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Random packing of model polymers: local
structure, topological hindrance and universal
scaling
Manuel Laso,*a Nikos Ch. Karayiannis,a Katerina Foteinopoulou,a Marc L. Mansfieldb and Martin Kr€ogerc

DOI: 10.1039/b820264h
The random packing of rigid objects has not only engrossed mathematicians since biblical
times but is receiving attention for numerous applications and processes involving microgels,
granular media, colloids, glasses, liquids, synthetic polymers and biomolecules. While dense
random assemblies of single hard spheres have been extensively investigated both
experimentally and theoretically over the past 50 years, it was only recently that analogous
problems for chains of hard spheres have been addressed. We highlight the relevance of these
recent advances, and describe the most salient characteristics of the ‘‘maximally random
jammed’’ state for hard sphere chains. Particular emphasis is placed on the scaling behavior
of chain dimensions and topology with packing density. We also discuss the potentially far-
reaching implications of an unexpected connection that has been found between
entanglements (intermolecular constraints) and knots (of intramolecular origin) regarding
their dependence on volume fraction.
1. Introduction

The random packing of objects has

received a great deal of attention since
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early historical times. How spheres,

whether oranges or molecules, stack up

when poured randomly into a vessel is

an intriguing problem with a wide range

of practical applications. Scientists have

long accepted the notion that, given

enough stirring and shaking, a random

assembly of particles always settles to

a maximum density, a state somewhat

loosely defined as random close packing

(RCP). Bernal and Finney et al.1,2 per-

formed an outstanding series of classical

experiments in the 1960s (see Fig. 1) that
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gave the initial impetus for an uninter-

rupted series of advances in the under-

standing of dense random packing, and in

the analysis and characterization of the

RCP state.

Although the statement of the random

close packing problem seems to be

simplicity itself (loosely speaking: ‘‘put

together an arbitrarily large number of

identical spheres as compactly and as

randomly as possible’’), it is remarkable

that even the definition of RCP was

recently revised by Torquato et al.,3
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and replaced by the more rigorous

statistical–mechanical definition of the

maximally random jammed (MRJ) state.

According to Torquato et al.3 a particle is

jammed in a structure when it cannot be

moved if the positions of all other parti-

cles in the system are fixed. The opposite

of a jammed particle (i.e. a freely roaming,

caged particle) is denoted as a ‘‘rattler’’.3

Consequently, an ideal (infinitely sized)

random packing is considered as jammed

if all of its hard spheres are jammed.

In practice, computer-generated MRJ

structures are of finite size and unavoid-

ably contain a very small fraction of

‘‘rattlers’’, their amount being protocol

dependent.3

Given that more than four centuries

passed between Kepler’s conjecture about
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the densest regular packing (that of the

face-centered cubic) and its mathematical

proof by Hales,4 it is not surprising that

the determination of the volume fraction

4 occupied by the spheres at the MRJ

state remains to this day refractory to

analytical approaches. The missing proof

notwithstanding, both experiments and

computer simulations have converged on

a widely accepted value of 4 x 0.64 for

single spheres at the MRJ state,2,3,5–8 while

the densest possible ordered packing of

monodisperse spheres has a volume frac-

tion of p=
ffiffiffiffiffi

18
p

z0:74. In spite of the

dearth of analytical results, work on

dense random assemblies has progressed

significantly, and has also been extended

to non-spherical objects,9 to frictionless

particles,10 to mixtures of dissimilar
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spheres,11 and to packing in higher

dimensions.5,12 This extensive body of

knowledge has found widespread appli-

cation in the physics of amorphous and

granular materials, colloids, biology,

perturbation theory in thermodynamics,

and even in communication theory,

among others.1,3,13,14

Compared with random packing of

single spheres, very little attention has

been devoted to the investigation of dense

assemblies of freely-jointed chains of

tangent hard spheres, although they are

considered as the second type of ideal

amorphous solids,15,16 assemblies of hard

spheres being the ideal amorphous solids

of the first kind. In spite of chains of hard

spheres being the simplest and most

fundamental model system for synthetic

and biological polymers, neither experi-

ments nor simulations to determine their

density and structure at their MRJ state

had been forthcoming. This situation was

due, on the one hand to the difficulty of

constructing laboratory mechanical

models, and on the other hand to the

computational complexity of generating

MRJ structures of chains of hard spheres.

It was only very recently that the problem

of determining the MRJ state of chain

molecules could be solved through exten-

sive Monte Carlo (MC) simulations.17

While very large (up to a million spheres)

systems of dense random packing of single

hard spheres can be generated almost

routinely nowadays,18 the determination
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Fig. 1 Photograph of a ball-and-spoke model or irregular structure constructed by Bernal51 to be as

‘‘irregular as possible’’ using spokes of lengths 2.75 to 4.0 inches in proportions roughly the same as

those observed in liquid distribution functions. Spokes of different length are distinguished by colors

in the printed version of the original article. Our current article focuses on randomly packed chains

of tangent hard spheres, which are unfortunately more difficult to visualize this way (see Fig. 2a),

where two of the spokes per ball have been converted into bonds. Reprinted with permission from

ref. 51. Copyright 1959 Macmillan Publishers Ltd.

Fig. 2 Clockwise starting from top left: representative configuration of a 54-chain, hard sphere

system of molecular length N ¼ 1000 in the vicinity of the MRJ state, with coordinates of sphere

centers (a) wrapped, subject to three-dimensional periodic boundary conditions and (b) fully

unwrapped in space. (c) An arbitrary selected single chain of high knotting complexity (10.153)44

with constituent sites shown as transparent spheres. Also shown is the corresponding primitive path,

and segments of other primitive paths with which it is entangled (see also Fig. 7). (d) The underlying

primitive path network, after application of the Z1 topological algorithm (see also ref. 35 and Fig. 5),

with entanglement coordinates unwrapped in space. Image created using the VMD software.52

1764 | Soft Matter, 2009, 5, 1762–1770 This journ
of the MRJ state for hard sphere chains

requires the combined use of several

advanced off-lattice MC algorithms19 in

order to efficiently sample their configu-

ration space (see Fig. 2a and 2b for

representative configurations of hard

sphere chain systems near the MRJ state).
2. The maximally random
jammed state of hard sphere
chains

Thanks to the MC scheme described in

detail in ref. 19, it has been possible to

generate configurations and to accurately

determine the local structure and dimen-

sions of freely-jointed chains of tangent

hard spheres in the entire range of volume

fractions up to the MRJ state. The MC

protocol is built around: (i) modified

versions of chain connectivity altering

moves20 tailored to provide rapid long

range equilibration even in the vicinity of

the MRJ state and (ii) localized moves all

executed in an adaptive19 configurational

bias (CB)21 pattern, where the number of

trial configurations strongly depends on

packing density.19 The approach consists

of two stages: first, starting from a very

dilute system MC simulations are con-

ducted with the aforementioned mix of

moves and at regular intervals shrinkages

of the simulation cell are attempted until

the box reaches the desired volume.19 The

amplitude of the attempted box reduction

depends strongly on packing density.

Finally, long trajectories of statistically

uncorrelated representative multi-chain

configurations are produced through

extensive MC simulations (of the order of

1011 steps) under constant volume.19

Since the computational efficiency of

the MC algorithm in equilibrating the

long range system characteristics is

affected by neither the average molecular

length N, nor the packing density 4,19 it

was possible to simulate from relatively

short oligomers (N ¼ 12) all the way into

the asymptotic, infinite chain regime (N¼
1000). As a consequence, conclusive

evidence has been collected about generic

features such as the MRJ state,17 the

universal scaling of chain dimensions22,23

and underlying topology23 with packing

density, and the evolution of local

ordering24 with increasing packing

density. To start with, it was found that

hard sphere chains reach their MRJ state
al is ª The Royal Society of Chemistry 2009



Fig. 3 Radial distribution function g(r), for hard sphere chains and single hard spheres in the

vicinity of the MRJ state. Inset: percentage of ‘‘flipper’’ hard spheres as a function of packing density.

For the definition of ‘‘flipper’’ spheres see definition in text.
at the same volume fraction as the pack-

ings of single spheres do (within statistical

uncertainty) 4MRJ z 0.638 � 0.004,

regardless of chain length.17 As shown in

Fig. 3, in the vicinity of the MRJ 4*,marg(N)

f 4*,marg
N (1 + O(N�1)) state the pair radial

distribution function g(r) of chain systems

closely resembles that of single sphere

ones, although the double tangency

condition has a small but noticeable effect

especially at distances close to the sphere

diameter (r ¼ 1). While it is trivial to

prove that 4MRJ for chains cannot be

higher than for single spheres,† a rigorous

proof of the equality 4MRJ
single spheres ¼

4MRJ
chains, although tantalizingly close,‡ is

still missing. The MRJ state for chain

molecules is characterized by the system

becoming jammed, in the sense that the

proportion of inner spheresx that are able
† Assume that there exists a state/ensemble in
which hard sphere chains strictly pack more
densely than single spheres. Remove the
bonds in all chains in each configuration of
this ensemble. The result is an ensemble of
hard spheres at the same density as the
starting chain system, in contradiction with
the hypothesis.
‡ It would suffice to prove that for a given MRJ
structure of single hard spheres, it is always
possible to link them into chains of the
desired length so as to create an MRJ
structure of hard sphere chains. Algorithms
able to perform this task in most specific
cases are known,25 a proof that guarantees
their success in all cases is however not known.
x In a fashion analogous to the ‘‘jammed’’ state
of inner spheres a chain end is ‘‘jammed’’ if it is
not able to perform an arbitrarily small
‘‘reptation’’ or ‘‘rotation’’ move subject to
holonomic constraints.

This journal is ª The Royal Society of Chemistry
to perform an arbitrarily small ‘‘flip’’

move without either incurring overlaps

with other spheres, or violating the

connectivity of the chains, is very small

(less than 1%). The inset of Fig. 3 shows

vividly how the fraction of ‘‘flipper’’

spheres (i.e. spheres that are able to

perform small displacements subject to

the constraints discussed above) declines

sharply as the MRJ state is approached,

in a way similar to that of ‘‘rattlers’’3 for

single hard spheres. This precipitous drop

is the hallmark, and the accepted ‘‘signa-

ture’’ of jamming. The question is thus

settled that neither chain length nor the

tangency/connectivity constraint, which

were responsible in the past for the

computational intractability, hinder the

packing of chains with respect to single

spheres. Fig. 2a gives an illustrative

impression of the extreme packing

conditions at the MRJ state, and high-

lights the difficulty of devising efficient

configuration–sampling algorithms.

Local ordering was investigated

through the characteristic crystallo-

graphic element (CCE) norm, a descriptor

which is sensitive both to radial and

orientational deviations from perfect

local order and remains strictly discrimi-

nating between different, competing

crystal structures.17,24 The order analysis

based on the CCE norm revealed that, at

the MRJ state, the portion of sites with

either HCP-like (hexagonal close packed)

or FCC-like (face-centered cubic) local

environment is very small (less than 4% in

total).17,26 It was also found that the mean
2009
coordination number for hard sphere

chain packing at the MRJ state equals

6 (2d, where d is the dimensionality of the

simulated system)26 as expected from the

isostatic condition and in agreement with

the simulations by Donev et al.3a on

monatomic hard sphere jammed analogs.

3. Universal scaling behavior of
chain dimensions

Chain connectivity is the key dis-

tinguishing feature of model polymers

with respect to single spheres. It endows

dense systems of chains of hard spheres

with a rich structure and physical

behavior. In addition, thanks to the

simplicity of their geometry and of the

potential interactions, hard sphere chains

display universal features with maximal

clarity. In this respect, the MC numerical

experiments reported in ref. 17, 22 and 23,

have shown that hard sphere chains are

the first polymer system for which the full

range of universal static scaling laws27,28

can be observed as packing density 4

increases up to the MRJ state. The

exploration of the entire volume fraction

range 0 # 4 # 4MRJ has revealed that

chain dimensions display four clearly

distinct scaling behaviors with increasing

4. These four regimes, often described as

‘‘dilute’’, ‘‘semi-dilute’’, ‘‘marginal’’, and

‘‘concentrated’’, are characterized by

a regime-specific power dependence of

chain size on volume fraction as displayed

in Fig. 4. Chain stiffness is quantified

through the characteristic ratio defined as

CN ¼ <R2>/(N � 1)l2 where <R2> is the

mean square end-to-end distance and l is

the bond length, equal to the sphere

diameter. The log–log plot of CN vs. 4 in

Fig. 4 allows the universal exponents to be

read off directly. The values found in the

four regimes (0.0 � 0.1, �0.23 � 0.003,

�1.0 � 0.1, and 0.0 � 0.1 respectively)23

fully confirm theoretical predictions and

experimental findings of 0.0 (dilute),27–29

�0.23 (semi-dilute),27,28,30 �1.0

(marginal),22 and 0.0 (concen-

trated).22,29,30 Furthermore, the estab-

lished equality 4MRJ
single spheres ¼ 4MRJ

chains for

single spheres and for hard sphere chains

at the MRJ state has also allowed

a correspondence to be established

between configurations of single spheres

and configurations of chains.22 This

correspondence can be exploited by

means of graph theoretical methods to
Soft Matter, 2009, 5, 1762–1770 | 1765



Fig. 4 Double logarithmic plot of the characteristic ratio CN, as a function of packing density, 4.

Lines with characteristic slopes are drawn as a guide to the eye. Inset: logarithm of characteristic

ratio versus (linear) volume fraction in the marginal and concentrated regimes. 4*,marg and 4*,conc mark

the predicted22 crossovers for the transitions from semi-dilute to marginal, and from marginal to

concentrated regimes, respectively.
predict the crossover volume fractions

between the high concentration regimes.

Both the marginal to concentrated 4*,conc,

and semi-dilute to marginal 4*,marg cross-

overs are predicted to be chain indepen-

dent to leading order, with N�1

corrections:22

4*,conc(N) f 4*,conc
N (1 + O(N�1))

4*,marg(N) f 4*,marg
N (1 + O(N�1)) (1)

with:

4*,conc
N x 0.59; 4*,marg

N x 0.32 (2)

in agreement with the values shown in

Fig. 4. It is remarkable how faithfully the

full range of expected behaviors is

captured by this simplest possible molec-

ular model. Although the first order

behavior of 4*,conc and 4*,marg had been

conjectured qualitatively,30 it is the iden-

tification of the MRJ state for hard sphere

chains that has made it possible to deter-

mine the exact forms of eqn (1) and (2)

including prefactors and coefficients.
4. Topological constraints:
entanglements and knots

A great deal of the unique dynamical and

rheological behavior of polymers stems

from the uncrossability of chains,31 which

has been traditionally analyzed in terms
1766 | Soft Matter, 2009, 5, 1762–1770
of ‘‘entanglements’’, the heart of modern

theories of polymer dynamics.27,32,33 In

parallel to the vast number of theoretical

and experimental approaches, efficient

computational algorithms have been

recently developed by various groups in

order to calculate the interchain topo-

logical constraints (entanglements) and

the corresponding primitive paths.34–38

The primitive path (PP) of a polymer

chain immersed in a sea of obstacles (e.g.

other chains) is defined as the shortest

path connecting the ends of the chain that

does not violate the topological

constraints (uncrossability) imposed on

it, and whose length strictly and continu-

ously decreases during the minimization

process. For a multi-chain system the

primitive path is the shortest multiply

disconnected path. Everaers and

coworkers.34 recently showed that the

above definition of the primitive path

agrees with the entanglement density that

yields the experimentally observed value

of the plateau modulus. It has also been

established that all different topological

algorithms based either on the original

annealing process34,36,37 or on the more

recent (direct35 or stochastic38) geometric

approaches provide very similar results

for the underlying primitive path

topology and entanglement statistics.

The extreme simplicity of hard sphere

chains makes them an ideal statistical

mechanics model on which to analyze
This journ
universal entanglement behavior.23 In

particular, the analysis of primitive path

networks as a representation of states of

polymers from solutions to jammed

amorphous solids is an area of great

current relevance. In our work, primitive

paths were extracted from the corre-

sponding hard sphere chains by means of

the state-of-the-art Z1 algorithm.35 This

algorithm solves the problem of the

shortest multiple disconnected path by

minimizing the Euclidean length, subject

to constraints arising from the initial

(parent) state. Alternative approaches for

the determination of the primitive path

had been explored in ref. 39. By trans-

forming the Doi–Edwards32 physical

concept of entanglements into a minimi-

zation problem, the Z1 algorithm

provides an approximate but still accurate

geometrical solution. The code uses kinks

originally located at particle positions

that tend to diminish during the length

minimization process; it operates at an

optimum ‘‘time step’’ and uses a self-

adapting grid to speed up computations.

Upon convergence of the minimization

procedure (when the total contour length

of the primitive paths does not decrease

between successive iterations) the number

of entanglements equals the number of

interior kinks of the shortest path. The

schematic representation of the algo-

rithmic procedure implemented in the Z1

code is shown in Fig. 5. Fig. 2 further

shows the transformation through the

topological algorithm of the parent hard

sphere chains (Fig. 2b) to the corre-

sponding primitive paths (Fig. 2d).

The evolution of the entanglement

density with the polymer volume fraction

4 is of particular interest, since the

complex, non-intuitive dependence of the

number of entanglements on 4 gives rise

to the very different types of rheological

behavior which have been observed

experimentally as concentration increases

up to the melt. Results of the topological

analysis leading to the primitive paths for

the asymptotically long (N ¼ 1000) hard

sphere multi-chain system up to the MRJ

state are shown in Fig. 6. Four easily

distinguishable scaling regimes, charac-

terized by specific scaling exponents, can

be observed for the dependence of the

average number of entanglements per

chain, more precisely, the number of

segments of the primitive path hZi, on

packing density.23 The ranges of the
al is ª The Royal Society of Chemistry 2009



Fig. 5 Schematic representation of the extraction of primitive paths from the parent atomistic chain

as incorporated in the Z1 algorithm.35 Top: original configurations where the primitive paths

coincide with the atomistic chains as kinks are located in particle positions. Middle: iteration of the

minimization procedure where the contour lengths of the primitive paths are reduced, and non-

constraint kinks are removed from the system. Chain ends are held fixed through the iterative

procedure. Bottom: final configurations after convergence where the total path reaches its shortest

value. One entanglement (internal kink) is assigned to the primitive paths shown in black and green,

while the one shown in blue possesses two entanglements.
scaling regimes along with the corre-

sponding scaling exponents are:23 (I) 0 #

4 # 4*,semi; hZi � 40.0 � 0.1, (II) 4*,semi # 4 #

0.45; hZi � 40.60 � 0.15, (III) 0.45 # 4 #

4*,conc; hZi � 40.0 � 0.1 and (IV) 4*,conc # 4 #

4MRJ; hZi � 44.0 � 0.4.

While entanglements have been at the

root of modern theories of polymer

dynamics since its inception,32 the interest

in knots as an alternative analysis

pathway of topological constraints is

quite recent.40–42 For example topological

studies based on the concept of knots had

so far been presented for single ring

polymers (4 / 0), where it had been

empirically observed that the probability

of being unknotted depends on N as mNNa
This journal is ª The Royal Society of Chemistry
or alternatively e�N/N0 with m slightly less

than unity, a close to zero, and N0 a large

number which depends on the sphere

radius.42 In the present work, knots were

identified by the technique proposed by

Mansfield.40 Since knot theory only

defines knots in closed paths, to apply it on

the topology of linear polymers each chain

is converted into a closed polygon. While

there exists numerous ways of connecting

the two chain ends, it was found that the

chain closure scheme has no effect on

neither the ranges of the scaling regimes

nor on the values of the corresponding

exponents.23 Therefore, individual chains

were extracted from the configurations

generated by the MC algorithm,
2009
converted into a closed polygon, and its

knotting was determined using the tech-

nique described in ref. 40. This method is

based on the concept of a knot group,

which is simultaneously more discrimi-

nating and easier to calculate than the

knot invariants that have been used in

such studies in the past (Gauss winding

number, or the Alexander, Jones, or

HOMFLY polynomials).43 Starting from

an arbitrary projection of an embedded

graph, this method generates a sequence

of representations, any of which is a full

and complete representation of the knot

group. This sequence of representations

is compared against the entries in a previ-

ously determined look-up table.44 The

matching entry identifies the knot as well

as its complexity.40

The results of such a knotting analysis

for the same large set of configurations of

the hard sphere, multi-chain system (N ¼
1000) up to the MRJ state are also

included in Fig. 6 (right axis), allowing

for a direct comparison with the corre-

sponding scaling behavior of entangle-

ments (left axis). The similarity, within the

statistical uncertainty, of the scaling

exponents for entanglements and knots is

a most unexpected result for a very simple

reason: entanglements are, by definition,

a multi-chain construct, while knotting is

primarily a single-chain phenomenon.

Thus, knotting is a purely intramolecular

characteristic, whereas entanglements

constitute a purely intermolecular

measure of topological hindrance.

Furthermore, entanglements seem to be

localized in space, whereas knotting is

a global, ‘‘delocalized’’ property of

a chain. Yet the evidence collected on

the hard sphere chains strongly suggests

that, in a very general sense, knots must

be equivalent to entanglements. In other

words, the multi-chain phenomenon of

entanglement leaves an unequivocally

recognizable imprint on the shape of

individual chains: once the scale factor

between knots and entanglements is

found (roughly speaking, the vertical shift

between the two sets of symbols in Fig. 6),

it should be possible to determine the

dependence of the number of entangle-

ments on the volume fraction Sent(4) from

the dependence of the number of knots on

volume fraction Sknot(4), by analyzing the

knotting of single chains extracted from

the multi-chain ensembles over the entire

volume fraction range.
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Fig. 6 Double logarithmic plot of the (left axis) average number of segments of the primitive path

hZi and of the (right axis) fraction of knotted chains for the N ¼ 1000 hard sphere chain system.

Lines with characteristic slopes are drawn as guides to the eye. Inset: zoom into the marginal and

concentrated regimes.

Fig. 7 Schematic drawing highlighting the different configurational information giving rise to

knotting (top) and entanglement (bottom). Shown in the middle of the two columns are two

configurations of a single linear chain (no. 1) of tangent spheres together with two of the surrounding

chains (no. 2 and 3), which differ in their topological constraints. The analysis of knots40 operates on

the conformation of the single chain. Over- and under-crossings as the chain is traversed starting at

one of its two ends are marked by ‘‘+’’ and ‘‘�’’ signs, respectively. The analysis of the entanglement

network operates on the configurational information of the whole system and yields the shortest

multiply disconnected path.35 During the minimization procedure the ends of the sub paths (so called

primitive paths; shown are primitive paths for chains 1–3) remain fixed in space (see also Fig. 5).

While for the analysis of knots the information of ‘above’ and ‘under’ within a single chain is of the

utmost importance, and the information about surrounding chains irrelevant, for the analysis of the

entanglement network exactly the opposite is true. Chain thickness is irrelevant for both methods.
This remarkable finding may actually

have a simple explanation. While the

original concept of an entanglement is

a dynamic one (as beautifully shown in

the pioneering simulations of Kremer and

Grest),45 all current algorithms for deter-

mining entanglements are based on static,

essentially geometric arguments. In very

simplistic terms, topological algorithms

detect entanglements by holding the ends

of all chains fixed, and by simultaneously

‘‘tightening’’ the chains as if they

were retractable rubber bands, until

a minimum overall length, compatible

with chain uncrossability, is reached. On

the other hand, knotting algorithms start

by connecting the ends of a given chain,

and then determine the type of knot (e.g.

based on knot group or knot invariants).

Although the two types of analyses seem

to be unrelated at first sight, the essential

information both of them ultimately

require is contained in the succession of

over- and under-crossings of two-dimen-

sional projections of the chains (or single

chain in the case of the knotting analysis).

Fig. 7, which is meant to be qualitatively

suggestive only, illustrates how the

difference in the sequence of crossings

between the trefoil and the unknot

configurations results in very different

knotting, and also different entanglement

characteristics. If we symbolically repre-

sent by uknot(4,�,�,�,.) and

uent(4,�,�,�,.) the functional depen-

dence of knots and entanglements on

volume fraction, and on the underlying

distribution of sequences of crossings for
1768 | Soft Matter, 2009, 5, 1762–1770 This journ
a particular entangled chain molecular

system, the scaling similarity of Fig. 6

implies that both must be directly related

to a universal ‘‘topological constrain’’

function U(4,�,�,�,.) by a simple pro-

portionality: uknot f uent f

U(4,�,�,�,.), so that their ratio

uknot(4,�,�,�,.) : uent(4,�,�,�,.) is

a system/chemistry dependent constant.

Thus, in an ensemble average sense,

single, highly knotted chains can be

considered proper class representatives of

highly entangled, multi-chain systems.

This similarity may lead to a refinement

and revised evaluation of current methods

of characterization of entanglements:

once the entanglements of a particular

system have been determined, additional

information such as spacing between

entanglements, reptation tube diameter,
al is ª The Royal Society of Chemistry 2009



etc. is obtained in what can be called

a ‘‘post-processing’’ analysis. A knotting

analysis however yields basically ‘‘delo-

calized’’ information: the number and the

complexity (type) of knots. No further

information can be extracted. If, however,

the basic information content of knots

and entanglements is the same, as Fig. 6

strongly suggests, the natural question is

then to what extent the ‘‘post-processing’’

step imposes a structure on the results

which is not contained in the original

system, but which stems from explicit or

implicit assumptions (e.g. freezing of

dynamic degrees of freedom, Gaussian

behavior of primitive paths, type of

distribution of entanglements along

chains, etc.).

5. Entanglement, knotting and
aggregation in biophysics

In practice, the observation that both

measures of topological constraints for

chain systems scale with identical

universal exponents may open up a new

and potentially very powerful avenue for

the understanding of complex biological

problems which are out of computational

reach nowadays. A prominent example is

the long established correspondence

between human neurodegenerative

diseases and the genetic expansion of

a chromosomal trinucleotide repeat

sequence.46 In Huntington’s disease,

pathogenesis is known to be caused by

a polyglutamine sequence of more than

36 amino acids. Such expanded sequences

lead to aggregation and to the ultimate

appearance of protein inclusions in the

affected neurons.47 The nucleation event

for aggregation involves folding within

a single chain. A great effort is currently

being devoted to the modelling of this

single chain folding event for sequences of

moderate length (up to approximately

50 residues). These investigations make

use of advanced simulation methods, like

steered molecular dynamics (MD), tran-

sition path sampling48,49 replica exchange

MD,50 and of massive, large scale

computational resources. Such detailed

analyses at the level of a single chain47 are

at the current limit of feasibility, even for

relatively small polypeptide sequences. A

similarly detailed approach to the collec-

tive entanglement behavior of a multi-

polypeptide system to form an aggregate

is a rather hopeless undertaking, and will
This journal is ª The Royal Society of Chemistry
remain so for the foreseeable future.

However, the universal character of the

similarity between entanglement and

knotting suggests that a great deal of

information about the emergence and

evolution of very large, computationally

intractable, polypeptide aggregates, such

as those responsible for Huntington’s

disease, could be rigorously gleaned from

the analysis of single polypeptide chains.
6. Conclusions and potential
applications

The recent determination and under-

standing of the hitherto unknown struc-

ture of the dense random packing of hard

sphere chains up to their MRJ state has

answered several long standing questions

in the physics of polymers, complex fluids,

statistical mechanics and thermody-

namics. Furthermore, an analysis of chain

topological hindrance has uncovered an

unsuspected connection between entan-

glements and knots. This connection

deserves urgent, deeper investigation, as it

may open a new avenue for the analysis of

the very complex collective behavior of

multi-chain, biomolecular systems. In

addition, current efforts focus on the

extension of the simulation studies to

dense model polymer systems of varied

molecular architectures (branched, stars

and rings) either in the bulk or at inter-

faces (nanofillers, confined geometries

and solid surfaces) and on the effect of

chain stiffness on the jamming transition

and statistics. There is every reason to

expect that the universal aspects displayed

by the hard sphere chain model system

will apply to chemically realistic chains,

so that the physical insights afforded by

this simplest model of chain molecular

soft matter will have substantial practical

applications.
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