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Abstract

Direct numerical simulations (DNS) of polymer induced drag reduction in turbulent channel flows up to the maximum drag reduction (MDR)
limit have been performed using a fully spectral method in conjunction with kinetic theory based elastic dumbbell models for the description of
polymer chain dynamics. It is shown that to obtain significant levels of drag reduction large polymer chain extensibility and high Weissenberg
numbers are required. In addition, it is demonstrated that to capture flow dynamics in the high drag reduction (HDR) and MDR regimes, very
long computational domain lengths of the order of 10* wall units are required. The simulation results in turn have been used to develop a scaling
that describes the interplay between rheological parameters (i.e., maximum chain extension and relaxation time) and the extent of drag reduction
as a function of Reynolds number. In addition, turbulence statistics are analyzed and correlations between the polymer body force and velocity
fluctuations have been developed with particular emphasis on the HDR and MDR regimes. These observations have been used to decipher the

effect of polymer additives on the dynamics of the flow and drag reduction.
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1. Introduction

Turbulent flows of dilute polymeric solutions play a cen-
tral role in many engineering applications such as turbulent
drag reduction, fire fighting and agricultural spraying. It is well
known that the addition of small amounts of soluble high molec-
ular weight polymers to inertia-dominated, wall bounded flows
gives rise to a reduction of turbulent drag. Specifically, it has
been observed experimentally that polymer concentrations of
O(100) ppm are sufficient to reduce drag up to 70%. This phe-
nomenon has stimulated tremendous research effort in the past
50 years. Comprehensive reviews of the early literature in this
area are given in Hoyt [1], Lumley [2,3] and Virk [4].

Recent detailed experimental studies of polymer induced tur-
bulent drag reduction have identified two distinct regimes of
drag reduction (DR), which are referred to as low drag reduc-
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tion (LDR) and high drag reduction (HDR) regimes [5-7]. In
addition, the extent of drag reduction is bounded by a maximum
drag reduction (MDR) value which is a function of the Reynolds
number [8]. The LDR regime (0 < DR < 30-40%) has similar sta-
tistical characteristics as the Newtonian flow. Specifically, the
mean velocity profile remains parallel to that of Newtonian flow
with an upward shift of the log-region that is enhanced as DR is
increased. In addition, the streamwise velocity fluctuations are
enhanced, while the transverse ones are reduced with increasing
DR. However, the shapes of the root mean square (rms) pro-
file are similar to those in Newtonian flows. In the HDR regime
(40% < DR < 60%), the slope of the mean velocity profile is dra-
matically changed as the slope of the log-law is significantly
enhanced with increasing DR. In addition, the Reynolds shear
stress becomes relatively small [5-7]. At MDR the Reynolds
shear stress becomes extremely small and the slope of the log-
law region reaches a limit known as the Virk asymptote [9].

In the past decade the development of higher-order numerical
methods for viscoelastic turbulent flow simulation has made it
possible to investigate turbulent drag reduction in dilute polymer
solutions using kinetic theory based constitutive equations. To
date, direct numerical simulations have played an important role
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in understanding the interplay between polymer chain dynam-
ics, i.e., extensional viscosity, relaxation time and polymer
stress, and flow dynamics, i.e., turbulent fluctuations and coher-
ent structures [10-14]. Specifically, it has been shown that DR
is observed when the polymer chain extension in the near wall
region is significantly large. Moreover, it has been demonstrated
that the extent of DR is a strong function of fluid rheology (e.g.,
the relaxation time and the maximum chain extensibility).

Overall, it has been shown that continuum-level simulations
based on elastic dumbbell models can qualitatively predict DR
and the accompanying flow modification in the LDR regime
[11-17]. Specifically, the prediction of the mean velocity pro-
file, rms velocity fluctuations and the average spacing between
the streamwise streaks are in excellent qualitative agreement
with experimental findings. In addition, a few DNS studies
have demonstrated the enhancement of the slope in the log-law
region, the formation of highly correlated and elongated stream-
wise low-speed streaks and the rapid reduction in the Reynolds
stresses in the HDR regime as observed experimentally [7,18].
However, most of these predictions have been made with com-
putational domains that will be shown not to be sufficiently long
to accurately capture the dynamics of the flow in the HDR/MDR
regime (see Section 3).

Although many of the salient features of polymer induced
turbulent drag reduction have been captured by direct numerical
simulations (DNS), details regarding the precise interplay
between fluid rheology (i.e., maximum chain extensibility
and fluid relaxation time) and extent of DR as a function of
Reynolds number is still lacking. In addition, hi-fidelity direct
numerical simulations in the HDR and MDR regimes have
not been performed to date. Motivated by these facts, we have
performed extensive spectral DNS of turbulent channel flow of
dilute polymeric solutions up to the MDR asymptote in order to
investigate quantitatively the coupling between fluid rheology
and extent of DR.

The paper is organized as follows. In Section 2 the governing
equations and the numerical procedure are presented. In Section
3 we present the results of an extensive study to ascertain the
effect of the computational domain size, mesh resolution and
temporal averaging span in the HDR and MDR regimes. In
Section 4 the influence of solution rheology on the extent of
DR and flow statistics is presented. Conclusions are presented
in Section 5.

2. Governing equations, simulation technique and
parameter selection

For the channel Poiseuille flow considered in this study (see
Fig. 1), we chose the x-axis as the mean flow direction, i.e., the
direction of the constant, externally imposed, pressure gradi-
ent and the y- and the z-axes as the wall-normal and spanwise
directions respectively. We use the friction velocity, defined as
U, =(tw/p)2, as the velocity scale, where 7y, represents the
shear stress at the wall and p is the density of the polymer solu-
tion. In addition, % is the half-height of the channel and h/U;
are used as the length and time scales to non-dimensionalize the
equations for the conservation of mass and momentum of an

Fig. 1. Schematic of the flow geometry. L, and L; depict the computational
domain length and width.

incompressible viscoelastic fluid:
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In the above equations, v = (u, v, w), p and 7 denote the instan-
taneous values of the velocity, the excess pressure and the
viscoelastic contribution to the total stress, respectively. The
pressure is scaled by the wall shear stress ty,. The last term
in Eq. (2) represents the constant, mean pressure drop per unit
length across the channel. The zero shear rate friction Reynolds
number, Re.q, is defined as Re,y = hU; /vy, where vg is the
zero shear rate kinematic viscosity of the solution. The param-
eter B is the ratio of the solvent (i) to the total solution zero
shear-rate viscosity (o), which is also a measure of polymer
concentration. Finally, note that the viscoelastic stress tensor, T
is made dimensionless using pupoU;/ h, where ppo = o — s is
the polymer contribution to the total zero-shear rate viscosity of
solution.

Egs. (1) and (2) are supplemented by a closed form con-
stitutive equation for the viscoelastic stress contribution. The
primary closed form constitutive equation used is the FENE-P
(finitely extensible nonlinear elastic-Peterlin) dumbbell model.
In this model, a polymer chain is represented by a dumbbell con-
sisting of two beads representing the hydrodynamic resistance
connected by a finitely extensible entropic spring. In addition to
a polymer viscosity 1, and a relaxation time A, this model also
possesses an additional characteristic parameter L which is the
maximum extensibility of the polymer chain. The choice of the
FENE-P model has been motivated by the fact that it can predict
the rheological properties of dilute solutions of high molecular
weight polymers such as aqueous solution of polyethylene gly-
col (PEG) used extensively in experimental studies of polymer-
induced turbulent DR with reasonable accuracy. Moreover, prior
DNS studies using this model have been able to qualitatively
describe the DR phenomenon and the accompanying flow mod-
ifications [11-15].

The viscoelastic stress t is related to the departure of the con-
formation tensor ¢, characterizing the average second moment
of the polymer chain end-to-end distance vector, from its equi-
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librium unit isotropic tensor state, as

fe—1 We, = MUe _ AUZ vo  Wer
Wep, o a

h vo U:h N Req

= (3)
where We, = XUTZ /vo is the friction Weissenberg number, a
dimensionless relaxation time defined as the product of the poly-
mer relaxation time and a characteristic shear rate based on the
friction velocity. The function f(r), known as the Peterlin func-
tion, is defined as

2

fn=- “

2 — trace(c)

As evident from Eq. (4), trace(g)sz, since as trace(c)

approaches L?, the force required for further extension
approaches infinity. Note that ¢ and L? are made dimensionless
with respect to kT/H", where k, T and H” denote the Boltzmann
constant, the absolute temperature and the Hookean dumbbell
spring constant, respectively.

Moreover, an Oldroyd-B model has also been used to describe
the solution rheology. In the limit of L — oo, the Oldroyd-B
model is obtained from the above FENE-P model with the Peter-
lin function simplified as,

fn=1 (4a)

The viscoelastic tensor is obtained by solving an evolution equa-
tion for the conformation tensor c,

—+v-Ve—[c-Vo+ (Vo) -] - DVie = — ®)

As shown by Sureshkumar and Beris [10] and later by other
investigations [14,19,20] to perform stable numerical integra-
tion of the evolution equation for the conformation tensor in
turbulent channel flows, it is necessary to introduce a numerical
diffusivity term DV?c. In this expression D is a dimension-
less number (equivalf;nt to the inverse of a Schmidt number)
defined as D =«/hU,, where k denotes a constant isotropic arti-
ficial numerical diffusivity. In spectral methods a global artificial
diffusivity (GAD) is commonly used to ensure numerical sta-
bility. However, recently local artificial diffusivity (LAD) has
been applied in compact finite difference algorithms [19,20] to
minimize the effect of the added artificial stress diffusion on the
DNS results in lower (compared to spectral) order methods. In
the LAD scheme artificial diffusivity is applied only at locations
where the conformation tensor ¢ experiences a loss of positive-
ness (i.e., Dyap =DgaD, Whenidet(g) < 0, otherwise it set to
zero). Both global and local artificial diffusivities have been
implemented in the present study. The value of the numerical dif-
fusivity is optimized so that it is large enough for the calculations
to ensure numerical stability and the results for the conforma-
tion tensor is physically meaningful while small enough so that it
does not affect the computational results appreciably. As pointed
out by earlier studies [10—13], the artificial numerical diffusivity
D was taken to be of O(10~2) resulting in a numerical Schmidt
number Sc*(=1/RezoD) of the order O(10~1).

As shown above, the flow and polymer stress fields can be
fully characterized by four dimensionless groups, namely, Re;,

B, L and We. Since one of the primary objectives of this study is
to investigate how these parameters influence the extent of drag
reduction, in what follows, we briefly outline our rationale for
the selection of the simulation parameters.

Recent computations by Housiadas and Beris [13] have
shown that the extent of DR is relatively insensitive to Re;
(125 <Re; <590) and DR <30% in the LDR regime. However,
considering the fact that viscoelastic effects in inertial flows
are related to the elasticity number E = Wer/Rerz, it is reason-
able to expect that Re; effects could be more pronounced at
higher Re; and higher levels of drag reduction (i.e., the MDR
limit increases from 69% at Re; =125 to 80% for Re; > 600
[4]). Hence, simulations have been performed in this study with
Re; =125, 180 and 395. Although these Reynolds numbers are
still relatively small in comparison to most experimental studies
of polymer induced turbulent DR, earlier studies [11,12] have
shown that a sustainable fully turbulent flow can be obtained for
a Newtonian fluid at Re; =125 (i.e., a mean Reynolds number
Remean = Umh/vg = 1840, where Uy, is the mean flow). More-
over, it should be noted that DR in dilute polymer solutions has
been experimentally observed at Remean as low as 8900 (i.e.,
Re; ~500) [24].

The value of 8 is inversely related to the polymer concentra-
tion. Since most prior DNS studies of polymer induced turbulent
DR have been performed at Remean < 8900, they have used lower
B values than those in the experiments to amplify elastic effects.
In fact, B values as low as 0.4 have been used [7] in order to
reach the HDR regime. However, such g values lead to signifi-
cant shear thinning of the viscosity, and special care should be
taken to define DR accurately. Hence, we have chosen =0.9
to perform our simulations as it has been shown that with this
value one can capture elastic effects with negligible influence
of shear-thinning viscosity (i.e., in the order of few percent)
[11-13].

One of the main proposed mechanisms for polymer induced
drag reduction is based on polymer molecules experiencing coil-
stretch transition, causing a dramatic increase in the elongational
viscosity of the solution, which in turn suppresses Reynolds
stress production. The extensional viscosity of a polymer solu-
tion is a function of the polymer relaxation time and the strength
of the flow as characterized by, We;, and the maximum exten-
sibility of the macromolecule, L. Specifically, for the FENE-P
model the Trouton ratio (i.e., the ratio of the extensional to the
zero-shear rate polymer viscosity) increases from 3 at low exten-
sion rates (the Newtonian value) to 2L? at high extensional rates
[23]. Hence, we have performed an extensive parametric study
by varying L? and We, to ascertain the influence of polymer
chain dynamics on the extent of DR and the flow field.

Egs. (1)—(5) along with the no-slip boundary conditions for
the velocity on the channel walls are subsequently solved numer-
ically using a fully spectral code (i.e., Chebyshev polynomi-
als in wall normal y-direction and Fourier series in periodic
x-and z-directions). The numerical procedure (i.e., operator split-
ting/influence matrix algorithm) used for the time-integration of
Eqgs. (1)—(5) with global artificial diffusivity (GAD) can be found
in [11-13]. In addition, this algorithm has been extended to allow
for the use of local artificial diffusivity (LAD). Specifically,
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when using LAD, the conformation tensor is calculated without
artificial diffusivity, however, if at any point in the computa-
tional domain det(c) is less than zero, the entire conformation
tensor (i.e., at all points) is recomputed in the Fourier space with
the addition of artificial diffusivity. In turn, when converting the
results to the physical space only the points at which the viola-
tions have occurred (i.e., det(c) < 0) are updated. This procedure
is repeated until spatially converged values are obtained at each
time step (i.e., a tolerance of 10~*is used). It should be noted that
since our approximating functions do not have compact support
this implementation is not strictly equivalent to the local arti-
ficial diffusivity scheme used in the compact finite difference
formulation of Dubief et al. [20].

The simulations reported in this study have been mostly per-
formed on 16-nodes of a SGI Origin 2000 system. Typical
CPU times for one eddy turnover time at Re; =395 (grids in
128 x 129 x 64, dr=1 x 10™%) is approximately 10.

3. Effect of the computational domain size, mesh
resolution and artificial diffusivity

It is a well known fact that in wall bounded turbulent flows
of dilute polymeric solutions the streamwise and spanwise
scales are larger than those for a typical Newtonian flow due
to the coarsening of near-wall structures [24-27]. It has also
been experimentally shown that the streamwise coherence could
be increased by an order of magnitude over the Newtonian
length scale (i.e., I =IU./v of O(1000)). Hence, the selection
of computational domain size and time averaging span plays
a central role in determining the fidelity of DNS results for
polymeric systems. To date, a number of spectral DNS stud-
ies [11-13] have shown that for Re; =125 a computational
domain size of 10h x 2k x 5h (1250 x 250 x 625 in wall units)
in x, y, z-directions respectively with a spatial discretization of
64 x 65 x 64 is adequate to capture the streamwise and spanwise
structures for DR up to 30% (i.e., the LDR regime). Specially,
it has been shown that the two-point correlations in the stream-
wise and the spanwise directions reduce to essentially zero at
maximum separation (half of the domain size). In addition,
it has been demonstrated that temporal averaging over 10-15
eddy turnover times is sufficient to obtain good statistics in the
LDR regime. To date, extensive studies of how domain size
and temporal and spatial discretization influence the accuracy
of DNS results at high levels of DR (i.e., HDR and MDR) are
lacking. Hence, we have performed a systematic study on the
effect of computational domain size, spatial discretization and
time averaging span on the flow field in the HDR and MDR
regimes.

Fig. 2 shows the effect of computational domain size in the
HDR regime (Re, = 125, We, = 100, L> =3600). In Fig. 2a, the
temporal evolution of the mean flow Reynolds number and the
percentage of drag reduction (%DR) are presented. Note that
the same numerical resolution (i.e., Ax*, Ay" and Az") is used
for all the cases reported. For example, the number of nodes
in the flow direction is increased from 64 to 384 as the com-
putational domain size along the flow direction is increased
from 10k to 60h. These results clearly show that the compu-

tational domain size influences the predicted extent of DR in
the HDR regime. Specially, it is observed that domain sizes less
than 20i x 2h x 5h are insufficient for obtaining accurate pre-
diction of DR. In fact, in small domains such as 5h x 2h x 5h, a
higher level of DR (*=10%) is predicted than those in the longer
domains. This is attributed to the fact that the periodic bound-
ary conditions in the shorter domains do not allow all the larger
scales to be captured.

A more rigorous test of determining the adequacy of the
domain size is provided by the two-point streamwise correla-
tions Ry, in the buffer layer where the elastic effects are most
prominent (see Fig. 2b). As evinced by Fig. 2b, the coefficients
of Ry, have large value in the two small domains, which indicates
that some of the largest turbulence scales have not been fully cap-
tured. Specifically, in the smallest domain 54 x 2k x 5h, Ry, is
larger than 0.95 at the maximum separation, showing that most of
the streamwise turbulence scales are longer than the domain size.
With the increase in the computational domain length, larger
turbulence scales are progressively captured and the velocity
becomes less correlated. In the three longest domains R,,;, drops
much faster than those in the small domains. In addition, the final
correlation values are acceptable (i.e., in the longest domain the
correlation drops to zero at the maximum separation). This anal-
ysis clearly suggests that very long streamwise structures exist
in the flow in the HDR regime. Hence, to adequately capture
dynamical events and obtain an accurate measure of the energy
at the longest wavelength, large simulation boxes with length of
approximately 100% are required. However, to obtain reasonable
statistics for many quantities of interest such as %DR, velocity
and vorticity fluctuations and polymer stretch, a relatively mod-
est box size of the order 204 is sufficient. Specifically, the %DR
obtained from DNS using a 20% box (L, =2500) only differs
by 4% from that from the 80% box (L,* =10,000).

The effect of the computational domain size in the MDR
regime (Re; =125, We, =100, L?=14,400) is shown in Fig. 3.
Once again, it can be seen that at MDR much longer computa-
tional domains are required than in the LDR regime. Specifically,
it is observed that in the domain 20/ x 2k x 5h the flow is
entirely laminarized. However, turbulence can be sustained in
the longer domains of 40k x 2h x 5Sh and 60h x 2h x 5h with
drag reduction level of 74 & 2%. The two-point streamwise cor-
relations R, in the MDR regime are shown in Fig. 3b. This figure
demonstrates that to adequately capture dynamical events elon-
gated box sizes of order 1204 are required. However, reasonable
statistics for %DR and rms velocities can be obtained with box
size of order 40h (L,* =5000). Specifically, the %DR in a 40h
box is within 2% of those obtained by using longer box sizes
(80 and 120h).

The streamwise vorticity fluctuation correlation Ry, in the
buffer layer is also shown in Fig. 3b, demonstrating the rapid
decay of the two-point correlation of this quantity. For compari-
son, the correlations corresponding to the Newtonian flow in the
buffer layer have also been plotted. It can be seen that the loss
of spatial correlation is much slower at MDR than that in the
Newtonian flows. Specifically, the zero-correlation separations
are much farther apart than in Newtonian flows. This clearly
illustrates that the larger turbulence scales become even larger
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Fig. 2. The influence of domain size on computed results in the HDR regime. (a) Time evolution of the mean Reynolds number and %DR; (b) streamwise two-point

correlations (i.e., R,,) in the buffer layer.

with increasing DR, especially in the MDR regime where the
streamwise structures are much more elongated than in Newto-
nian flows. Note that R, ., always drop faster than R,,,, and the
zero-correlation separations for R, are much smaller than
that in R,,;,. This clearly shows that the streamwise vortex length
scales are smaller than the velocity streak lengths. This is con-
sistent with the fact that Ry, and R,,,, are always less correlated
than R, (i.e., the streamwise vorticity fluctuation is mainly due
to the velocity fluctuation in v- and w-components).

Fig. 3c shows the one-dimensional power spectrum den-
sity (PSD) associated with the streamwise velocity fluctuations
in two computational domains with L,*=5000 and 15,000 at
MDR. A spectral gap in the PSD profile can be observed in the
domain with L,*=35000, while the energy is transferred from
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low wavenumber (large wavelength) to high wavenumber (small
wavelength) smoothly in the longer domain with L,* =15,000
that is capable of capturing dynamic events. This clearly shows
that in order to capture the energy associated with large wave-
length structures as well as the energy cascade large domain
lengths are required.

Fig. 3d shows typical two-point correlations of streamwise
velocity Ry, in the spanwise direction in the MDR regime. It
can be seen that the spanwise domain width is sufficiently large
as the spanwise two-point correlations all have several extrema
within the half domain width (~310 wall units). Hence, 5k (625
wall units) is sufficient to capture the structures in the spanwise
direction for all DRs. Therefore, in all of our simulations we
have utilized L,* =625 as our domain width.
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Fig. 3. The influence of domain size on computed results in the MDR regime. (a) Time evolution of the mean flow Reynolds number and %DR; (b) streamwise
two-point correlations (i.e., Ry, and R, «,) in the buffer layer; (c) the one-dimensional power spectrum density (PSD) vs. the streamwise wavenumber for the
streamwise velocity fluctuations in the buffer layer; (d) spanwise two-point correlations (i.e., R,,) at several wall normal distance in the MDR regime.
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Fig. 4. Representative snapshots of velocity streaks in the x — z plane at y* ~ 15 in (a) LDR; (b) HDR; (c) MDR regimes.

Usually the average streak spacing can be evaluated as
twice the distance from the origin of the first minima in the
spanwise two-point correlation. It can be seen that at MDR the
average streak spacing is an increasing function of distance
from the wall (y*) (see Fig. 3¢). Specifically, it can be seen
that in the region (y* < 100), the streak spacing is significantly
enhanced in comparison to that in Newtonian flows which is
approximately 100 wall units. However, it is difficult to predict
an average value for the streak spacing, since it changes greatly
with the distance from the wall. For example, it can be seen that
aty* =4, 15 and 51 the first minima are approximately located at
Az" =75 and 85 respectively, while at y* =101, Az* = 110. This
implies that the averaging streak spacing is approximately 150,
170 and 220 at y* ~ 15, 51 and 101, respectively. These rapid
changes in the streak spacing as a function of y* at MDR is a
consequence of significant enlargement of the buffer layer. This
is not the case at LDR, hence the degree of drag reduction can be
well correlated to the increased streak spacing in the buffer layer
[22,24].

Instantaneous streaky structures are shown in Fig. 4, demon-
strating the increased streak spacing as DR is increased. In
highly drag reduced flows (i.e., HDR and MDR regimes) highly
organized low-speed streaks are observed. Existence of these
structures necessities the use of very long domains to capture
them, i.e., L;* > 10,000 in the HDR regime and L, > 15,000 in
the MDR regime as reported above.

We have also examined the influence of spatial discretization
and artificial diffusivity on important flow quantities, such as
%DR, rms velocities and polymer stretch (see Fig. 5). Our results
clearly show that Ax*~40, Az~ 10 and (Ay")min ~0.1 are
sufficient for obtaining good statistics for these quantities. How-
ever, in the HDR/MDR regime to accurately capture the gradient
of polymer stretch near the wall, (Ay™)min < 0.06 is required.
Moreover, small levels of artificial diffusivity used in the simu-
lations do not significantly influence the above quantities.

As mentioned earlier, simulations have been performed
with both LAD and GAD schemes. The comparison of time
evolution of drag reduction in LDR and HDR regimes is shown

in Fig. 6. The computed average %DR is almost independent of
the scheme utilized at HDR where updates (i.e., addition of dif-
fusivity) are performed at approximately 1% of the nodes. The
difference is slightly more pronounced at LDR (i.e., up to 4%)
where updates are performed at approximately 40% of the nodes.
Overall, our studies indicate that similar statistics for %DR, rms
velocities and polymer stretch (see Fig. 6b and c) are obtained
with the GAD and the LAD schemes, further underlining the
negligible influence of added diffusivity in the computed results.

Taking into consideration all of the above findings, most of
the results reported in the remainder of this paper are based
on the following domain size and spatial discretization. In
the LDR regime (0<DR<30%), the computational domain
sizes (in wall units) in the streamwise and spanwise direc-
tionare L,* x L,* =1250 x 625. In the HDR (30% < DR < 60%)
and MDR regimes, L,* x L,* =2500 x 625 and 5000 x 625 are
used, respectively. The uniform mesh resolution is Ax* ~ 20 in
the LDR and HDR regimes, while Ax™ ~ 40 is used at MDR,;
Az"~ 10 and Ay*~0.06 near the wall (the Chebyshev node
spacing is non-uniform in the y-direction, i.e., it is much more
refined in the near wall region) are required. Simulation details
are summarized in Table 1.

4. Results and discussion
4.1. Turbulent Fluctuations at HDR and MDR

Typical snapshots of xz-plane averaged quantities of interest
such as Remean, rms velocities, overall momentum balance and
trace(c) in the LDR and MDR regimes are shown in Figs. 7 and 8.
A comparison of various quantities at different times clearly
shows the high level of turbulent fluctuation with respect to the
mean value in the MDR regime. Specifically, the variations in
the xz-plane averaged data are relatively minor at LDR (i.e.,
time averaging over 10—15 computational units (/U;) is suffi-
cient to obtain good statistics). While, in the HDR and MDR
regimes significant variations are observed. Hence, averaging
over 30-50h/Ur  is needed to obtain good statistics.
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4.2. Turbulence statistics

4.2.1. Mean velocity and percentage drag reduction
Since the simulations are performed with a constant pressure

(i.e., the FENE-P model):

. —2/n
ReVisc
1 _ ,,2(0—n)/n mean
e Al e ©
mean / g, o

gradient, %DR is manifested via an increase in the flow rate (i.e.,
an increase in Repean). Recently, Housiadas and Beris [28] pro-
posed the following relationship between %DR and Repean for
dilute polymeric solutions with a shear rate dependent viscosity

where [y, is the effective wall viscosity, and n=1.1478. Uti-
lizing this relationship we have computed %DR as a factor of
L2, We, and Re; (see Table 2). Our results indicate that, at a
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Table 1
Simulation details
Re- Parameters Regime
LDR HDR MDR

Domain size (wall units)

Ly: 5h, 10h, 20h (625, 1250,
2500); Ly: 2h (250); L;: 5h

Ly: 10h, 20h, 40h, 60h, 80h
(1250, 2500,5000,7500,

Ly: 20h, 40h, 60h, 80h, 120h
(2500, 5000, 7500, 10000,

125 (625) 10000); Ly: 2h (250); L;: 5h 15000) Ly: 2k (250); L;: 5h
(625) (625)
Nodes 64 x 65 x 64, 128 x 65 x 64 128 x 65 x 64,256 x 65 x 64 128 x 65 x 64,
384 x 65 x 64, 128 x 97 x 64 256 x 65 x 64,
384 x 65 x 64,
128 x 97 x 64,
128 x 129 x 64
Axt, Ay*, Azt ~(10-20) x (0.15-6) x 10 ~(10-40) x (0.07-6) x 10 ~(10-40) x (0.04-6) x 10
At 5x 107 (2-5)x 1074 (1-2) x 107*
Artificial diffusivity 0.03 0.02-0.03 0.01-0.03
Domain size (wall units) 6.944h x 2h x 3472h 13.888h x 2h x 3472h 27.7776h x 2h x 3472h
(1250 x 360 x 625) (2500 x 360 x 625) (5000 x 360 x 625)
180 Nodes 64 x 97 x 64 64 x 97 x 64, 128 x 97 x 64 128 x 97 x 64
Axt, Ayt AZF ~20 x (0.10-6) x 10 ~(20-40) x (0.10-6) x 10 ~40 x (0.10-6) x 10
At (2-5)x 1074 (1-2) x 1074 (1-2) x 1074
Artificial diffusivity 0.02 0.02 0.02
Domain size (wall units) 2mh x 2h x 0.57h 2mh x 2h x 0.57h 4h x 2h x 0.57h
(2482 x 790 x 620) (2482 x 790 x 620 (4964 x 790 x 620)
395 2mh X 2h x 4h x 2h x 057h
(2482 x 790 x 1241) (4964 x 790 x 620)
Nodes 128 x 129 x 64, 128 x 129 x 64, 128 x 129 x 64,
128 x 129 x 128 256 x 129 x 128 256 x 129 x 64
128 x 193 x 64
Axt, Ay*, Azt ~20 x (0.12-10) x 10 ~(20-40) x (0.12-10) x 10 ~(20-40) x (0.05-10) x 10
At (2-5) x 107 (1-2) x 10~ (1-2) x 10~
Artificial diffusivity 0.01 0.01-0.02 0.01-0.02
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Fig. 8. Typical snapshots of xz-plane averaged quantities in the MDR regime.

given Re;, as We; in enhanced for a given L, %DR reaches an
asymptote. Moreover, as L is increased the extent of %DR is
enhanced. However, it should be noted that as proposed earlier
in the HDR and MDR regimes the computed %DR at given val-
ues of L2 and We, shows a dependence on Re; (i.e., at We; =100
and L2 = 14,400, %DR =74 for Re; =125, while it is 71% for
Re; =180, and 61% for Re; =395). These trends are consistent
with the hypothesis that the extent of DR is proportional to the
extensional thickening of the dilute polymeric solution.

In order to further illustrate this point, the average trace of
the polymer conformation tensor as a function of chain extensi-
bility L, We, and Re; is depicted in Fig. 9. Clearly, as the chain

Table 2
The percentage drag reduction (%DR) as a function of Re,, We; and L
Re; L2 We,
25 50 100 200
14 - - 3.0 -
56 - - 8.0 -
225 - - 23.5 -
450 - - 31.5 -
125 900 18.5 31.0 37.0 -
1800 20.2 34.5 44.5 -
3600 21.5 43.0 56.5 -
7200 22.5 49.0 69.0 -
14400 24.0 51.5 74.0 -
900 19.0 30.5 38.5 -
180 3600 - - 54.0 -
14400 - - 71.0 -
900 18.5 30.5 37.0 -
395 3600 - 38.0 48.0 -
14400 - - 61.0 75.0

length is enhanced, trace(c) monotonically increases at a fixed
Re. and We,. However, the percent increase in the chain length is
decreased (i.e.,trace(c)/L? decreased). Further note that at high
Re, (i.e., 180 and 395) the region of high chain extension is
limited to the near wall region y/h <0.2. However, at Re; =125
significant chain extension can be observed up to y/h ~ 0.5 par-
ticularly in the HDR and MDR regimes. This suggests that at
this Re; the flow is wall dominated and perhaps this value of Re;
is too low for a comprehensive investigation of polymer induced
DR at HDR and MDR. This issue will be discussed further in
this section as well as in Sections 4.3 and 4.4.

Typical mean streamwise velocity profiles as a function of the
distance from the wall in logarithmic scale in the LDR, HDR
and MDR regimes are shown in Fig. 10. For the sake of compar-
ison the profiles for Newtonian flow at each Reynolds number
have also been included. For the Newtonian cases, excellent
agreement with the linear distribution U* =y* in the viscous
sublayer, and well as the logarithmic layer U" =2.5In(y*) +5.5
is observed. In drag reduced flows, it can be seen that all profiles
in the viscous sublayer also collapse on the linear distribution
U* =y*. Further away from the wall the mean velocity of the
drag reduced flows increases as compared to that in Newtonian
flows. Specifically in the LDR regime, the logarithmic profile
is shifted upwards parallel to that of the Newtonian flow. The
same behavior is found for the mean streamwise velocity profile
in the LDR regime in the channel flow experiments of Warholic
et al. [5] and in earlier DNS studies [11-14]. The upward shift
of the logarithmic profile can be interpreted as a thickening of
the buffer layer [2,3].

In the HDR regime, the slope of the mean velocity is aug-
mented. In addition, the slope increase is a function of %DR.
In fact, at Re; =180 and 395 the Virk maximum asymptote is
observed at 71% and 75%, respectively. Present simulations at
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Re,; =125 indicates that for 1% =14,400 and with the Oldyold-
B model, the mean velocity profile in the center exceeds the
predicted maximum value by Virk asymptote. This effect was
also noted in the experimental study by Ptasinski et al. [6]. As
mentioned earlier, at Re; =125 the flow is wall dominated at
HDR and MDR. Hence, the computed results are not expected
to exactly follow Virk’s data [4,8] collected at much higher Re;
where the flow is not wall dominated.

4.2.2. Velocity fluctuations

The rms of three velocity component fluctuations for drag
reduced flows along with Newtonian data are shown in Fig. 11.
Itis well known [5,22,24,25] that in the LDR regime the stream-
wise velocity fluctuations u;,g monotonically increase, while
the wall normal and spanwise components vyms and wyms Mono-
tonically decrease as DR is enhanced. Specifically, in the LDR
regime the peak value of uy is increased to 3.5, while vy, and
Wrms decrease to almost half of their Newtonian magnitude. Fur-
ther note that the peak locations of the u, shift away from the
wall as %DR increases. This is consistent with the shift of the
logarithmic region in the mean velocity profile. With increasing
level of drag reduction (i.e., HDR/MDR regime), it can be seen

that uyys remains in the range of 3.5—4.0, while vps and wipg
decrease significantly. Although in the HDR/MDR regime the
maximum value of u,g does not changes significantly, it can be
observed that the distribution becomes much broader near the
peak position and the peak location is shifted further toward the
center of the channel. Present prediction of the maximum value
in upyg in the HDR/MDR regime is in agreement with recent
experimental observations of Ptasinski et al. [6].

4.2.3. Vorticity fluctuations

Fig. 12 shows typical vorticity fluctuations at various lev-
els of drag reduction at Re; = 180. The dimensionless (i.e., with
respect to U% /v) rms streamwise, wall-normal, spanwise vortic-
ity fluctuations are shown in Fig. 12a—c, respectively. It can be
seen that the intensity of the streamwise vorticity fluctuations
monotonically decreases with increasing drag reduction up to
MDR. It can also be clearly seen that the streamwise vortic-
ity fluctuations for both the Newtonian and the drag reduced
flow in the LDR regime show a characteristic local minimum
followed by a local maximum. The locations of these mini-
mum and maximum correspond to the average edge and center
locations of the streamwise vortices (eddies) in the near wall
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region, respectively. The interval between these two locations is
roughly proportional to the average size of streamwise vortices.
As shown in Fig. 12a, the introduction of the polymer not only
reduces the intensity of the fluctuations but also shifts the loca-
tions of both the minimum and the maximum towards the center
of the channel. This implies a reduction in the intensity of the
wall eddies and an increase in their average size (see Section
4.3 for details). It is widely accepted that a direct relationship
between the streaky structures and the near wall streamwise vor-
tices exists [22,24-26]. The mean streak spacing in Newtonian
flows is approximately 100, however, an increase in the average
streak spacing is observed in the LDR regime. Specifically, it has
been shown that the streak spacing increase (in wall units) can
be described as 0.19 x %DR in this regime [11,24]. As shown
in Section 3, the streak spacing is a strong function of y* in the
HDR and MDR regimes, hence, one cannot unambiguosly relate
%DR to the average streak spacing.

In the HDR/MDR regime, the profiles of rms streamwise
vorticity fluctuations are much flatter across the channel, and
the locations of the minimum and maximum are not as obvious
as in the LDR regime. Despite this fact, one can observe that the
locations of the maximum are close to the center region of the
channel, which indicates that the outer scales become important
at large degrees of drag reduction. This is consistent with the
theory of Screenivasan and White [29] at MDR who found that
the length scales are of the order of the pipe radius. Hence, at
high levels of drag reduction, the increase in the average streak
spacing does not necessarily obey the linear correlation observed
in the LDR regime.

The intensity of wall-normal vorticity fluctuations monotoni-
cally decreases with increasing drag reduction in the wall region,
and the peak position is shifted to the center (see Fig. 12b). Fur-
ther, as depicted in Fig. 12c, the intensity of spanwise vorticity
fluctuations decreases with increasing DR in the near-wall region
up to y* ~ 30, and subsequently increases in the outer region.
This change is related to the enhancement of rms streamwise
velocity fluctuations and decrease in wall-normal velocity fluc-
tuations in the drag reduced flows.

Streamwise vortices play an important role in mediating the
mass/momentum transfer between the near wall region and tur-
bulent core by ejecting low-speed fluid from the near wall region
to the core (ejection/upwash) as well as by bringing high speed
fluid from the core towards the wall (sweep/downwash). Hence,
it is of interest to examine the reciprocals of the streamwise
vorticity fluctuations as it is a measure of the time scale associ-
ated with the dimensionless vortex rotation speed in wall units.
Of particular interest is the relationship of this time scale to
the polymer dimensionless time scale in wall units, i.e., We;.
As shown in Fig. 12d this time scale increases with increasing
drag reduction. It can also be seen that in the viscous sublayer
and buffer layer for Newtonian flows, this time scale is in the
range of 5—10 in wall units. If drag reduction is manifested when
these time scales at small y* become equivalent (i.e., the dimen-
sionless time scale for upwash and downwash become similar
to We;), then one would expect that the onset of DR occurs
in 5 < We; < 10. Indeed, this is consistent with the findings for
the onset of drag reduction at We,; = 6.25 (i.e., Deborah number,
De=We,w," mms ~ O(1)) [11,13].
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This analysis clearly suggests that the near wall vortex time
scale plays a significant role in determining the onset of DR. In
fact, we have observed that this time scale plays a significant
role in all regimes of DR. Specifically, at MDR (%DR =71 at
Re; =180, We; =100 and L2 = 14,400 as shown in Fig. 12d) the
first peak of this time scale is about 75, which is comparable to
We, =100 required to achieve this MDR. We have also observed
that for large L2 (.e., 2> 3600) over abroad range of %DR, We,
(wf,rms)peak ~ O(1) in the near wall region. This suggests that
as elastic forces are enhanced they lead to stabilization of near
wall axial vortices resulting in much longer and slower rotating
vortices. Furthermore, these findings underline the fact that there
is an intricate balance between elastic forces and average rotation
speed of the near-wall axial vortices that determines upwash and
downwash events and Reynolds stress production. It should be
noted that our findings regarding the relationship between We,
and (a)xﬂrms)peak in the near wall region for the DR onset and
in the LDR regime for large L? are consistent with earlier DNS
results [19] with the Oldroyd-B model.

4.3. Vortex identification and structure of turbulence

As mentioned above as DR is enhanced the intensity of near
wall eddies is reduced and their average size in increased. In
this section we provide direct evidence of this phenomenon via
vortex visualization. A number of techniques for the identifi-
cation of vortices have been proposed. In the present study we
have applied the algorithm of Zhou et al. [30] using the isosur-
faces of A, the imaginary part of the eigenvalue of the velocity
gradient tensor Vu to visualize vortices. The isosurfaces of Afi
are plotted at an appropriate threshold. Note that within a few

percent of the maximum value, the vortical structures are not a
very sensitive function of the selected threshold value. Hence, a
threshold value of approximately 5% is used in the present study.
As pointed out by Zhou et al. [30], there are several advantages
of this vortex identification method. For example, it is frame
independent, hence the difficulty of choosing a proper frame of
reference is eliminated. In addition, this method automatically
eliminates regions having vorticity but no local spiraling motion,
such as shear layers, because the eigenvalues are complex only
in regions of locally circular or spiraling streamlines. The term
)»gi is analogous to enstrophy, and it is also dimensionally consis-
tent with other quantities used for vortex identification such as Q
(Q=1/2 (]|2]|> = ||S||?), where 2 and S are the antisymmetric
and symmetric parts of Vu [31]) and A, (the second eigenvalue
of the symmetry tensor 8> + 22 [32]). The vortical structures
obtained at MDR by these methods are shown in Fig. 13. It can
be seen that these methods yield qualitatively identical and quan-
titatively similar results, provided a suitable threshold value is
used. In the following we have used the )\zi—criterion for vortex
visualization.

Fig. 14 illustrates the dramatic modification of coherent vorti-
cal structures as drag reduction is achieved. It can be seen that the
number of vortices is rapidly decreased with increasing %DR.
This reduction is particularly significant at MDR. It can also
be seen that with increasing %DR the number of axial vortices
is significantly reduced, while the number of horseshoe-type
vortices is increased (i.e., at MDR the horseshoe-type vortices
are predominant). The weakening of the vortices has also been
observed in the experiments (i.e., an increase of streak dimen-
sions). At Re; = 125 it can be seen that there are almost no axial
vortices and the number of the horseshoe-type vortices are fewer
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Fig. 14. Vortex structure at various %DR. (a) Re; =125; (b) Re; = 180; (c) Re; =395.

in comparison to higher Re; (i.e., 180 and 395). This provides
another indication that the flow at Re; =125 in the HDR and
MDR regimes is wall dominated.

The observed reduction in the intensity of the wall eddies
provides evidence for the proposed mechanism of drag reduc-
tion based on the inhibition of the near wall eddies that facilitate
significant amounts of the turbulence production. Mean flow ori-
ented eddies are known to be responsible for ‘ejecting’ slowly
moving fluid from the near wall region, resulting in the genera-
tion of low-speed streaks, a mechanism which eventually leads
to the production of Reynolds stress [33,34]. Combining these
observations with the decrease in wy* s described earlier leads
to the conclusion that the presence of macromolecules leads to
inhibition of near wall vortices as well as a significant reduc-
tion in the rotation speed of vortices leading to a reduction in
Reynolds stress production (i.e., DR).

4.4. Overall momentum balance

In a statistically stationary fully developed state, the total
shear stress should follow a straight line. Specifically, the total
shear stress is the sum of three contributions, namely, the
Reynolds stress, the viscous stress of the solvent and the poly-
mer stress. Since the simulations are performed with a constant
pressure gradient, the total shear stress has the value t,, at the
walls and it is zero at the center of the channel. Normalized by
wall stress Ty (= ,on) the time averaged shear stress balance
equation is given by [6,7,11]:

dU Y
d(y/h)+(1—ﬂ)rxy_1 .

where —uv, g = ,3% and 7, = (1 — B)Tyy are the Reynolds
shear stress, the viscous stress of the solvent and the polymer

—uv+ B @)
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Fig. 15. Overall momentum balance. (a) Re; = 125; (b) Re; =395; (c) Re; =180 (%DR from 0%, 19%, 39%, 54%, to 71%).
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stress, respectively. T is sometimes referred to as the Reynolds
stress deficit due to the fact that the Reynolds shear stress and the
solvent viscous shear stress do not add up to yield the expected
linear distribution seen in Newtonian flows.

Various contributions to the overall shear stress balance as
a function of the distance from the wall are shown in Fig. 15.
In all cases the total shear stresses depict the expected linear
profiles over the channel height, indicating that a stationary
fully developed state has been reached. In the LDR regime,
the polymer stresses increase monotonically with increasing
drag reduction, while the Reynolds stresses decrease slowly.
The polymer stress contributions are relatively small, and they
occur mainly in the near wall region (i.e., the peak locations
of polymer stress are in the buffer layer). However, as %DR in
increased (i.e., HDR regime), the Reynolds stress is significantly
reduced, and the polymer stress is comparable to the Reynolds
stress. The increase in the polymer stresses and the decrease in
the Reynolds stress are much less pounced as one moves from
the HDR to the MDR regime. Specifically, at MDR the Reynolds
stress is significantly reduced as compared to the LDR regime,
but it remains non-zero. These observations are consistent with
experimental results by Ptasinski et al. [6,7]. Moreover, at MDR
the polymer stress on average has the same magnitude as the

Reynolds stress, in fact the polymer shear stress is larger than
the Reynolds shear stress in the near wall region. It can also be
seen that at MDR and 8=0.9 the polymer stress contributions
are about 10% of the total stress. Further note that the peak loca-
tion of the Reynolds stresses shifts toward the channel center
with enhanced drag reduction. At Re; = 125 the solvent stress is
significant over the entire channel height as opposed to higher
Re; where it is limited to the near wall region. This is another
indication that the flow is wall dominated at Re; =125 in the
HDR and MDR regimes.

4.5. Polymer body force

A more rigorous approach for detecting the Reynolds stress
deficit is to directly calculate the polymer stress. As shown in
the RHS of momentum balance Eq. (2), the extra term added to
the Navier—Stokes equation is the polymer body force [14,20]:

1-8

fi=——0;Tj

Re. ®)

The body force term is clearly non-local and time varying and
consequently, its local manifestation in the flow is quite complex.
Hence, we are more interested in the polymer work E; = u; f;
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(i.e., product of the velocity and polymer body force), because
via the polymer work, the influence of polymer dynamics on
the flow can be evaluated as it directly influences the budget of
the turbulent kinetic energy. Specifically, if E; < 0 the energy
carried by velocity fluctuations u; could be dampened, otherwise
it will be enhanced. Usually, the polymer work E; is expressed
in the correlation coefficient normalized by rms quantities:

=D ©)

Ui, rmsfi, rms Ui, rmsfi, rms

Therefore if the correlation p; is positive (negative), the body
force f; has the tendency to increase (decrease) the fluctuation
u;, which is equivalent to positive (negative) work.

Fig. 16 shows the correlation between velocity fluctuations
and polymer body force across the channel in all LDR, HDR
and MDR regimes at various Reynolds numbers. Our results
indicate that up to y* ~20-30, the polymer body force f; and
streamwise velocity fluctuation u are positively correlated, i.e.
the viscoelastic force performs positive work on the u fluctuating
velocity field, increasing u velocity fluctuations (i.e., enhanced
urms as observed earlier). The correlations py and p, are negative
or very small close to zero across the channel. This explains
the reduction of vyyg and wyyg. That is the polymers dampen
vortices via negative fy and E;. In general it can be observed
that over a range of y* the correlations between polymer body
force and velocity are negative. This supports the scenario where
the polymer chains are extracting energy via stretching from the
flow and hence reducing turbulent fluctuations. From Fig. 16, we
can also see that within the Reynolds number range considered,
the characteristics of p; are the same, and with respect to the level
of drag reduction same trends for p; exist. Hence, we believe that
these results are applicable in different DR regimes.

4.6. Drag reduction scaling

The percentage drag reduction (%DR) versus L, for We, =25,
50 and 100 at Re; = 125, 180, 395 is shown in Fig. 17. It can
be seen that the %DR as a function of L and We; at various Re;
has a selfsimilar behavior. Moreover, the level of drag reduction
tends to an asymptote at large L at fixed We;. Similarly, as L is
fixed the %DR approaches an asymptote as We, in enhanced.
This suggests that the influence of We, and L on %DR could be
decoupled. Considering the fact that % DR reaches an asymptote
as We; and L are enhanced, we have developed the following
expressing for %DR as a function of We,, L and Re;

%DR = 80 |:1 _ e—a(WEr—Wfr,c)(Rer/Rer,r)70‘225:| [1— e—VL]
(10)

where a=0.025, y=0.0275. We, (=6.25) is the onset Weis-
senberg number. Re; is the reference Reynolds number, and
it is set to Rerr=125. The prefactor of 80 is used because
at high We; and large L, the %DR at MDR asymptotes to
80% at high Reynolds numbers [4,8]. Eq. (10) explicitly shows
that effective drag reduction requires large polymer extensibil-
ity L and high We; number. Our simulations also indicate that
almost the same level of drag reduction can be obtained with

FENE-P at L? = 14,400 and the Oldroyd-B (L? — c0) models.
This clearly demonstrates that only at high Weissenberg num-
bers (We; > 100) by enhancing the maximum chain extensibility
MDR can be reached. A close examination of the figure clearly
indicates that this scaling accurately describes the extent of DR
in the HDR and MDR regimes. However, in the LDR regime
deviations are observed. This suggests that perhaps in this regime
(i.e., relatively small L values) the influence of L and We, cannot
be decoupled.

5. Conclusions

Hi-Fidelity DNS of polymer induced drag reduction in tur-
bulent channel flows up to the MDR limit have been performed.
The polymeric stress is evaluated by the FENE-P and Oldroyd-B
models. The influence of the friction Weissenberg number, chain
extensibility and flow Reynolds number on the flow dynamics
has been examined. It is shown that to obtain significant levels of
drag reduction large polymer extensibility and high Weissenberg
numbers are required. The simulation results in turn have been
used to develop a scaling that describes the interplay between
the rheological parameters (i.e., maximum chain extension and
relaxation time) and the extent of DR as a function of Reynolds
number. In addition, turbulence statistics have been analyzed
and correlations between the polymer body force and velocity
fluctuations have been developed with particular emphasis on the
HDR and MDR regimes. Specifically, the interactions between
polymer dynamics and flow modifications are elucidated. Our
results indicate that in the near wall region, the polymer body
force f, and streamwise velocity u are positively correlated, i.e.
the viscoelastic force performs positive work on the u velocity
field, increasing u velocity fluctuations. While, The correlations
Py and p, are negative or very small close to zero across the chan-
nel, indicating that the polymer chains are extracting energy via
stretching from the flow and hence reduce turbulent fluctuations
Urms and wrms. It has been observed that at large L? from the
onset of DR to the MDR regime, De = We; (wx" rms)peak ~ O(1)
in the near wall region. This suggests that there is an intricate
balance between elastic forces and average rotation speed of
the near-wall axial vortices that is a measure of the average time
between upwash and downwash events and Reynolds stress
production. Finally, a drag reduction scaling is deduced, as a
function of Re;, We, and L. Specifically, in the HDR and MDR
regimes the scaling accurately describes the extent of DR.
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