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bstract

Direct numerical simulations (DNS) of polymer induced drag reduction in turbulent channel flows up to the maximum drag reduction (MDR)
imit have been performed using a fully spectral method in conjunction with kinetic theory based elastic dumbbell models for the description of
olymer chain dynamics. It is shown that to obtain significant levels of drag reduction large polymer chain extensibility and high Weissenberg
umbers are required. In addition, it is demonstrated that to capture flow dynamics in the high drag reduction (HDR) and MDR regimes, very
ong computational domain lengths of the order of 104 wall units are required. The simulation results in turn have been used to develop a scaling
hat describes the interplay between rheological parameters (i.e., maximum chain extension and relaxation time) and the extent of drag reduction
s a function of Reynolds number. In addition, turbulence statistics are analyzed and correlations between the polymer body force and velocity

uctuations have been developed with particular emphasis on the HDR and MDR regimes. These observations have been used to decipher the
ffect of polymer additives on the dynamics of the flow and drag reduction.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Turbulent flows of dilute polymeric solutions play a cen-
ral role in many engineering applications such as turbulent
rag reduction, fire fighting and agricultural spraying. It is well
nown that the addition of small amounts of soluble high molec-
lar weight polymers to inertia-dominated, wall bounded flows
ives rise to a reduction of turbulent drag. Specifically, it has
een observed experimentally that polymer concentrations of
(100) ppm are sufficient to reduce drag up to 70%. This phe-
omenon has stimulated tremendous research effort in the past
0 years. Comprehensive reviews of the early literature in this
rea are given in Hoyt [1], Lumley [2,3] and Virk [4].
Recent detailed experimental studies of polymer induced tur-
ulent drag reduction have identified two distinct regimes of
rag reduction (DR), which are referred to as low drag reduc-
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ion (LDR) and high drag reduction (HDR) regimes [5–7]. In
ddition, the extent of drag reduction is bounded by a maximum
rag reduction (MDR) value which is a function of the Reynolds
umber [8]. The LDR regime (0 < DR < 30–40%) has similar sta-
istical characteristics as the Newtonian flow. Specifically, the

ean velocity profile remains parallel to that of Newtonian flow
ith an upward shift of the log-region that is enhanced as DR is

ncreased. In addition, the streamwise velocity fluctuations are
nhanced, while the transverse ones are reduced with increasing
R. However, the shapes of the root mean square (rms) pro-
le are similar to those in Newtonian flows. In the HDR regime
40% < DR < 60%), the slope of the mean velocity profile is dra-
atically changed as the slope of the log-law is significantly

nhanced with increasing DR. In addition, the Reynolds shear
tress becomes relatively small [5–7]. At MDR the Reynolds
hear stress becomes extremely small and the slope of the log-
aw region reaches a limit known as the Virk asymptote [9].

In the past decade the development of higher-order numerical

ethods for viscoelastic turbulent flow simulation has made it

ossible to investigate turbulent drag reduction in dilute polymer
olutions using kinetic theory based constitutive equations. To
ate, direct numerical simulations have played an important role
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n understanding the interplay between polymer chain dynam-
cs, i.e., extensional viscosity, relaxation time and polymer
tress, and flow dynamics, i.e., turbulent fluctuations and coher-
nt structures [10–14]. Specifically, it has been shown that DR
s observed when the polymer chain extension in the near wall
egion is significantly large. Moreover, it has been demonstrated
hat the extent of DR is a strong function of fluid rheology (e.g.,
he relaxation time and the maximum chain extensibility).

Overall, it has been shown that continuum-level simulations
ased on elastic dumbbell models can qualitatively predict DR
nd the accompanying flow modification in the LDR regime
11–17]. Specifically, the prediction of the mean velocity pro-
le, rms velocity fluctuations and the average spacing between

he streamwise streaks are in excellent qualitative agreement
ith experimental findings. In addition, a few DNS studies
ave demonstrated the enhancement of the slope in the log-law
egion, the formation of highly correlated and elongated stream-
ise low-speed streaks and the rapid reduction in the Reynolds

tresses in the HDR regime as observed experimentally [7,18].
owever, most of these predictions have been made with com-
utational domains that will be shown not to be sufficiently long
o accurately capture the dynamics of the flow in the HDR/MDR
egime (see Section 3).

Although many of the salient features of polymer induced
urbulent drag reduction have been captured by direct numerical
imulations (DNS), details regarding the precise interplay
etween fluid rheology (i.e., maximum chain extensibility
nd fluid relaxation time) and extent of DR as a function of
eynolds number is still lacking. In addition, hi-fidelity direct
umerical simulations in the HDR and MDR regimes have
ot been performed to date. Motivated by these facts, we have
erformed extensive spectral DNS of turbulent channel flow of
ilute polymeric solutions up to the MDR asymptote in order to
nvestigate quantitatively the coupling between fluid rheology
nd extent of DR.

The paper is organized as follows. In Section 2 the governing
quations and the numerical procedure are presented. In Section
we present the results of an extensive study to ascertain the

ffect of the computational domain size, mesh resolution and
emporal averaging span in the HDR and MDR regimes. In
ection 4 the influence of solution rheology on the extent of
R and flow statistics is presented. Conclusions are presented

n Section 5.

. Governing equations, simulation technique and
arameter selection

For the channel Poiseuille flow considered in this study (see
ig. 1), we chose the x-axis as the mean flow direction, i.e., the
irection of the constant, externally imposed, pressure gradi-
nt and the y- and the z-axes as the wall-normal and spanwise
irections respectively. We use the friction velocity, defined as
τ = (τw/ρ)1/2, as the velocity scale, where τw represents the
hear stress at the wall and ρ is the density of the polymer solu-
ion. In addition, h is the half-height of the channel and h/Uτ

re used as the length and time scales to non-dimensionalize the
quations for the conservation of mass and momentum of an

i

f
o

ig. 1. Schematic of the flow geometry. Lx and Lz depict the computational
omain length and width.

ncompressible viscoelastic fluid:

- · v- = 0 (1)

∂v-
∂t

+ v- · ∇- v- = −∇- p + 1

Reτ0
[β∇2v- + (1 − β)∇- · τ] + e-x (2)

n the above equations, v- = (u, v, w), p and τ denote the instan-
aneous values of the velocity, the excess pressure and the
iscoelastic contribution to the total stress, respectively. The
ressure is scaled by the wall shear stress τw. The last term
n Eq. (2) represents the constant, mean pressure drop per unit
ength across the channel. The zero shear rate friction Reynolds
umber, Reτ0, is defined as Reτ0 = hUτ/ν0, where ν0 is the
ero shear rate kinematic viscosity of the solution. The param-
ter β is the ratio of the solvent (μs) to the total solution zero
hear-rate viscosity (μ0), which is also a measure of polymer
oncentration. Finally, note that the viscoelastic stress tensor, τ

s made dimensionless using μp0Uτ/h, where μp0 = μ0 − μs is
he polymer contribution to the total zero-shear rate viscosity of
olution.

Eqs. (1) and (2) are supplemented by a closed form con-
titutive equation for the viscoelastic stress contribution. The
rimary closed form constitutive equation used is the FENE-P
finitely extensible nonlinear elastic-Peterlin) dumbbell model.
n this model, a polymer chain is represented by a dumbbell con-
isting of two beads representing the hydrodynamic resistance
onnected by a finitely extensible entropic spring. In addition to
polymer viscosity ηp and a relaxation time λ, this model also
ossesses an additional characteristic parameter L which is the
aximum extensibility of the polymer chain. The choice of the
ENE-P model has been motivated by the fact that it can predict

he rheological properties of dilute solutions of high molecular
eight polymers such as aqueous solution of polyethylene gly-

ol (PEG) used extensively in experimental studies of polymer-
nduced turbulent DR with reasonable accuracy. Moreover, prior
NS studies using this model have been able to qualitatively
escribe the DR phenomenon and the accompanying flow mod-
fications [11–15].
The viscoelastic stress τ is related to the departure of the con-
ormation tensor c, characterizing the average second moment
f the polymer chain end-to-end distance vector, from its equi-
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ibrium unit isotropic tensor state, as

= f (r)c − I

Weh
, Weh = λUτ

h
= λU2

τ

ν0

ν0

Uτh
= Weτ

Reτ0
(3)

here Weτ = λU2
τ /ν0 is the friction Weissenberg number, a

imensionless relaxation time defined as the product of the poly-
er relaxation time and a characteristic shear rate based on the

riction velocity. The function f (r), known as the Peterlin func-
ion, is defined as

(r) = L2

L2 − trace(c)
(4)

s evident from Eq. (4), trace(c) ≤ L2, since as trace(c)
pproaches L2, the force required for further extension
pproaches infinity. Note that c and L2 are made dimensionless
ith respect to kT/H*, where k, T and H* denote the Boltzmann

onstant, the absolute temperature and the Hookean dumbbell
pring constant, respectively.

Moreover, an Oldroyd-B model has also been used to describe
he solution rheology. In the limit of L → ∞, the Oldroyd-B

odel is obtained from the above FENE-P model with the Peter-
in function simplified as,

(r) = 1 (4a)

he viscoelastic tensor is obtained by solving an evolution equa-
ion for the conformation tensor c,

∂c

∂t
+ v- · ∇- c − [c · ∇- v- + (∇- v-)T · c] − D∇2c = −τ (5)

s shown by Sureshkumar and Beris [10] and later by other
nvestigations [14,19,20] to perform stable numerical integra-
ion of the evolution equation for the conformation tensor in
urbulent channel flows, it is necessary to introduce a numerical
iffusivity term D∇2c. In this expression D is a dimension-
ess number (equivalent to the inverse of a Schmidt number)
efined as D = κ/hUτ , where κ denotes a constant isotropic arti-
cial numerical diffusivity. In spectral methods a global artificial
iffusivity (GAD) is commonly used to ensure numerical sta-
ility. However, recently local artificial diffusivity (LAD) has
een applied in compact finite difference algorithms [19,20] to
inimize the effect of the added artificial stress diffusion on the
NS results in lower (compared to spectral) order methods. In

he LAD scheme artificial diffusivity is applied only at locations
here the conformation tensor c experiences a loss of positive-
ess (i.e., DLAD = DGAD, when det(c) ≤ 0, otherwise it set to
ero). Both global and local artificial diffusivities have been
mplemented in the present study. The value of the numerical dif-
usivity is optimized so that it is large enough for the calculations
o ensure numerical stability and the results for the conforma-
ion tensor is physically meaningful while small enough so that it
oes not affect the computational results appreciably. As pointed
ut by earlier studies [10–13], the artificial numerical diffusivity

was taken to be of O(10−2) resulting in a numerical Schmidt

umber Sc+(=1/Reτ0D) of the order O(10−1).
As shown above, the flow and polymer stress fields can be

ully characterized by four dimensionless groups, namely, Reτ ,

t
E
i
f
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, L and Weτ . Since one of the primary objectives of this study is
o investigate how these parameters influence the extent of drag
eduction, in what follows, we briefly outline our rationale for
he selection of the simulation parameters.

Recent computations by Housiadas and Beris [13] have
hown that the extent of DR is relatively insensitive to Reτ

125 < Reτ < 590) and DR ≤ 30% in the LDR regime. However,
onsidering the fact that viscoelastic effects in inertial flows
re related to the elasticity number E = Weτ /Reτ

2, it is reason-
ble to expect that Reτ effects could be more pronounced at
igher Reτ and higher levels of drag reduction (i.e., the MDR
imit increases from 69% at Reτ = 125 to 80% for Reτ ≥ 600
4]). Hence, simulations have been performed in this study with
eτ = 125, 180 and 395. Although these Reynolds numbers are
till relatively small in comparison to most experimental studies
f polymer induced turbulent DR, earlier studies [11,12] have
hown that a sustainable fully turbulent flow can be obtained for
Newtonian fluid at Reτ = 125 (i.e., a mean Reynolds number
emean = Umh/ν0 = 1840, where Um is the mean flow). More-
ver, it should be noted that DR in dilute polymer solutions has
een experimentally observed at Remean as low as 8900 (i.e.,
eτ ∼ 500) [24].

The value of β is inversely related to the polymer concentra-
ion. Since most prior DNS studies of polymer induced turbulent
R have been performed at Remean < 8900, they have used lower
values than those in the experiments to amplify elastic effects.

n fact, β values as low as 0.4 have been used [7] in order to
each the HDR regime. However, such β values lead to signifi-
ant shear thinning of the viscosity, and special care should be
aken to define DR accurately. Hence, we have chosen β = 0.9
o perform our simulations as it has been shown that with this
alue one can capture elastic effects with negligible influence
f shear-thinning viscosity (i.e., in the order of few percent)
11–13].

One of the main proposed mechanisms for polymer induced
rag reduction is based on polymer molecules experiencing coil-
tretch transition, causing a dramatic increase in the elongational
iscosity of the solution, which in turn suppresses Reynolds
tress production. The extensional viscosity of a polymer solu-
ion is a function of the polymer relaxation time and the strength
f the flow as characterized by, Weτ , and the maximum exten-
ibility of the macromolecule, L. Specifically, for the FENE-P
odel the Trouton ratio (i.e., the ratio of the extensional to the

ero-shear rate polymer viscosity) increases from 3 at low exten-
ion rates (the Newtonian value) to 2L2 at high extensional rates
23]. Hence, we have performed an extensive parametric study
y varying L2 and Weτ to ascertain the influence of polymer
hain dynamics on the extent of DR and the flow field.

Eqs. (1)–(5) along with the no-slip boundary conditions for
he velocity on the channel walls are subsequently solved numer-
cally using a fully spectral code (i.e., Chebyshev polynomi-
ls in wall normal y-direction and Fourier series in periodic
-and z-directions). The numerical procedure (i.e., operator split-

ing/influence matrix algorithm) used for the time-integration of
qs. (1)–(5) with global artificial diffusivity (GAD) can be found

n [11–13]. In addition, this algorithm has been extended to allow
or the use of local artificial diffusivity (LAD). Specifically,
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hen using LAD, the conformation tensor is calculated without
rtificial diffusivity, however, if at any point in the computa-
ional domain det(c) is less than zero, the entire conformation
ensor (i.e., at all points) is recomputed in the Fourier space with
he addition of artificial diffusivity. In turn, when converting the
esults to the physical space only the points at which the viola-
ions have occurred (i.e., det(c) < 0) are updated. This procedure
s repeated until spatially converged values are obtained at each
ime step (i.e., a tolerance of 10−4 is used). It should be noted that
ince our approximating functions do not have compact support
his implementation is not strictly equivalent to the local arti-
cial diffusivity scheme used in the compact finite difference
ormulation of Dubief et al. [20].

The simulations reported in this study have been mostly per-
ormed on 16-nodes of a SGI Origin 2000 system. Typical
PU times for one eddy turnover time at Reτ = 395 (grids in
28 × 129 × 64, dt = 1 × 10−4) is approximately 10.

. Effect of the computational domain size, mesh
esolution and artificial diffusivity

It is a well known fact that in wall bounded turbulent flows
f dilute polymeric solutions the streamwise and spanwise
cales are larger than those for a typical Newtonian flow due
o the coarsening of near-wall structures [24–27]. It has also
een experimentally shown that the streamwise coherence could
e increased by an order of magnitude over the Newtonian
ength scale (i.e., l+ = lUτ /ν of O(1000)). Hence, the selection
f computational domain size and time averaging span plays
central role in determining the fidelity of DNS results for

olymeric systems. To date, a number of spectral DNS stud-
es [11–13] have shown that for Reτ = 125 a computational
omain size of 10h × 2h × 5h (1250 × 250 × 625 in wall units)
n x, y, z-directions respectively with a spatial discretization of
4 × 65 × 64 is adequate to capture the streamwise and spanwise
tructures for DR up to 30% (i.e., the LDR regime). Specially,
t has been shown that the two-point correlations in the stream-
ise and the spanwise directions reduce to essentially zero at
aximum separation (half of the domain size). In addition,

t has been demonstrated that temporal averaging over 10–15
ddy turnover times is sufficient to obtain good statistics in the
DR regime. To date, extensive studies of how domain size
nd temporal and spatial discretization influence the accuracy
f DNS results at high levels of DR (i.e., HDR and MDR) are
acking. Hence, we have performed a systematic study on the
ffect of computational domain size, spatial discretization and
ime averaging span on the flow field in the HDR and MDR
egimes.

Fig. 2 shows the effect of computational domain size in the
DR regime (Reτ = 125, Weτ = 100, L2 = 3600). In Fig. 2a, the

emporal evolution of the mean flow Reynolds number and the
ercentage of drag reduction (%DR) are presented. Note that
he same numerical resolution (i.e., 
x+, 
y+ and 
z+) is used

or all the cases reported. For example, the number of nodes
n the flow direction is increased from 64 to 384 as the com-
utational domain size along the flow direction is increased
rom 10h to 60h. These results clearly show that the compu-

o
N
a
i

luid Mech. 140 (2006) 23–40

ational domain size influences the predicted extent of DR in
he HDR regime. Specially, it is observed that domain sizes less
han 20h × 2h × 5h are insufficient for obtaining accurate pre-
iction of DR. In fact, in small domains such as 5h × 2h × 5h, a
igher level of DR (≈10%) is predicted than those in the longer
omains. This is attributed to the fact that the periodic bound-
ry conditions in the shorter domains do not allow all the larger
cales to be captured.

A more rigorous test of determining the adequacy of the
omain size is provided by the two-point streamwise correla-
ions Ruu in the buffer layer where the elastic effects are most
rominent (see Fig. 2b). As evinced by Fig. 2b, the coefficients
f Ruu have large value in the two small domains, which indicates
hat some of the largest turbulence scales have not been fully cap-
ured. Specifically, in the smallest domain 5h × 2h × 5h, Ruu is
arger than 0.95 at the maximum separation, showing that most of
he streamwise turbulence scales are longer than the domain size.

ith the increase in the computational domain length, larger
urbulence scales are progressively captured and the velocity
ecomes less correlated. In the three longest domains Ruu drops
uch faster than those in the small domains. In addition, the final

orrelation values are acceptable (i.e., in the longest domain the
orrelation drops to zero at the maximum separation). This anal-
sis clearly suggests that very long streamwise structures exist
n the flow in the HDR regime. Hence, to adequately capture
ynamical events and obtain an accurate measure of the energy
t the longest wavelength, large simulation boxes with length of
pproximately 100h are required. However, to obtain reasonable
tatistics for many quantities of interest such as %DR, velocity
nd vorticity fluctuations and polymer stretch, a relatively mod-
st box size of the order 20h is sufficient. Specifically, the %DR
btained from DNS using a 20h box (Lx

+ = 2500) only differs
y 4% from that from the 80h box (Lx

+ = 10,000).
The effect of the computational domain size in the MDR

egime (Reτ = 125, Weτ = 100, L2 = 14,400) is shown in Fig. 3.
nce again, it can be seen that at MDR much longer computa-

ional domains are required than in the LDR regime. Specifically,
t is observed that in the domain 20h × 2h × 5h the flow is
ntirely laminarized. However, turbulence can be sustained in
he longer domains of 40h × 2h × 5h and 60h × 2h × 5h with
rag reduction level of 74 ± 2%. The two-point streamwise cor-
elations Ruu in the MDR regime are shown in Fig. 3b. This figure
emonstrates that to adequately capture dynamical events elon-
ated box sizes of order 120h are required. However, reasonable
tatistics for %DR and rms velocities can be obtained with box
ize of order 40h (Lx

+ = 5000). Specifically, the %DR in a 40h
ox is within 2% of those obtained by using longer box sizes
80 and 120h).

The streamwise vorticity fluctuation correlation Rωxωx in the
uffer layer is also shown in Fig. 3b, demonstrating the rapid
ecay of the two-point correlation of this quantity. For compari-
on, the correlations corresponding to the Newtonian flow in the
uffer layer have also been plotted. It can be seen that the loss

f spatial correlation is much slower at MDR than that in the
ewtonian flows. Specifically, the zero-correlation separations

re much farther apart than in Newtonian flows. This clearly
llustrates that the larger turbulence scales become even larger
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ig. 2. The influence of domain size on computed results in the HDR regime. (a
orrelations (i.e., Ruu) in the buffer layer.

ith increasing DR, especially in the MDR regime where the
treamwise structures are much more elongated than in Newto-
ian flows. Note that Rωxωx always drop faster than Ruu, and the
ero-correlation separations for Rωxωx are much smaller than
hat in Ruu. This clearly shows that the streamwise vortex length
cales are smaller than the velocity streak lengths. This is con-
istent with the fact that Rvv and Rww are always less correlated
han Ruu (i.e., the streamwise vorticity fluctuation is mainly due
o the velocity fluctuation in v- and w-components).

Fig. 3c shows the one-dimensional power spectrum den-

ity (PSD) associated with the streamwise velocity fluctuations
n two computational domains with Lx

+ = 5000 and 15,000 at
DR. A spectral gap in the PSD profile can be observed in the

omain with Lx
+ = 5000, while the energy is transferred from

w
w
d
h

ig. 3. The influence of domain size on computed results in the MDR regime. (a) T
wo-point correlations (i.e., Ruu and Rωxωx ) in the buffer layer; (c) the one-dimens
treamwise velocity fluctuations in the buffer layer; (d) spanwise two-point correlatio
e evolution of the mean Reynolds number and %DR; (b) streamwise two-point

ow wavenumber (large wavelength) to high wavenumber (small
avelength) smoothly in the longer domain with Lx

+ = 15,000
hat is capable of capturing dynamic events. This clearly shows
hat in order to capture the energy associated with large wave-
ength structures as well as the energy cascade large domain
engths are required.

Fig. 3d shows typical two-point correlations of streamwise
elocity Ruu in the spanwise direction in the MDR regime. It
an be seen that the spanwise domain width is sufficiently large
s the spanwise two-point correlations all have several extrema

ithin the half domain width (∼310 wall units). Hence, 5h (625
all units) is sufficient to capture the structures in the spanwise
irection for all DRs. Therefore, in all of our simulations we
ave utilized Lz

+ = 625 as our domain width.

ime evolution of the mean flow Reynolds number and %DR; (b) streamwise
ional power spectrum density (PSD) vs. the streamwise wavenumber for the
ns (i.e., Ruu) at several wall normal distance in the MDR regime.
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Fig. 4. Representative snapshots of velocity streaks in the

Usually the average streak spacing can be evaluated as
wice the distance from the origin of the first minima in the
panwise two-point correlation. It can be seen that at MDR the
verage streak spacing is an increasing function of distance
rom the wall (y+) (see Fig. 3c). Specifically, it can be seen
hat in the region (y+ ≤ 100), the streak spacing is significantly
nhanced in comparison to that in Newtonian flows which is
pproximately 100 wall units. However, it is difficult to predict
n average value for the streak spacing, since it changes greatly
ith the distance from the wall. For example, it can be seen that

t y+ = 4, 15 and 51 the first minima are approximately located at
z+ = 75 and 85 respectively, while at y+ = 101, 
z+ = 110. This

mplies that the averaging streak spacing is approximately 150,
70 and 220 at y+ ≈ 15, 51 and 101, respectively. These rapid
hanges in the streak spacing as a function of y+ at MDR is a
onsequence of significant enlargement of the buffer layer. This
s not the case at LDR, hence the degree of drag reduction can be
ell correlated to the increased streak spacing in the buffer layer

22,24].
Instantaneous streaky structures are shown in Fig. 4, demon-

trating the increased streak spacing as DR is increased. In
ighly drag reduced flows (i.e., HDR and MDR regimes) highly
rganized low-speed streaks are observed. Existence of these
tructures necessities the use of very long domains to capture
hem, i.e., Lx

+ ≥ 10,000 in the HDR regime and Lx
+ ≥ 15,000 in

he MDR regime as reported above.
We have also examined the influence of spatial discretization

nd artificial diffusivity on important flow quantities, such as
DR, rms velocities and polymer stretch (see Fig. 5). Our results

learly show that 
x+ ≈ 40, 
z+ ≈ 10 and (
y+)min ≈ 0.1 are
ufficient for obtaining good statistics for these quantities. How-
ver, in the HDR/MDR regime to accurately capture the gradient
f polymer stretch near the wall, (
y+)min ≤ 0.06 is required.
oreover, small levels of artificial diffusivity used in the simu-
ations do not significantly influence the above quantities.
As mentioned earlier, simulations have been performed

ith both LAD and GAD schemes. The comparison of time
volution of drag reduction in LDR and HDR regimes is shown

t
c
r
o

plane at y+ ∼ 15 in (a) LDR; (b) HDR; (c) MDR regimes.

n Fig. 6. The computed average %DR is almost independent of
he scheme utilized at HDR where updates (i.e., addition of dif-
usivity) are performed at approximately 1% of the nodes. The
ifference is slightly more pronounced at LDR (i.e., up to 4%)
here updates are performed at approximately 40% of the nodes.
verall, our studies indicate that similar statistics for %DR, rms
elocities and polymer stretch (see Fig. 6b and c) are obtained
ith the GAD and the LAD schemes, further underlining the
egligible influence of added diffusivity in the computed results.

Taking into consideration all of the above findings, most of
he results reported in the remainder of this paper are based
n the following domain size and spatial discretization. In
he LDR regime (0 < DR < 30%), the computational domain
izes (in wall units) in the streamwise and spanwise direc-
ion are Lx

+ × Lz
+ = 1250 × 625. In the HDR (30% < DR < 60%)

nd MDR regimes, Lx
+ × Lz

+ = 2500 × 625 and 5000 × 625 are
sed, respectively. The uniform mesh resolution is 
x+ ≈ 20 in
he LDR and HDR regimes, while 
x+ ≈ 40 is used at MDR;

z+ ≈ 10 and 
y+ ≈ 0.06 near the wall (the Chebyshev node
pacing is non-uniform in the y-direction, i.e., it is much more
efined in the near wall region) are required. Simulation details
re summarized in Table 1.

. Results and discussion

.1. Turbulent Fluctuations at HDR and MDR

Typical snapshots of xz-plane averaged quantities of interest
uch as Remean, rms velocities, overall momentum balance and
race(c) in the LDR and MDR regimes are shown in Figs. 7 and 8.

comparison of various quantities at different times clearly
hows the high level of turbulent fluctuation with respect to the
ean value in the MDR regime. Specifically, the variations in

he xz-plane averaged data are relatively minor at LDR (i.e.,

ime averaging over 10–15 computational units (h/Uτ) is suffi-
ient to obtain good statistics). While, in the HDR and MDR
egimes significant variations are observed. Hence, averaging
ver 30–50h/Uτ is needed to obtain good statistics.
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ig. 5. Influence of spatial discretization and artificial diffusivity on importa
56 × 65 × 64, D = 0.03; (-·-·-) mesh 128 × 97 × 64, D = 0.02; (- - -) mesh 128 ×

.2. Turbulence statistics

.2.1. Mean velocity and percentage drag reduction
Since the simulations are performed with a constant pressure
radient, %DR is manifested via an increase in the flow rate (i.e.,
n increase in Remean). Recently, Housiadas and Beris [28] pro-
osed the following relationship between %DR and Remean for
ilute polymeric solutions with a shear rate dependent viscosity

l
L

ig. 6. Comparison of computed results utilizing the GAD and LAD schemes. (a) %
egime (Weτ = 100, FENE-P, L2 = 3600); (c) rms velocities; (d) trace(c). (—) GAD sc
w quantities at MDR. (a) %DR; (b) rms velocities; (c) trace(c). (—) mesh
× 64, D = 0.01.

i.e., the FENE-P model):

R = 1 − μ2(1−n)/n
w

(
Revisc

mean

ReNewt

)−2/n

(6)

mean Reτ0

where μw is the effective wall viscosity, and n = 1.1478. Uti-
izing this relationship we have computed %DR as a factor of
2, Weτ and Reτ (see Table 2). Our results indicate that, at a

DR in the LDR regime (Weτ = 25, FENE-P, L2 = 3600); (b) %DR in the HDR
heme; (-·-·-) LAD scheme.
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Fig. 7. Typical snapshots of xz-plane aver

able 1
imulation details

eτ Parameters Regime

LDR

25

Domain size (wall units) Lx: 5h, 10h, 20h (625, 1250,
2500); Ly: 2h (250); Lz: 5h
(625)

Nodes 64 × 65 × 64, 128 × 65 × 64


x+, 
y+, 
z+ ∼(10–20) × (0.15–6) × 10

t 5 × 10−4

Artificial diffusivity 0.03

80

Domain size (wall units) 6.944h × 2h × 3472h
(1250 × 360 × 625)

Nodes 64 × 97 × 64

x+, 
y+, 
z+ ∼20 × (0.10–6) × 10

t (2–5) × 10−4

Artificial diffusivity 0.02

95

Domain size (wall units) 2πh × 2h × 0.5πh
(2482 × 790 × 620)
2�h × 2h × �

(2482 × 790 × 1241)
Nodes 128 × 129 × 64,

128 × 129 × 128


x+, 
y+, 
z+ ∼20 × (0.12–10) × 10

t (2–5) × 10−4

Artificial diffusivity 0.01
aged quantities in the LDR regime.

HDR MDR

Lx: 10h, 20h, 40h, 60h, 80h
(1250, 2500,5000,7500,
10000); Ly: 2h (250); Lz: 5h
(625)

Lx: 20h, 40h, 60h, 80h, 120h
(2500, 5000, 7500, 10000,
15000) Ly: 2h (250); Lz: 5h
(625)

128 × 65 × 64, 256 × 65 × 64
384 × 65 × 64, 128 × 97 × 64

128 × 65 × 64,
256 × 65 × 64,
384 × 65 × 64,
128 × 97 × 64,
128 × 129 × 64

∼(10–40) × (0.07–6) × 10 ∼(10–40) × (0.04–6) × 10
(2–5) × 10−4 (1–2) × 10−4

0.02–0.03 0.01–0.03

13.888h × 2h × 3472h
(2500 × 360 × 625)

27.776h × 2h × 3472h
(5000 × 360 × 625)

64 × 97 × 64, 128 × 97 × 64 128 × 97 × 64
∼(20–40) × (0.10–6) × 10 ∼40 × (0.10–6) × 10
(1–2) × 10−4 (1–2) × 10−4

0.02 0.02

2πh × 2h × 0.5πh
(2482 × 790 × 620
4πh × 2h × 05πh
(4964 × 790 × 620)

4πh × 2h × 0.5πh
(4964 × 790 × 620)

128 × 129 × 64,
256 × 129 × 128

128 × 129 × 64,
256 × 129 × 64
128 × 193 × 64

∼(20–40) × (0.12–10) × 10 ∼(20–40) × (0.05–10) × 10
(1–2) × 10−4 (1–2) × 10−4

0.01–0.02 0.01–0.02
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Fig. 8. Typical snapshots of xz-plane

iven Reτ , as Weτ in enhanced for a given L, %DR reaches an
symptote. Moreover, as L is increased the extent of %DR is
nhanced. However, it should be noted that as proposed earlier
n the HDR and MDR regimes the computed %DR at given val-
es of L2 and Weτ shows a dependence on Reτ (i.e., at Weτ = 100
nd L2 = 14,400, %DR = 74 for Reτ = 125, while it is 71% for
eτ = 180, and 61% for Reτ = 395). These trends are consistent
ith the hypothesis that the extent of DR is proportional to the

xtensional thickening of the dilute polymeric solution.

In order to further illustrate this point, the average trace of

he polymer conformation tensor as a function of chain extensi-
ility L, Weτ and Reτ is depicted in Fig. 9. Clearly, as the chain

able 2
he percentage drag reduction (%DR) as a function of Reτ , Weτ and L

eτ L2 Weτ

25 50 100 200

25

14 – – 3.0 –
56 – – 8.0 –

225 – – 23.5 –
450 – – 31.5 –
900 18.5 31.0 37.0 –

1800 20.2 34.5 44.5 –
3600 21.5 43.0 56.5 –
7200 22.5 49.0 69.0 –

14400 24.0 51.5 74.0 –

80
900 19.0 30.5 38.5 –

3600 – – 54.0 –
14400 – – 71.0 –

95
900 18.5 30.5 37.0 –

3600 – 38.0 48.0 –
14400 – – 61.0 75.0

D
t

d
a
i
h
a
s
i
i
U
d
fl
i
s
i
e
o
t

m
I
o

aged quantities in the MDR regime.

ength is enhanced, trace(c) monotonically increases at a fixed
eτ and Weτ . However, the percent increase in the chain length is
ecreased (i.e.,trace(c)/L2 decreased). Further note that at high
eτ (i.e., 180 and 395) the region of high chain extension is

imited to the near wall region y/h < 0.2. However, at Reτ = 125
ignificant chain extension can be observed up to y/h ∼ 0.5 par-
icularly in the HDR and MDR regimes. This suggests that at
his Reτ the flow is wall dominated and perhaps this value of Reτ

s too low for a comprehensive investigation of polymer induced
R at HDR and MDR. This issue will be discussed further in

his section as well as in Sections 4.3 and 4.4.
Typical mean streamwise velocity profiles as a function of the

istance from the wall in logarithmic scale in the LDR, HDR
nd MDR regimes are shown in Fig. 10. For the sake of compar-
son the profiles for Newtonian flow at each Reynolds number
ave also been included. For the Newtonian cases, excellent
greement with the linear distribution U+ = y+ in the viscous
ublayer, and well as the logarithmic layer U+ = 2.5 ln(y+) + 5.5
s observed. In drag reduced flows, it can be seen that all profiles
n the viscous sublayer also collapse on the linear distribution

+ = y+. Further away from the wall the mean velocity of the
rag reduced flows increases as compared to that in Newtonian
ows. Specifically in the LDR regime, the logarithmic profile

s shifted upwards parallel to that of the Newtonian flow. The
ame behavior is found for the mean streamwise velocity profile
n the LDR regime in the channel flow experiments of Warholic
t al. [5] and in earlier DNS studies [11–14]. The upward shift
f the logarithmic profile can be interpreted as a thickening of
he buffer layer [2,3].
In the HDR regime, the slope of the mean velocity is aug-
ented. In addition, the slope increase is a function of %DR.

n fact, at Reτ = 180 and 395 the Virk maximum asymptote is
bserved at 71% and 75%, respectively. Present simulations at
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Fig. 9. Trace of the conformation tensor as a function of wall normal distance at Weτ = 100.

Fig. 10. Mean streamwise velocity profiles as a function of distance from the wall. (a) Reτ = 125; (b) Reτ = 180; (c) Reτ = 395.
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ig. 11. The rms velocity fluctuations as a function of the distance from the
eτ = 395.

eτ = 125 indicates that for L2 = 14,400 and with the Oldyold-
model, the mean velocity profile in the center exceeds the

redicted maximum value by Virk asymptote. This effect was
lso noted in the experimental study by Ptasinski et al. [6]. As
entioned earlier, at Reτ = 125 the flow is wall dominated at
DR and MDR. Hence, the computed results are not expected

o exactly follow Virk’s data [4,8] collected at much higher Reτ

here the flow is not wall dominated.

.2.2. Velocity fluctuations
The rms of three velocity component fluctuations for drag

educed flows along with Newtonian data are shown in Fig. 11.
t is well known [5,22,24,25] that in the LDR regime the stream-
ise velocity fluctuations urms monotonically increase, while

he wall normal and spanwise components vrms and wrms mono-
onically decrease as DR is enhanced. Specifically, in the LDR
egime the peak value of urms is increased to 3.5, while vrms and

rms decrease to almost half of their Newtonian magnitude. Fur-

her note that the peak locations of the urms shift away from the
all as %DR increases. This is consistent with the shift of the

ogarithmic region in the mean velocity profile. With increasing
evel of drag reduction (i.e., HDR/MDR regime), it can be seen

fl
f
m
l

(a) Reτ = 180 (%DR from 0%, 19%, 39%, 54%, to 71%); (b) Reτ = 125; (c)

hat urms remains in the range of 3.5–4.0, while vrms and wrms
ecrease significantly. Although in the HDR/MDR regime the
aximum value of urms does not changes significantly, it can be

bserved that the distribution becomes much broader near the
eak position and the peak location is shifted further toward the
enter of the channel. Present prediction of the maximum value
n urms in the HDR/MDR regime is in agreement with recent
xperimental observations of Ptasinski et al. [6].

.2.3. Vorticity fluctuations
Fig. 12 shows typical vorticity fluctuations at various lev-

ls of drag reduction at Reτ = 180. The dimensionless (i.e., with
espect to U2

τ /ν) rms streamwise, wall-normal, spanwise vortic-
ty fluctuations are shown in Fig. 12a–c, respectively. It can be
een that the intensity of the streamwise vorticity fluctuations
onotonically decreases with increasing drag reduction up to
DR. It can also be clearly seen that the streamwise vortic-

ty fluctuations for both the Newtonian and the drag reduced

ow in the LDR regime show a characteristic local minimum
ollowed by a local maximum. The locations of these mini-
um and maximum correspond to the average edge and center

ocations of the streamwise vortices (eddies) in the near wall
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ig. 12. The vorticity fluctuations as a function of the distance from the wall

z
+

,rms; (d) 1/ωx
+

,rms.

egion, respectively. The interval between these two locations is
oughly proportional to the average size of streamwise vortices.
s shown in Fig. 12a, the introduction of the polymer not only

educes the intensity of the fluctuations but also shifts the loca-
ions of both the minimum and the maximum towards the center
f the channel. This implies a reduction in the intensity of the
all eddies and an increase in their average size (see Section
.3 for details). It is widely accepted that a direct relationship
etween the streaky structures and the near wall streamwise vor-
ices exists [22,24–26]. The mean streak spacing in Newtonian
ows is approximately 100, however, an increase in the average
treak spacing is observed in the LDR regime. Specifically, it has
een shown that the streak spacing increase (in wall units) can
e described as 0.19 × %DR in this regime [11,24]. As shown
n Section 3, the streak spacing is a strong function of y+ in the
DR and MDR regimes, hence, one cannot unambiguosly relate
DR to the average streak spacing.
In the HDR/MDR regime, the profiles of rms streamwise

orticity fluctuations are much flatter across the channel, and
he locations of the minimum and maximum are not as obvious
s in the LDR regime. Despite this fact, one can observe that the
ocations of the maximum are close to the center region of the
hannel, which indicates that the outer scales become important
t large degrees of drag reduction. This is consistent with the
heory of Screenivasan and White [29] at MDR who found that

he length scales are of the order of the pipe radius. Hence, at
igh levels of drag reduction, the increase in the average streak
pacing does not necessarily obey the linear correlation observed
n the LDR regime.

t
i
t
D

180, %DR from 0%, 19%, 39%, 54%, to 71%). (a) ωx
+

,rms; (b) ωy
+

,rms; (c)

The intensity of wall-normal vorticity fluctuations monotoni-
ally decreases with increasing drag reduction in the wall region,
nd the peak position is shifted to the center (see Fig. 12b). Fur-
her, as depicted in Fig. 12c, the intensity of spanwise vorticity
uctuations decreases with increasing DR in the near-wall region
p to y+ ∼ 30, and subsequently increases in the outer region.
his change is related to the enhancement of rms streamwise
elocity fluctuations and decrease in wall-normal velocity fluc-
uations in the drag reduced flows.

Streamwise vortices play an important role in mediating the
ass/momentum transfer between the near wall region and tur-

ulent core by ejecting low-speed fluid from the near wall region
o the core (ejection/upwash) as well as by bringing high speed
uid from the core towards the wall (sweep/downwash). Hence,

t is of interest to examine the reciprocals of the streamwise
orticity fluctuations as it is a measure of the time scale associ-
ted with the dimensionless vortex rotation speed in wall units.
f particular interest is the relationship of this time scale to

he polymer dimensionless time scale in wall units, i.e., Weτ .
s shown in Fig. 12d this time scale increases with increasing
rag reduction. It can also be seen that in the viscous sublayer
nd buffer layer for Newtonian flows, this time scale is in the
ange of 5–10 in wall units. If drag reduction is manifested when
hese time scales at small y+ become equivalent (i.e., the dimen-
ionless time scale for upwash and downwash become similar

o Weτ), then one would expect that the onset of DR occurs
n 5 ≤ Weτ < 10. Indeed, this is consistent with the findings for
he onset of drag reduction at Weτ = 6.25 (i.e., Deborah number,
e = Weτωx

+
,rms ∼ O(1)) [11,13].
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Fig. 13. Comparison of different vortex identification methods. (a) λ

This analysis clearly suggests that the near wall vortex time
cale plays a significant role in determining the onset of DR. In
act, we have observed that this time scale plays a significant
ole in all regimes of DR. Specifically, at MDR (%DR = 71 at
eτ = 180, Weτ = 100 and L2 = 14,400 as shown in Fig. 12d) the
rst peak of this time scale is about 75, which is comparable to
eτ = 100 required to achieve this MDR. We have also observed

hat for large L2 (i.e., L2 ≥ 3600) over a broad range of %DR, Weτ

ωx
+

,rms)peak ∼ O(1) in the near wall region. This suggests that
s elastic forces are enhanced they lead to stabilization of near
all axial vortices resulting in much longer and slower rotating
ortices. Furthermore, these findings underline the fact that there
s an intricate balance between elastic forces and average rotation
peed of the near-wall axial vortices that determines upwash and
ownwash events and Reynolds stress production. It should be
oted that our findings regarding the relationship between Weτ

nd (ωx
+

,rms)peak in the near wall region for the DR onset and
n the LDR regime for large L2 are consistent with earlier DNS
esults [19] with the Oldroyd-B model.

.3. Vortex identification and structure of turbulence

As mentioned above as DR is enhanced the intensity of near
all eddies is reduced and their average size in increased. In

his section we provide direct evidence of this phenomenon via
ortex visualization. A number of techniques for the identifi-
ation of vortices have been proposed. In the present study we

ave applied the algorithm of Zhou et al. [30] using the isosur-
aces of λci, the imaginary part of the eigenvalue of the velocity
radient tensor �u to visualize vortices. The isosurfaces of λ2

ci
re plotted at an appropriate threshold. Note that within a few

a
o
s
v

terion [30], present study; (b) Q-criterion [31]; (c) λ2-criterion [32].

ercent of the maximum value, the vortical structures are not a
ery sensitive function of the selected threshold value. Hence, a
hreshold value of approximately 5% is used in the present study.
s pointed out by Zhou et al. [30], there are several advantages
f this vortex identification method. For example, it is frame
ndependent, hence the difficulty of choosing a proper frame of
eference is eliminated. In addition, this method automatically
liminates regions having vorticity but no local spiraling motion,
uch as shear layers, because the eigenvalues are complex only
n regions of locally circular or spiraling streamlines. The term
2
ci is analogous to enstrophy, and it is also dimensionally consis-

ent with other quantities used for vortex identification such as Q
Q = 1/2 (||�||2 − ||S||2), where � and S are the antisymmetric
nd symmetric parts of �u [31]) and λ2 (the second eigenvalue
f the symmetry tensor S2 + �2 [32]). The vortical structures
btained at MDR by these methods are shown in Fig. 13. It can
e seen that these methods yield qualitatively identical and quan-
itatively similar results, provided a suitable threshold value is
sed. In the following we have used the λ2

ci-criterion for vortex
isualization.

Fig. 14 illustrates the dramatic modification of coherent vorti-
al structures as drag reduction is achieved. It can be seen that the
umber of vortices is rapidly decreased with increasing %DR.
his reduction is particularly significant at MDR. It can also
e seen that with increasing %DR the number of axial vortices
s significantly reduced, while the number of horseshoe-type
ortices is increased (i.e., at MDR the horseshoe-type vortices

re predominant). The weakening of the vortices has also been
bserved in the experiments (i.e., an increase of streak dimen-
ions). At Reτ = 125 it can be seen that there are almost no axial
ortices and the number of the horseshoe-type vortices are fewer
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Fig. 14. Vortex structure at various %DR

n comparison to higher Reτ (i.e., 180 and 395). This provides
nother indication that the flow at Reτ = 125 in the HDR and
DR regimes is wall dominated.
The observed reduction in the intensity of the wall eddies

rovides evidence for the proposed mechanism of drag reduc-
ion based on the inhibition of the near wall eddies that facilitate
ignificant amounts of the turbulence production. Mean flow ori-
nted eddies are known to be responsible for ‘ejecting’ slowly
oving fluid from the near wall region, resulting in the genera-

ion of low-speed streaks, a mechanism which eventually leads
o the production of Reynolds stress [33,34]. Combining these
bservations with the decrease in ωx

+
,rms described earlier leads
o the conclusion that the presence of macromolecules leads to
nhibition of near wall vortices as well as a significant reduc-
ion in the rotation speed of vortices leading to a reduction in
eynolds stress production (i.e., DR).

−

w
s

Reτ = 125; (b) Reτ = 180; (c) Reτ = 395.

.4. Overall momentum balance

In a statistically stationary fully developed state, the total
hear stress should follow a straight line. Specifically, the total
hear stress is the sum of three contributions, namely, the
eynolds stress, the viscous stress of the solvent and the poly-
er stress. Since the simulations are performed with a constant

ressure gradient, the total shear stress has the value τw at the
alls and it is zero at the center of the channel. Normalized by
all stress τw(= ρU2

τ ) the time averaged shear stress balance
quation is given by [6,7,11]:

dU y

uv + β

d(y/h)
+ (1 − β)τ̄xy = 1 −

h
(7)

here −uv, τs = β dU
d(y/h) and τp = (1 − β)τ̄xy are the Reynolds

hear stress, the viscous stress of the solvent and the polymer
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Fig. 15. Overall momentum balance. (a) Reτ = 125; (b) Reτ

tress, respectively. τp is sometimes referred to as the Reynolds
tress deficit due to the fact that the Reynolds shear stress and the
olvent viscous shear stress do not add up to yield the expected
inear distribution seen in Newtonian flows.

Various contributions to the overall shear stress balance as
function of the distance from the wall are shown in Fig. 15.

n all cases the total shear stresses depict the expected linear
rofiles over the channel height, indicating that a stationary
ully developed state has been reached. In the LDR regime,
he polymer stresses increase monotonically with increasing
rag reduction, while the Reynolds stresses decrease slowly.
he polymer stress contributions are relatively small, and they
ccur mainly in the near wall region (i.e., the peak locations
f polymer stress are in the buffer layer). However, as %DR in
ncreased (i.e., HDR regime), the Reynolds stress is significantly
educed, and the polymer stress is comparable to the Reynolds
tress. The increase in the polymer stresses and the decrease in
he Reynolds stress are much less pounced as one moves from
he HDR to the MDR regime. Specifically, at MDR the Reynolds

tress is significantly reduced as compared to the LDR regime,
ut it remains non-zero. These observations are consistent with
xperimental results by Ptasinski et al. [6,7]. Moreover, at MDR
he polymer stress on average has the same magnitude as the

c
H

; (c) Reτ = 180 (%DR from 0%, 19%, 39%, 54%, to 71%).

eynolds stress, in fact the polymer shear stress is larger than
he Reynolds shear stress in the near wall region. It can also be
een that at MDR and β = 0.9 the polymer stress contributions
re about 10% of the total stress. Further note that the peak loca-
ion of the Reynolds stresses shifts toward the channel center
ith enhanced drag reduction. At Reτ = 125 the solvent stress is

ignificant over the entire channel height as opposed to higher
eτ where it is limited to the near wall region. This is another

ndication that the flow is wall dominated at Reτ = 125 in the
DR and MDR regimes.

.5. Polymer body force

A more rigorous approach for detecting the Reynolds stress
eficit is to directly calculate the polymer stress. As shown in
he RHS of momentum balance Eq. (2), the extra term added to
he Navier–Stokes equation is the polymer body force [14,20]:

i = 1 − β
∂jτij (8)
Reτ

The body force term is clearly non-local and time varying and
onsequently, its local manifestation in the flow is quite complex.
ence, we are more interested in the polymer work Ei = uifi
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Fig. 16. The correlation between polymer body force and velocity fluctuations. (a) Reτ = 125; (b) Reτ = 180; (c) Reτ = 395.(—) ρx; (- - -) ρy; (-·-·-) ρz.

Fig. 17. The influence of polymer chain extensibility and Weissenberg number on the level of drag reduction. (a) Reτ = 125; (b) Reτ = 180; (c) Reτ = 395. (�) Weτ = 25;
(�) Weτ = 50; (©) Weτ = 100; (*) Weτ = 200. Dash lines represent Eq. (10).
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i.e., product of the velocity and polymer body force), because
ia the polymer work, the influence of polymer dynamics on
he flow can be evaluated as it directly influences the budget of
he turbulent kinetic energy. Specifically, if Ei < 0 the energy
arried by velocity fluctuations ui could be dampened, otherwise
t will be enhanced. Usually, the polymer work Ei is expressed
n the correlation coefficient normalized by rms quantities:

i = uifi

ui, rmsfi, rms
= Ei

ui, rmsfi, rms
(9)

herefore if the correlation ρi is positive (negative), the body
orce fi has the tendency to increase (decrease) the fluctuation
i, which is equivalent to positive (negative) work.

Fig. 16 shows the correlation between velocity fluctuations
nd polymer body force across the channel in all LDR, HDR
nd MDR regimes at various Reynolds numbers. Our results
ndicate that up to y+ ∼ 20–30, the polymer body force fx and
treamwise velocity fluctuation u are positively correlated, i.e.
he viscoelastic force performs positive work on the u fluctuating
elocity field, increasing u velocity fluctuations (i.e., enhanced
rms as observed earlier). The correlations ρy and ρz are negative
r very small close to zero across the channel. This explains
he reduction of vrms and wrms. That is the polymers dampen
ortices via negative Ey and Ez. In general it can be observed
hat over a range of y+ the correlations between polymer body
orce and velocity are negative. This supports the scenario where
he polymer chains are extracting energy via stretching from the
ow and hence reducing turbulent fluctuations. From Fig. 16, we
an also see that within the Reynolds number range considered,
he characteristics of ρi are the same, and with respect to the level
f drag reduction same trends for ρi exist. Hence, we believe that
hese results are applicable in different DR regimes.

.6. Drag reduction scaling

The percentage drag reduction (%DR) versus L, for Weτ = 25,
0 and 100 at Reτ = 125, 180, 395 is shown in Fig. 17. It can
e seen that the %DR as a function of L and Weτ at various Reτ

as a selfsimilar behavior. Moreover, the level of drag reduction
ends to an asymptote at large L at fixed Weτ . Similarly, as L is
xed the %DR approaches an asymptote as Weτ in enhanced.
his suggests that the influence of Weτ and L on %DR could be
ecoupled. Considering the fact that %DR reaches an asymptote
s Weτ and L are enhanced, we have developed the following
xpressing for %DR as a function of Weτ , L and Reτ

DR = 80
[
1 − e−α(Weτ−Weτ,c)(Reτ/Reτ,r)−0.225

]
[1 − e−γL]

(10)

here α = 0.025, γ = 0.0275. Weτ,c (=6.25) is the onset Weis-
enberg number. Reτ,r is the reference Reynolds number, and
t is set to Reτ,r = 125. The prefactor of 80 is used because
t high Weτ and large L, the %DR at MDR asymptotes to

0% at high Reynolds numbers [4,8]. Eq. (10) explicitly shows
hat effective drag reduction requires large polymer extensibil-
ty L and high Weτ number. Our simulations also indicate that
lmost the same level of drag reduction can be obtained with
luid Mech. 140 (2006) 23–40 39

ENE-P at L2 = 14,400 and the Oldroyd-B (L2 → ∞) models.
his clearly demonstrates that only at high Weissenberg num-
ers (Weτ ≥ 100) by enhancing the maximum chain extensibility
DR can be reached. A close examination of the figure clearly

ndicates that this scaling accurately describes the extent of DR
n the HDR and MDR regimes. However, in the LDR regime
eviations are observed. This suggests that perhaps in this regime
i.e., relatively small L values) the influence of L and Weτ cannot
e decoupled.

. Conclusions

Hi-Fidelity DNS of polymer induced drag reduction in tur-
ulent channel flows up to the MDR limit have been performed.
he polymeric stress is evaluated by the FENE-P and Oldroyd-B
odels. The influence of the friction Weissenberg number, chain

xtensibility and flow Reynolds number on the flow dynamics
as been examined. It is shown that to obtain significant levels of
rag reduction large polymer extensibility and high Weissenberg
umbers are required. The simulation results in turn have been
sed to develop a scaling that describes the interplay between
he rheological parameters (i.e., maximum chain extension and
elaxation time) and the extent of DR as a function of Reynolds
umber. In addition, turbulence statistics have been analyzed
nd correlations between the polymer body force and velocity
uctuations have been developed with particular emphasis on the
DR and MDR regimes. Specifically, the interactions between
olymer dynamics and flow modifications are elucidated. Our
esults indicate that in the near wall region, the polymer body
orce fx and streamwise velocity u are positively correlated, i.e.
he viscoelastic force performs positive work on the u velocity
eld, increasing u velocity fluctuations. While, The correlations
y and ρz are negative or very small close to zero across the chan-
el, indicating that the polymer chains are extracting energy via
tretching from the flow and hence reduce turbulent fluctuations
rms and wrms. It has been observed that at large L2 from the
nset of DR to the MDR regime, De = Weτ (ωx

+
,rms)peak ∼ O(1)

n the near wall region. This suggests that there is an intricate
alance between elastic forces and average rotation speed of
he near-wall axial vortices that is a measure of the average time
etween upwash and downwash events and Reynolds stress
roduction. Finally, a drag reduction scaling is deduced, as a
unction of Reτ , Weτ and L. Specifically, in the HDR and MDR
egimes the scaling accurately describes the extent of DR.
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