was performed
at a temperature of 450 K. The simulation box size was care-
fully selected to prevent the introduction of system size effects.
The length of simulation box in the flow direction (x) (=130.50 Å)
was 30% longer than the fully stretched length of a short-chain
polyethylene molecule (=99.45 Å) and the length of simulation box
in velocity gradient (y) and neutral (z) (=54.00 Å) directions was
also 10% longer than the radius of gyration of the average molecule
at equilibrium. The density from experiment was adjusted to
� = 0.7640 g/cm3. Therefore, the numbers of chains and particles
were calculated based on simulation box size and experimental
density: 160 molecules and 12,480 particles. The KWW method
was used to compute the Rouse relaxation time (or the longest
rotational relaxation time), �R [47–50], which was determined to
be 2300 ps for this linear C78H158 melt.

3.2. Mesoscopic level

At the mesoscopic level of description, the Brownian dynam-
ics simulations for short-chain polyethylene liquids were carried
out based on a bead-spring chain model with FENE springs and
an anisotropic diffusion matrix. Eq. (26) was integrated using a
new predictor–corrector algorithm, described in detail elsewhere
[51]. The numbers of beads and springs per chain were fixed at
reasonable values to obtain accurate results according to previous
research [20]. A thousand identical chains with 15 springs and 16
beads each were used for the BD simulations. The fully stretched
length of the bead-spring chain was matched to the atomistic
molecules of the NEMD simulations. The maximum extensibility

of each spring (bs) was calculated using the expression

bm = 3 × R2
max〈

R2
〉
eq

= 3 × 9890(Å )
2

1492(Å )
2

≈ 20,

bs = bm
N2

≈ 0.08889,

(39)

where the Rmax refers to the fully stretched, end-to-end length of
a linear C78H158 molecule. The bm and bs denote the maximum
extensibility of the entire molecule and each spring, respectively.
The bead-spring model also possesses the same longest relaxation
time as C78H158 used in the NEMD simulations [20]. The differ-
ence in computational efficiency of the NEMD and BD simulations
is approximately two orders of magnitude.

3.3. Continuum level

Eqs. (34) and (36) were solved for the bead-spring chain and
dumbbell models, respectively, using a Newton-Raphson algorithm
to solve the nonlinear system of algebraic equations resulting from
the imposition of a steady-state shearing field. The maximum
extensibility of the single spring for the dumbbell model (bs) was
20, and the ones for the bead-spring chain model (bs) were set to
0.08889, each in dimensionless units.

3.4. Rheological and structural properties

The stress tensor is given by Kramers’ expression [27], and writ-
ten in dimensionless form according to the transformations of Eq.
(24),

�̃˛ˇ = 1
N − 1

N−1∑
i=1

hi
〈
Q̃ i˛Q̃

i
ˇ

〉
− ı˛ˇ. (40)

In this study, the rheological material functions play an impor-
tant role in comparing results from each level of description. The
viscosity and the normal stress coefficients are defined as

� = �̃xy
˜̇

, (41)

�1 = �̃xx − �̃yy
˜̇


2
, (42)

�2 = �̃yy − �̃zz
˜̇


2
. (43)

The average conformational changes of the chain under shear flow
can be expressed using various properties such as the conformation
tensor, radius of gyration, orientation angle, etc. These properties
can be defined as follows. The radius of gyration tensor is repre-
sented as

G̃˛ˇ = 1
N

N∑
i=1

(
r̃i˛ − r̃c˛

)(
r̃iˇ − r̃cˇ

)
, (44)

where the position vector of the center of mass is given by,

r̃c
 = 1
N

N∑
i=1

r̃i
 . (45)

The molecular configuration thicknesses of the bead-spring chain
were computed using the radius of gyration tensor, and are given
by the expressions

ıx =
√
G̃xx, ıy =

√
G̃yy, ız =

√
G̃zz. (46)
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Fig. 1. The mean-square end-to-end distance,
〈
R̃2
ete

〉
, plotted as a function of Wi at

various values of ˛. Note that in this and all subsequent figures, the circles denote
data from the atomistic NEMD simulations of C78H158, whereas all other symbols
denote results of the BD simulations at various values of ˛. The solid and dashed
curves represent results obtained from the continuum dumbbell model.

The orientation angle (�) also can be calculated using the confor-
mation tensor or the radius of gyration tensor [1,52,53] as

tan(2�) = 2C̃xy
C̃xx − C̃yy

= 2G̃xy
G̃xx − G̃yy

. (47)

4. Results and discussion

Fig. 1 displays
〈
R̃2
ete

〉
as a function of Wi for the atomistic

model (labeled NEMD), the mesoscopic bead-spring chain model
(symbols), and the dumbbell model (curves). The NEMD atomistic
data has been reported elsewhere in Refs. [19,20]. The dumbbell
model values of dimensionless quantity

〈
R̃2
ete

〉
were obtained using

the standard definition
〈
R̃2
ete

〉
= C̃ = KC/kBT . The NEMD atomistic

results have been rendered dimensionless using the standard
formula

〈
R̃2
ete

〉
= 3
〈
R2
ete

〉
/
〈
R2
ete

〉
eq

. In order to maintain the dimen-

sional proportionality of this quantity (see, for example, Fig. 2 of
Ref. [20]), the BD results have been scaled by the same factor as
the NEMD results. This data exhibits a slow initial increase at low
values of Wi, a dramatic increase at intermediate values of Wi,
and then a maximum and slight subsequent decrease at high Wi.
The maximum value of

〈
R̃2
ete

〉
is well below the fully stretched

chain length, which is about 20 in dimensionless units. Kim et al.
[19,20] demonstrated that this phenomenon was a direct result of
the quasi-periodic tumbling of individual chain molecules, which
became faster and more prevalent with increasing Wi beginning
at a Wi value of about 2–4. Effectively, individual chains were dif-
fusing through tubes formed by the highly elongated surrounding
chains. The average of the highly stretched chains and the rotating
chains (with very small values of

∣∣Rete∣∣ since the chain ends pass
very close to each other during the tumbling cycle [19,20]) gave a
value of

〈
R̃2
ete

〉
about 30% (at the maximum in Fig. 1; a Wi of about

100) of the square of the fully stretched chain length.
Results of the mesoscopic bead-spring chain BD simulations are

also presented in Fig. 1 for various values of the parameter ˛. This
parameter was varied in the range of [0.5,1.0], and three of these
values are indicated in the plot. The optimal match between the
atomistic data and the mesoscopic data occurs for the value ˛= 0.6,
indicating an especially significant degree of anisotropicity in the
diffusion tensor. For this value of ˛, a quantitative agreement is
obtained between the atomistic simulation data and the meso-
scopic data, except at the highest values of Wi tested. This ˛ value
very nearly corresponds to Doi and Edwards’ result [24] that the
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Fig. 2. The shear viscosity normalized relative to the zero-shear viscosity vs. Wi.
Symbols and lines are as described in the caption of Fig. 1; however, additional
curves are present in this figure to represent the predictions of the pre-averaged
bead-spring chain model. Error bars, if not indicated, are smaller than the size of the
symbols.

ratio of the perpendicular and parallel diffusion coefficients of a
rod-like molecule is 0.5 in dilute and semi-dilute solutions. Hence-
forth, ˛ is fixed at the value of 0.6 for all quantitative comparisons
with the atomistic and experimental data based on this single com-
parison alone, making all further results presented below actual
predictions of the mesoscopic model. Note that the value of

〈
R̃2
ete

〉
for the BD simulations is significantly lower than that for the NEMD
simulations. This is due to the absence of the excluded volume effect
in the BD model [20], which is present in the atomistic simulations
of these short and relatively stiff chains. As the Wi increases, the
excluded volume effect becomes of decreasing importance. How-
ever, this quantity,

〈
R̃2
ete

〉
, would also take on the value of 3 if the

data had been scaled relative to the absolute dimensional value of〈
R2
ete

〉
as obtained in the BD simulations.

Fig. 1 also contains data obtained from solving the anisotropic
FENE dumbbell model under steady shear flow. The curves corre-
sponding to the isotropic case (˛= 1.0) and the mildly anisotropic
case (˛= 0.8) both over-predict the atomistic simulation data after a
Wi value of approximately unity. The significantly anisotropic case
(˛= 0.6), however, offers a reasonable fit of the atomistic data up
to a Wi value of approximately 5, after which it begins to over-
predict the data to a large degree. Note that all three of these cases
approach the maximum value (20) of

〈
R̃2
ete

〉
at very high values of

Wi, and that the case of ˛= 0.6 begins to differ from the atomistic
data in precisely the same range of Wi where chain rotation and
tumbling begins to play an important (and ultimately, dominating)
role in the system dynamics. This provides one piece of evidence
that the suppression of chain rotation through the pre-averaging
process used to derive the macroscopic dumbbell model causes a
loss of information concerning the bulk dynamics that is crucial to
a complete and quantitative description of the fluid’s rheological
and kinematical responses. This is consistent with recent modeling
efforts by Stephanou et al. [54], which demonstrated that C̃xx < bm
and C̃yy, C̃zz > 0 for large Wi by using a non-zero value of a slip
parameter, �, which is known to re-introduce tumbling back into
pre-averaged liquid-crystalline fluid models [3,10–13].

Fig. 2 displays the shear viscosity as a function of Wi. Note that
viscosity is normalized with respect to its zero-shear viscosity. The
shear-thinning behavior is observed at all levels of description. The
mesoscopic model at ˛= 0.6 is consistent with the NEMD simula-
tion data over all values of Wi examined in the simulations, whereas
the isotropic case (˛= 1.0) greatly over-predicts the viscosity over
almost the entire Wi range examined.
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Fig. 3. The normal stress coefficients normalized relative to their zero-shear values
as functions of Wi. Symbols and lines are defined as in previous figure captions. Error
bars, if not indicated, are smaller than the size of the symbols.

The pre-averaged bead-spring model at ˛= 1.0, 0.6 describes
semi-quantitatively the overall behavior of the NEMD simulation
data until approximately Wi < 50. The isotropic case actually pro-
vides a more quantitative prediction than the anisotropic case;
however, this is likely just a matter of chance, since both cases
of the pre-averaged bead-spring model cannot describe the chain
tumbling that is dominating the rheological response of the fluid
at high values of Wi. The dumbbell model over-predicts the data
in the isotropic case, and greatly under-predicts the data in the
anisotropic case.

In all of the mesoscopic and continuum models, as ˛ decreases
the viscosity becomes smaller for a given value of Wi. This is rea-
sonable from a physical point of view since, as ˛ decreases, an
individual chain moves more freely along its contour, which implies
that the chain will experience fewer interactions with the sur-
rounding chains, thus reducing frictional drag. As a result, the
hydrodynamic stress imposed by the shear flow decreases and
therefore the viscosity decreases with decreasing ˛ at the same
value of Wi. The power-law index (b) was calculated at high values
of Wi at each level of description

(
� ∝ 
̇−b). While the power-

law index was 0.48 ± 0.02 in the range of [1,100] for the atomistic
NEMD simulations, it changed with ˛ in the mesoscopic and con-
tinuum models. In the mesoscopic bead-spring chain model and
the continuum dumbbell model, the power-law index decreased
from 0.58 to 0.53 and from 0.83 to 0.64 as ˛ increased from 0.6 to
1.0, respectively. In the pre-averaged bead-spring chain model, it
was approximately 0.66 for the values of ˛ presented in the figure.
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Fig. 4. Comparison of the shear stresses computed from models with experimental
results of semi-dilute DNA solutions as functions of Wi.

Fig. 3 displays the normal stress coefficients as functions of Wi.
From the figure, it is evident that the first normal stress coef-
ficient, �1, and second normal stress coefficient, �2, decrease
with increasing values of Wi. In other words, thinning behavior
is observed in �1 and �2 for all models. For the first normal
stress coefficient, the mesoscopic model and pre-averaged model
of the bead-spring chain at ˛= 0.6 capture the overall quantitative
behavior of the NEMD simulation data over the entire range of Wi,
whereas the continuum dumbbell model at the same value of ˛
always under-predicts the NEMD simulation data. For the second
normal stress coefficient, there is a remarkable overlap between
the mesoscopic model at ˛= 0.6 and NEMD simulation data given
the inherent difficulty in calculating this quantity. The dumbbell-
level model always predicts a value of zero for�2 because C̃yy = C̃zz
(see Fig. 6 below); therefore, even though these two components
are decreasing as they should,�2 = 0. Note that this behavior is also
evident in the original FENE-P dumbbell model – see Fig. 1 of Ref.
[55].

For all three rheological characteristic functions examined thus
far, the anisotropic mesoscopic bead-spring chain model has pre-
dicted the atomistic simulation data remarkably well for a single
value of the parameter ˛= 0.6, which was chosen based purely on a
measurement of the mean-square end-to-end distance of the chain.
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Fig. 5. The orientation angle of the mesoscopic model compared with the atomistic
data as a function of ˛ and Wi. The inset of this figure displays the orientation angle
of mesoscopic model at ˛= 0.6 vs. Wi on a log–log plot.
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Fig. 6. The non-zero components of the conformation tensor as functions of Wi for the atomistic data, the mesoscopic bead-spring model, and the macroscopic dumbbell
model.

This provides strong evidence that the mesoscopic model is captur-
ing the inherent tumbling cycles of the individual chains within the
atomistic fluids; this will be verified later.

The steady-state shear stresses, �̃xy, of the mesoscopic bead-
spring chain and the continuum models are plotted in Fig. 4 as
functions of Wi at various values of ˛. The �̃xy of the semi-dilute
T4 DNA solutions (0.49 mg/ml; 7–8 entanglements per chain) is
displayed as a function of 
̇�D, where �D is disengagement time
[56]. Three characteristic regions are observed in the experimental
data: a low shear rate regime where the shear stress increases dra-
matically; an intermediate regime wherein the slope of the shear
stress curve decreases dramatically, giving the appearance of a brief
shear-stress plateau; and a high shear rate regime in which the
shear stress resumes increasing substantially with increasing shear
rate [56]. This type of intermediate and high shear behavior has
been attributed in the literature as arising from a number of possi-
ble sources, including convected constraint release, reptation tube
distortion, and the slipping of chain linkages.

The mesoscopic bead-spring chain model also exhibits these
three characteristic regimes in the shear stress as a function of Wi.
In the first regime, �̃xy increases dramatically with increasing Wi.
In the second regime, �̃xy increases very slowly with increasing Wi
resulting in a characteristic slight stress plateau. In the third regime,
�̃xy increases again rather quickly as Wi increases. This characteris-
tic behavior of the mesoscopic model corresponds reasonably well
with the experimental results of the semi-dilute DNA solutions
[56] for ˛= 0.6, although there are small differences in the lower
shear rate regime. When ˛= 1.0, the mesoscopic model predictions
are much less accurate than the anisotropic version, although both
models tend to converge to the same value (along with the exper-
imental data) at the highest shear rate examined. The anisotropic

model exhibits the stress plateau in the same region as the exper-
imental data, and this occurs around Wi = 10, which is where the
rotational motion and tumbling of the individual chains begins
to have a dramatic effect on the rheological response of the test
fluid. This provides another possible explanation for the occurrence
of a stress plateau at intermediate shear rates. Furthermore, the
isotropic model does not exhibit any hint of a stress plateau at inter-
mediate values of Wi, even though tumbling of individual chains
still occurs at these Wi values in this model. This lends credence
to the hypothesis that anisotropic chain diffusion is an important
part of the overall chain dynamics; i.e., the isotropic chains rotate
by stretching and recoiling cycles, whereas the anisotropic chains
rotate in more of the shape of a rope passing over a pulley [20]. Con-
sequently, it is likely that the anisotropic chain rotation is somehow
associated with the shear stress plateau at intermediate shear rates.

The continuum-level bead-spring chain and dumbbell models
are also displayed in Fig. 4. The bead-spring chain model over-
predicts the experimental data at all shear rates, and the value of
the shear stress does not vary much with the parameter ˛. Fur-
thermore, this model does not exhibit any hint of a shear stress
plateau at intermediate values of Wi. The dumbbell model greatly
over-predicts the experimental data for˛= 1.0, but although giving
a poor quantitative prediction for ˛= 0.6, it does capture the shear-
stress plateau at intermediate values of shear rate and the correct
qualitative behavior over the entire range of Wi investigated; this
is possibly fortuitous.

The orientation angle, �, of the mesoscopic bead-spring chain
model is displayed in Fig. 5 as a function of Wi and compared with
the data from the NEMD simulations. Typically, under shear flow,
the orientation angle decreases from 45◦ with increasing shear rate,
and approaches a value of a few degrees above the direction of flow
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at high shear rates [1,21]. This is due to the random orientation of
chains under quiescent conditions and the alignment of the chain
molecules in the direction of flow at high shear rates. As shown in
Fig. 5, the orientation angle follows typical behavior. It decreases
from around 45◦ with increasing Wi and remains a few positive
degrees above the direction of flow, on average, at high values of
Wi. Note that the orientation angle for all ˛ is expected to converge
to 45◦ at low values of Wi. In the inset of the figure, the slope of
the orientation angle at ˛= 0.6 is −0.497 ± 0.04, which is very close
to −0.46 ± 0.04 obtained from DNA solutions [17]. The mesoscopic
model under-predicts the simulation data at all Wi, and rapidly
asymptotes to zero degrees at extremely high shear rates. This is
due to the primary difference between the two sets of simulation
data: one is for a dense liquid (NEMD) and the other for a single
chain in solution (BD) where the effects of surrounding chains are
treated in a mean-field type of approach.

Fig. 6 displays the data for the non-zero components of the
dimensionless conformation tensor, C̃. The upper-left plot is very
similar to that of Fig. 1, as expected. The atomistic NEMD simu-
lation data is described very well by the mesoscopic bead-spring
chain model with the anisotropic parameter˛= 0.6. The anisotropic
dumbbell model, on the other hand greatly over-predicts the
simulation data at high shear rates, and asymptotes to the fully
extended value of 20. Apparently, the exclusion of the rotational
chain dynamics in this pre-averaged model is responsible for this
huge discrepancy between the dumbbell model and the atom-
istic simulation data. For the C̃xy component of the conformation
tensor, the anisotropic dumbbell model provides a much more
quantitative fit of the atomistic data (likely fortuitous), whereas
the bead-spring chain fails to match the maximum quantitatively
and the high shear decrease of this component. It is also obvi-
ous that C̃yy decreases with increasing Wi since the chains are
compressed in flow-gradient direction under shear. The C̃zz com-
ponent also decreases with increasing Wi because the chains are
stretched and aligned with respect to the flow direction, again
providing a compression in the neutral direction. For these two
components, the mesoscopic model does not approach the unit
value of either the C̃yy or C̃zz component, which is due to the
fact that the parameter ˛ is fixed to a constant value (0.6) in the
simulations, whereas it should approach unity as Wi asymptotes
to zero and the rotational motion of the chains comprising the
fluid becomes isotropic. Further refinement of this model would
include a Wi-dependent˛; however, the dynamical effects of inter-
est herein occur at high values of Wi where this issue is not
present.

The overall quantitative predictions of the mesoscopic and
dumbbell model for the C̃yy and C̃zz components are equally poor;
this is probably due to the crudeness of using the conformation
tensor to describe a chain molecule, especially since the atomistic
chain is rather stiff while the mesoscopic chain is entirely flexi-
ble. (This is also true with respect to the orientation angle of Fig. 5.)
Because of this, it is far more informative to study the radius of gyra-
tion tensor, which provides a more natural descriptor of molecular
chain dynamics and shape: it is computed at each atomistic or bead
location along the chain, rather than being grossly approximated
as applied to only the chain termination sites.

The radius of gyration tensor provides a more natural and quan-
titative representation of the average size of polymeric chains. Thus,
the mean configuration thickness has been calculated using the
radius of gyration tensor, as in previous studies [16,17,53]. Fig. 7
shows the mean molecular configurational thickness, as computed
from the mesoscopic model as a function of Wi. It is reasonable that
the mean molecular configurational thickness in the flow direction,〈
ı̃x
〉

, exhibits very similar behavior to
〈
R̃2
ete

〉
. It maintains its equi-

librium, isotropic value near the quiescent condition for all values
of ˛. It increases rapidly at intermediate values of Wi, where the
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Fig. 7. Molecular configuration thicknesses in the mesoscopic model as functions
of ˛ and Wi.

most anisotropic case, ˛= 0.6, displays the most extended configu-
rational thickness; i.e., the chains rotate in an increasing elliptical
configuration as the relative diffusion constant ratio is decreased.
At high values of Wi,

〈
ı̃x
〉

begins to plateau, as does
〈
R̃2
ete

〉
.

It is evident that
〈
ı̃x
〉

increases with decreasing ˛ at the same
value of Wi because the chain moves along its contour more freely
than in the perpendicular direction: consequently, the average
chain maintains a more extended structure in the x-direction for
lower values of the anisotropic parameter ˛. At very low Wi, the
three cases overlap, since there is very little rotational motion and
extension of the chains under weak shear and thus not much of
a relative disturbing force from the equilibrium condition. The
relative differences between the three cases are rather large at
intermediate shear rates, but then again converge to approximately
the same value at very high shear rates. This is due to the fact that at
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high Wi the chains are rotating so fast that the difference between
the three cases is minimized, on average.

As expected, the mean molecular configuration thicknesses in
the flow-gradient direction,

〈
ı̃y
〉

, and in neutral direction,
〈
ı̃z
〉

,

decrease with increasing Wi. The
〈
ı̃y
〉

and
〈
ı̃z
〉

decrease with
decreasing ˛ at intermediate and high shear rates for a given value
of Wi for the same reasons as above; i.e., as the chains rotate in
an increasingly elliptical configuration with decreasing ˛, there is
more relative compression in the perpendicular direction. It is also
interesting that the slope of

〈
ı̃y
〉

at˛= 0.6 is very close to that of the
DNA solutions in a previous study [17]: they are −0.25 and −0.26,
respectively. Note that the behavior of

〈
ı̃z
〉

is qualitatively the same

as that of
〈
ı̃y
〉

, although its value is rather high at low Wi and ˛,
which is attributed to the fact that the latter parameter does not
approach unity as Wi → 0, as it should. As stated before, the present
model was designed to describe the physics at high values of Wi,
and therefore the parameter ˛ was not forced to approach zero at
low flow rates.

Although the end-to-end distance is one of the most useful
theoretical tools in polymer dynamics, it is hard to measure it
experimentally due to poor resolution and dimensional limitations
of typical experimental devices. Therefore, in previous experimen-
tal studies, the projected distances between the two farthest beads
to the flow-gradient and flow-vorticity planes were calculated
[14–18]. In Fig. 8, the projected farthest distance between two
beads on the chain at each plane is shown as a function of Wi.
Reasonably, the overall behavior of the mean molecular extension
projected onto the flow-vorticity plane,

〈
X̃
〉

, is qualitatively simi-

lar to
〈
R2
ete

〉
and
〈
ı̃x
〉

. It increases with increasing Wi at low values

of Wi. At intermediate values of Wi,
〈
X̃
〉

increases dramatically,
but it does not reach the plateau value at high values of Wi. The〈
X̃
〉
/R̃max in Fig. 8 is consistent with the data of the DNA solutions

[17,18], although the mean value is over-predicted by the meso-
scopic model at all values of ˛. The mean molecular extension in
the vorticity-gradient and flow-gradient planes,

〈
Ỹ
〉

and
〈
Z̃
〉

, dis-

play similar qualitative behavior to the
〈
ı̃y
〉

and
〈
ı̃z
〉

as functions of
Wi: they decrease with increasing Wi. The dependence of the mean
molecular extension,

〈
X̃
〉

,
〈
Ỹ
〉

, and
〈
Z̃
〉

, on ˛ exhibits the same

behavior as the mean configuration thickness,
〈
ı̃x
〉

,
〈
ı̃y
〉

, and
〈
ı̃z
〉

,
respectively.

As stated before, the dimensionless parameter ˛ is the ratio of
the perpendicular and parallel diffusion coefficients (˛=�⊥/�||).
When ˛= 1, the anisotropic diffusion tensor reduces to an isotropic
diffusion tensor. When 0 <˛< 1, parallel diffusion is preferred. Thus,
it is very meaningful to examine the dependence of the probability
distribution of

∣∣Rete∣∣ on ˛ in the mesoscopic model and to compare
it with the distribution obtained from the atomistic simulation data.
In Fig. 9, two values of ˛were chosen: one with isotropic diffusion
tensor (˛= 1), and one with anisotropic diffusion tensor (˛= 0.6).
For the isotropic diffusion tensor (˛= 1), the probability distribu-
tions exhibit typical overall behavior of dilute solutions [14,15,18].
It follows Gaussian behavior at low values of Wi, and becomes wide
at intermediate values of Wi. At high values of Wi, the probability
distributions display bimodal behavior with stretch and rotational
peaks. For the anisotropic diffusion tensor (˛= 0.6), the probability
distribution displays different behavior compared to dilute solu-
tions or the isotropic diffusion tensor model. Although it maintains
the Gaussian character at low values of Wi, the entire width of
the distributions becomes wider and the peaks of the distribu-
tions lower in height compared to the isotropic diffusion tensor.
It is reasonable that the anisotropic diffusion, where chains are dif-
fusing along their contours, results in this change of shape of the
probability distribution. Since parallel diffusion is preferred, the
number of chains with extended lengths should increase. At inter-
mediate values of Wi, the shape of the probability distribution is no
longer Gaussian. At high values of Wi, the bimodal behavior is also
observed with stretch and rotational peaks for the anisotropic diffu-
sion tensor (˛= 0.6). It is very interesting that the overall behavior
of the probability distribution depends on ˛ at low and interme-
diate values of Wi, whereas it is independent of ˛ at high values
of Wi. This might be related to a competition between the entropic



Author's personal copy

604 J.M. Kim et al. / J. Non-Newtonian Fluid Mech. 166 (2011) 593–606

543210

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(P

D
F

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Wi = 0.1 
Wi = 1
Wi = 10
Wi = 100
Wi = 1000

eteR
~

α = 1.0

543210

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(P

D
F

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Wi = 0.1 
Wi = 1
Wi = 10
Wi = 100
Wi = 1000

eteR
~

α = 0.6

543210

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(P

D
F

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Wi = 0.39
Wi = 0.98
Wi = 9.78
Wi = 97.78
Wi = 782.21

eteR
~

NEMD

Fig. 9. The probability distribution of the atomistic NEMD simulations and the

mesoscopic model vs.
∣∣R̃ete∣∣ at various values of Wi and ˛.

spring effect (or deformation of the chains) and hydrodynamic drag
imposed by shear flow (or rotational motion of the chain) on the
system response. At low values of Wi, the system response is dom-
inated by the entropic spring effect since the hydrodynamic drag
imposed by shear flow (or vorticity) is weak. The entropic spring
effect is thus strongly affected by the anisotropic diffusion matrix.
Hence, the probability distribution depends to some degree on ˛ in
this Wi regime. However, at high values of Wi, the hydrodynamic
drag imposed by strong shear flow overcomes the entropic spring
effect. Hence, only the rotational motion of the chains dominates
the system response and the probability distribution is indepen-

dent of ˛. Thus at intermediate values of Wi, the competition
between the two effects introduces these frozen states of the dis-
tribution for values of ˛< 1, where the chain tumbling cycles offset
the increased stretching of the chains.

The probability distributions of the mesoscopic model at ˛= 0.6
are also compared with NEMD simulation data in this figure since
it predicted well other rheological and structural properties of the
NEMD simulations. As expected, the probability distributions of
the mesoscopic model at ˛= 0.6 show very similar behavior to
the NEMD simulations. Especially, the probability distributions at
low values of Wi considerably resemble NEMD simulation data.
For example, the width of the probability distribution for Wi = 1
is roughly the same between the mesoscopic model and the NEMD
simulations. Note that the peak is much narrower for the isotropic
diffusion tensor (˛= 1) than the NEMD simulations. At intermedi-
ate values of Wi, the overall shape of the probability distributions
are very similar between the mesoscopic model at ˛= 0.6 and the
NEMD simulations. However, the probability distribution of the
NEMD simulations is slightly biased to higher

∣∣Rete∣∣ as compared to
the mesoscopic model. At high values of Wi, the bimodal behavior
with stretch and rotational peaks is observed in both simulations.

Time correlation functions of the components of the end-to-end
vector provide significant characteristic timescales of the system
response through Fourier transform of the correlation signal. Thus,
rheological and structural responses of the mesoscopic model can
be compared via characteristic time scales between the mesoscopic
model and NEMD simulation data. Fig. 10 displays the time corre-
lation functions of the xx component of the end-to-end vector, R̃ete,
as functions of observation time, t̃. The correlation curves of the
mesoscopic model show similar behavior to the NEMD simulations
at corresponding values of Wi. For example, the correlation curves
of the mesoscopic model display the typical exponential decay for
Wi < 2, and exhibit a characteristic minimum, local maximum, and
damped oscillatory behavior at longer times for Wi ≥ 2. Note that
the slope of the decay at low values of Wi and the appearance of
characteristic minimum at high values of Wi depend on ˛.

In Fig. 11, the characteristic timescales are displayed as func-
tions of Wi. In this figure, �R denotes the longest relaxation
time (Rouse time) and �xx refers to the characteristic timescales
extracted from the correlation of the xx components of R̃ete.
(More detailed explanations regarding characteristic timescales
have been already discussed by Kim et al. [20].) For Wi < 2, the
characteristic timescales were extracted by fitting the time corre-
lation of the end-to-end vector with an exponential. On the other
hand, the power spectral density function through Fourier trans-
form of the correlation signal was used to extract the characteristic
timescales for Wi ≥ 2.

There are two regimes in Fig. 11. In the first regime (Wi < 2), the
characteristic timescales of the mesoscopic model converge to the
Rouse time near quiescent conditions. However, they increase with
increasing Wi up to the unit value. In addition, the characteristic
timescales become larger with decreasing˛ at the same value of Wi.
This might be related to the entropic spring effect. With decreasing
˛, the bead-spring chain moves more easily in the parallel direc-
tion. Therefore, it starts to stretch more easily from equilibrium
chain length along its backbone direction as Wi increases. How-
ever, the bead-spring chain stretches less in backbone direction
with increasing˛ at the same value of Wi. Thus, a given chain with a
smaller˛value has a slightly longer correlation time. As a result, the
characteristic timescales increase with decreasing ˛ and increas-
ing Wi for this regime. The previous results of the bead-rod chains
in Kim et al. [20] also support this assumption. In the bead-rod
chain model, the characteristic time scales maintain nearly con-
stant values since the bead-rod chain might not admit small bond
extensions caused by weak shear flow. Hence, it is reasonable that
the entropic spring effect or deformation of the chains controls the
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system response for Wi < 2 since the rotational motion of chains
caused by shear flow is insignificant.

In the second regime (Wi ≥ 2), the characteristic timescales of
the mesoscopic model almost overlap with the NEMD simulation
data, although the values of the timescales increase with decreas-
ing values of ˛. The same explanation regarding the behavior of the
probability distribution as a function of Wi can be applied here. For
Wi ≥ 2, the rotational motion of chains imposed by shear flow even-
tually dominates the entropic spring effect or deformation of chains
on the system response at high values of Wi. Thus, the characteris-
tic timescales eventually become almost independent of˛, as noted
above, since the preferential anisotropic diffusion along the chain
axis is not as important to the dynamical tumbling cycles.

According to Doi and Edwards [24], the characteristic time
scales, �xx and �yy, can be related to the parallel and perpendic-
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Fig. 11. The characteristic time scale, �xx , as a function of Wi for the atomistic liquid
and the bead-spring chain at various values of ˛.

ular diffusion coefficients, respectively. In Doi and Edwards’ results
for rod-like polymers in dilute and semi-dilute solutions, the ratio
of the parallel and perpendicular diffusion coefficients is 0.5 [24].
The ratio of �xx and �yy obtained from NEMD simulation is 0.6–0.7,
which is very close to Doi and Edwards’ result. Furthermore, this
ratio is also very similar to ˛= 0.6 for the mesoscopic model which
captures well the NEMD simulation data. Thus, it is reasonable that
the characteristic time scale �xx is related to parallel diffusion and
the characteristic time scale �yy corresponds to perpendicular dif-
fusion.

5. Conclusion

In order to clarify the dynamics of polymeric materials which
often hides behind enormously complicated information under
shear flow, the simple coarse-grained mesoscopic model was pro-
posed based on a bead-spring chain with FENE springs and an
anisotropic diffusion matrix. This model was further coarse-grained
to bead-spring chain and dumbbell continuum models through
pre-averaging and closure approximations. The rheological and
structural properties of polymeric materials, such as viscosity, nor-
mal stress coefficients, mean-square end-to-end distance, and so
on, computed from the simple mesoscopic and continuum models
were compared with NEMD simulation data at the atomistic level
and experiments of semi-dilute DNA solutions.

The
〈
R̃2
ete

〉
computed from the NEMD simulations at the atom-

istic level were consistent with the
〈
R̃2
ete

〉
at ˛= 0.6 in mesoscopic

model over all ranges of Wi examined in these simulations. This
value of the anisotropic parameter was then used to predict the
rheological and structural properties of short-chain polyethylene
liquids under steady-shear flow with good success. However, the〈
R̃2
ete

〉
at ˛= 0.6 in the dumbbell model diverged from atomistic

model after Wi = 10, and reached the fully stretched chain length at
high values of Wi due to lack of information regarding the rotational
motion of the chains caused by pre-averaging.

The shear stresses computed from mesoscopic and continuum
models were also compared with experimental results of semi-
dilute DNA solutions. The variation of shear stress with values of
˛ at the same value of Wi was also investigated in mesoscopic and
continuum models. The �̃xy of the mesoscopic model was depen-
dent on ˛ at low values of Wi while it was independent of ˛ at
high values of Wi. The values of �̃xy at ˛= 0.6 in the mesoscopic
model were very similar to experimental results of DNA solu-
tions.

The orientation angle for all ˛ in mesoscopic model displayed
the typical behavior. It decreased from 45◦ as the values of Wi
were increased and eventually assumed a small positive angle
with respect to flow direction. The orientation angle at ˛= 0.6
in the mesoscopic model followed as

〈
�
〉

∝Wi−0.497±0.04 and is
consistent with the results of DNA solutions, which is given as〈
�
〉

∝Wi−0.46±0.04 [17].
The mean configuration thickness and mean molecular exten-

sion in the mesoscopic model showed similar behavior as functions
of Wi. The

〈
ı̃x
〉

and
〈
X̃
〉

increased with increasing Wi, while other

components decreased. Note that the overall behavior of
〈
X̃
〉
/R̃max

and, especially, the slope of
〈
ı̃y
〉

at ˛= 0.6, were very close to pre-
vious studies on DNA solutions [17]. The trends of these properties
caused by changing value of ˛was similar to that of

〈
R̃2
ete

〉
.

The characteristic timescales or tumbling frequencies were
extracted from time correlation functions of components of the
end-to-end vector, and were plotted as functions of Wi. The behav-
ior of characteristic timescales was divided based on Wi = 2. For
Wi < 2, the characteristic timescales recovered the Rouse time near
equilibrium, and showed a dependence on ˛. However, for Wi ≥ 2,
the characteristic timescales for each ˛ overlapped and displayed
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very close values to those obtained from the NEMD simulation
data.
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